

Manifold GCN: Diffusion-based Convolutional Neural Network for Manifold-valued Graphs

Martin Hanik • Gabriele Steidl • Christoph von Tycowicz

October 29, 2024

Learning as Curve Fitting

Typical supervised learning problem: for

$$\mathcal{D} = \{(x_i,y_i)\}_{i=1}^N, \hspace{1em} x_i \in \mathcal{X}, \hspace{1em} y_i \in \mathcal{Y},$$

approximate (or learn) the generating function $\ F:\mathcal{X} o \mathcal{Y}$ in some parameterized function class

$$\mathcal{F} = \{F_ heta: heta\in \Theta\}$$

• Data space $\boldsymbol{\mathcal{X}}$ usually high dimensional, e.g., for gray images:

$$\mathcal{X} = \{f: \mathbb{Z}^2 \supset R
ightarrow \{0, \cdots, 255\}\}$$

Why should we care about Data Structure in Deep Learning?

• A multilayer perceptron (MLP) can already approximate any continuous function to an arbitrary precision

Why should we care about Data Structure in Deep Learning?

• A multilayer perceptron (MLP) can already approximate any continuous function to an arbitrary precision

- Curse of dimensionality makes this result useless in most cases
- Last decade: By utilizing the underlying structure of the problem in deep neural networks, the resulting function space *F* is manouvrable but still contains very good approximations of *F*

Images and Shift-invariance

One Key Observation for Images

• *F* is usually invariant under shifts of the domain

Idea lead to convolutional networks

- Convolution (layer) shift-equivariant
- Final invariant (pooling) layer then makes the network output invariant to shifts
- Restricts dimension of **F** dramatically

Utilizing the structure (shift-invariance) leads to vastly superior results

Geometric DL Blueprint

domain Ω

symmetry group G

signals $\mathscr{H}(\Omega)$

functions $\mathcal{F}(\mathcal{H}(\Omega))$

equivariance $F(\rho(g)f) = \rho(g)F(f)$

invariance $F(\rho(g)f) = F(f)$

Geometric DL Blueprint (extended)

domain Ω

symmetry group G

signals $\mathscr{H}(\Omega)$

group representation $\rho(G)$ data symmetry $r \in R$ functions $\mathcal{F}(\mathcal{H}(\Omega))$

equivariance $F(\rho(g)fr) = \rho(g)F(f)r$

invariance $F(\rho(g)fr) = F(f)$

Blueprint: Graph Neural Network

graph $\boldsymbol{\mathcal{G}} = (V, E, w, f)$

node features $\mathscr{H}(\mathcal{G})$

functions $\mathcal{F}(\mathcal{H}(\mathcal{G}))$

Permutation group S_{n}

Permutation matrix PRotation $R \in SO(d)$ Equivariant message passing $F(PXR, PAP^T) = PF(X, A)R$

Manifold-valued Graphs

Data space \boldsymbol{X} of weighted graphs $\boldsymbol{G} = (V, E, w, f)$, where

$$f: V = \{1, \dots, n\} \to M$$

and *M* is the *feature space*

Convolution

1D case

$$(f*g)(x) = \int_{\mathbb{R}} f(x')g(x-x')dx'$$

Convolution theorem: Fourier transform diagonalizes convolution $(f * g) = \hat{f} \cdot \hat{g}$

$$f * g = \sum_{k \ge 1} \underbrace{\langle f, \phi_k \rangle_{L^2(\mathcal{M})}}_{\hat{f}_k} \underbrace{\langle g, \phi_k \rangle_{L^2(\mathcal{M})}}_{\hat{g}_k} \phi_k(x)$$

$$\Delta \phi_k = \lambda_k \phi_k$$
Localized spectral graph filter¹ $\Rightarrow \hat{g}_k = T(\lambda_k)$
Polynomial
$$T(\lambda) = e^{-t\lambda} \Rightarrow \text{ heat kernel}$$

1 [Defferrard et al. (2016). Convolutional neural networks on graphs with fast localized spectral filtering. NeurIPS]

ZUSE INSTITUTE

Graph Convolutional Filter

Manifold-valued Laplacian² $\Delta_G : \mathcal{H}(V; \mathcal{M}) \to \mathcal{H}(V; T\mathcal{M})$

Diffusion layer discretizing the diffusion equation

 $rac{d}{dt}f(v,t)=-\Delta_G f(v,t)$

Diffusion time as a continuous network parameter

- ranging from purely local to totally global
- no need for choosing neighborhood sizes manually

⇒ Invariant under the symmetries of the feature manifold **and** node permutations.

2 [Bergmann & Tenbrinck (2018). A graph framework for manifold-valued data. SIAM J Imaging Sci, 11(1), 325-360.]

Diffusion of Manifold-valued Graphs

Example: Diffusion of Surface Normals

- *V*,*E* the 1-skeleton
- *w* from cotangent formula
- *f* Gauss map

Gauss map

Tangent Multilayer Perceptron

Inverse Riemannian exponential

- Map node features into tangent space
- Isometries of $M \Rightarrow$ orthogonal change

Allows for equivariant neural units for vector spaces

Equivariant Graph Convolutional Network

Graph-level classification architecture

Diffusion + node-wise MLP \Rightarrow expressive function space (incl. radially sym. convolutions³)

3 [Sharp, N. et al. (2022). Diffusionnet: Discretization agnostic learning on surfaces. ACM Trans. Graph., 41(3), 1-16.]

Classification of Random Graphs

- Benchmark: classify randomly created graphs according to generating algorithm
- Embedding in hyperbolic space is empirically superior to Euclidean space
- Compared to Hyperbolic Graph Neural Network (HGNN)⁴

Method			Mean F1 Score			# parameters
# Graphs	90	180	360	1080	2880	
HGNN (dim=6)	0.518 ± 0.133	0.567 ± 0.085	0.605 ± 0.060	0.654 ± 0.040	0.681 ± 0.042	7053
HGNN (dim=100)	0.418 ± 0.103	0.413 ± 0.105	0.404 ± 0.097	0.547 ± 0.154	0.766 ± 0.079	161903
Ours (degree)	0.594 ± 0.114	0.638 ± 0.084	0.645 ± 0.062	0.679 ± 0.037	0.756 ± 0.046	10429
Ours (one-hot)	$\textbf{0.633} \pm 0.129$	$\textbf{0.687} \pm 0.093$	$\textbf{0.744} \pm 0.059$	$\textbf{0.787} \pm 0.034$	$\textbf{0.820} \pm 0.024$	429

INSTITUT

4 [Liu et al. (2019). Hyperbolic graph neural networks. NeurIPS, 32]

Alzheimer's Classification from Hippocampi

- Shape of hippocampus correlates with progression of Alzheimer's
- Used volume and normals of 120 triangular meshes as shape representation
- Compared against Mesh CNN⁵, which is a network that learns from whole meshes
- Mimicked our network closely with Euclidean-only counterparts (GCN)

Method	Mean Accuracy	# parameters
GCN	0.752 ± 0.085	2616
Mesh CNN	0.592 ± 0.073	1320558
Ours (Sphere)	0.765 ± 0.075	2554

5 [Hanocka et al. (2019). MeshCNN: a network with an edge. ACM Trans. Graph., 38(4), 1-12.]

Summary

Learning functions in high dimensions

- Cursed estimation problem in general
- Geometric DL gives constructive approach to exploit regularities

Equivariant Graph Neural Network

- Diffusion-based filter for spatial communication
- Tangent MLPs for pointwise nonlinearity

Implications for "Small Data"

• Equi-/Invariance provides essential constraints

