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Typical supervised learning problem: for

approximate (or learn) the generating function                        in some parameterized 
function class
   

● Data space X  usually high dimensional, e.g., for gray images:

Learning as Curve Fitting
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● A multilayer perceptron (MLP) can 
already approximate any continuous 
function to an arbitrary precision

Why should we care about Data Structure in Deep Learning?
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● Curse of dimensionality makes this result useless in most cases

● Last decade: By utilizing the underlying structure of the problem in deep neural 
networks, the resulting function space F  is manouvrable but still contains very good 
approximations of F
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Images and Shift-invariance
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One Key Observation for Images
● F is usually invariant under shifts of the domain

Idea lead to convolutional networks
● Convolution (layer) shift-equivariant 
● Final invariant (pooling) layer then makes the

network output invariant to shifts
● Restricts dimension of F  dramatically

Utilizing the structure (shift-invariance)
leads to vastly superior results
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Geometric DL Blueprint

domain Ω

symmetry group G

G

signals H (Ω)

group representation ρ(G)
ρ(g)f(u) = f(g-1u) 

F

functions F (H (Ω))

equivariance
F(ρ(g)f) = ρ(g)F(f) 

invariance
F(ρ(g)f) = F(f) 

ρ(G)
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Geometric DL Blueprint (extended)

domain Ω

symmetry group G

G

signals H (Ω)

group representation ρ(G)
data symmetry r∊R

F

functions F (H (Ω))

equivariance
F(ρ(g)fr) = ρ(g)F(f)r 

invariance
F(ρ(g)fr) = F(f) 

ρ(G)
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graph G =(V,E,w,f)

Blueprint: Graph Neural Network

Permutation group Sn

Sn

node features H (G)

Permutation matrix P
Rotation R∊SO(d) 

functions F (H (G))

Equivariant message passing
F(PXR, PAPT) = PF(X, A)R
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Manifold-valued Graphs
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Data space X  of weighted graphs G =(V,E,w,f ), where

 f : V = {1,...,n} → M
and M is the feature space

M… Hyperbolic space

M… Shape space
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Convolution
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1D case

Convolution theorem: Fourier transform diagonalizes convolution

Localized spectral graph filter1  ⇨  ĝk = τ(λk)

1 [Defferrard et al. (2016). Convolutional neural networks on graphs with fast localized spectral filtering. NeurIPS]

  Δфk=λkфk

PolynomialPolynomial
τ(λ) = e-tλ ⇨ heat kernel 
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Graph Convolutional Filter
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Manifold-valued Laplacian2

Diffusion layer discretizing the diffusion equation

Diffusion time as a continuous network parameter

● ranging from purely local to totally global
● no need for choosing neighborhood sizes manually

⇨ Invariant under the symmetries of the feature manifold and node permutations.

2 [Bergmann & Tenbrinck (2018). A graph framework for manifold-valued data. SIAM J Imaging Sci, 11(1), 325-360.]
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Example: Diffusion of Surface Normals

● V,E the 1-skeleton
● w from cotangent formula
● f Gauss map

Diffusion of Manifold-valued Graphs
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Gauss map

Surface & 
Normals
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Scalar Neurons

Tangent Multilayer Perceptron
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Inverse Riemannian exponential

● Map node features into tangent space

● Isometries of M ⇨ orthogonal change

Allows for equivariant neural units for vector spaces
b

c

a

Tangent 
Vector

Vector Neurons

direction k

feature q

VN-ReLU(q)
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Equivariant Graph Convolutional Network
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Equivariant Block Invariant Block

Diffusion Layer tangent MLP Mfd. Invariant

…

Pooling MLP Softmax

Diffusion Layer

Input

Graph-level classification architecture

Diffusion + node-wise MLP ⇨ expressive function space (incl. radially sym. convolutions3)

3 [Sharp, N. et al. (2022). Diffusionnet: Discretization agnostic learning on surfaces. ACM Trans. Graph., 41(3), 1-16.]
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Classification of Random Graphs

● Benchmark: classify randomly created graphs according to generating algorithm  
● Embedding in hyperbolic space is empirically superior to Euclidean space
● Compared to Hyperbolic Graph Neural Network (HGNN)4

15

4 [Liu et al. (2019). Hyperbolic graph neural networks. NeurIPS, 32]
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● Shape of hippocampus correlates with 
progression of Alzheimer’s

● Used volume and normals of 120 triangular 
meshes as shape representation

● Compared against Mesh CNN5, which is a 
network that learns from whole meshes

● Mimicked our network closely with 
Euclidean-only counterparts (GCN)
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Alzheimer’s Classification from Hippocampi

5 [Hanocka et al. (2019). MeshCNN: a network with an edge. ACM Trans. Graph., 38(4), 1-12.]
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Summary
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Learning functions in high dimensions

● Cursed estimation problem in general
● Geometric DL gives constructive approach to exploit regularities

Equivariant Graph Neural Network

● Diffusion-based filter for spatial communication
● Tangent MLPs for pointwise nonlinearity

Implications for “Small Data”

● Equi-/Invariance provides essential constraints


