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BACKGROUND IN GRAPH LEARNING



SEMI-SUPERVISED LEARNING ON GRAPHS

• Given n data points Ωn = {xi}n
i=1 where we assume that xi

iid∼ µ ∈ P(Ω) for Ω ⊆ Rd and labels
{ℓi}N

i=1 ⊂ {0, 1}N with N ≪ n, we want to find the labels for the remaining points {ℓi}n
i=N+1

• Ideally: leverage the geometric information of the (unlabelled and labelled) samples

• One possible solution: structure the data in a weighted graph and consider the labelling
problem on the latter
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GRAPH SETTING

• An undirected weighted graph G is a tuple (V,W ) where V is the set of vertices and W are the
edge weights

• In our case, V = Ωn and W ∈ Rn×n is symmetric and wij ≥ 0

• We say that the vertices xi and xj are connected by an edge if wij > 0

• Intuition: the “closer” xi and xj are, the larger wij should be
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LAPLACE LEARNING I

• Prominent example of labelling on graphs is Laplace learning [46]

• We look for a function un : Ωn → R that satisfies:

un ∈ argmin
v:Ωn→R

1
2

n∑
i,j=1

wij (v(xi) − v(xj))2 such that v(xi) = ℓi for i ≤ N

and we define En(v) = 1
2
∑n

i,j=1 wij (v(xi) − v(xj))2

• Intuition: vertices xi and xj that are close in the graph — i.e. wij is large — should have similar
labels, i.e. continuity in the graph domain
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LAPLACE LEARNING II
• Since un takes values in R, the classification rule for N < i ≤ n is:

ℓ̂i =
{

0 if un(xi) < 0.5
1 else.

Figure: Possible solution to Laplace learning with points (0, 0.5) and (1, 0.5) labeled 0 and 1
respectively [8]
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WHY IS LAPLACE LEARNING CALLED LAPLACE LEARNING?

• For a graph G = (Ωn,W ), we define the graph Laplacian matrix ∆n = D −W where D is the
diagonal matrix with entries d =

∑n

j=1 wij

• We note that
n∑

i,j=1

wij (un(xi) − un(xj))2 = uT
n ∆nun

• Spectral properties of Laplacian matrix are crucial in many applications, e.g. spectral clustering
[41]
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KEY TAKEAWAYS FROM LAPLACE LEARNING

• Laplace learning is a variational problem on the graph i.e. functions un are minimizers of the
functional/energy En (with pointwise constraints)

⇒ Mathematical structure allows for rigorous analysis. Other examples include:

– Ginzburg-Landau functional on graphs [1], [40]

– Total variation functional on graphs [18]

– Mumford-Shah functional on graphs [10]

– Graph cuts/Spectral clustering [20], [17], [19]

• We want un to be somewhat continuous for reasonable labelling
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ASYMPTOTIC CONSISTENCY ANALYSIS



ASYMPTOTIC CONSISTENCY

• In machine learning, one usually has a finite number n of data points

• However, with our ever-growing data-capturing capabilities we get very large data sets

⇒ Natural question: what happens when n → ∞?

• Desired outcomes:

– the discrete model converges to a continuum model which we can study through classical
techniques and we gain insights into how to better design the discrete algorithm

– we want to able to scale algorithms without a trial and error approach which is costly

• In this talk: analogue of scaling laws in deep learning for graph learning
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VARIANTS OF ASYMPTOTIC CONSISTENCY ANALYSIS

• List of asymptotic consistency analysis methods (non-exhaustive):

– Pointwise consistency: for v a continuum function, consider En(v) → E∞(v) + error
where En and E∞ are discrete and continuum energies respectively [6]

– Probabilistic/Bayesian consistency: formulate the discrete and continuum
model/learning problems as random processes/as sampling from posteriors and show their
convergence [21]/[22]

• First and third parts of this talk, variational consistency: convergence of minimizers of discrete
problems to minimizers of continuum problems [18], i.e. convergence after training

• Second part of this talk, gradient flow consistency: you consider convergence of discrete
learning trajectory/numerical procedure to continuum one [13], i.e. convergence of
training/numerical procedure
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CASE STUDY OF REGULARITY I

Figure: Function uα
n minimizing an energy Eα

n with a parameter α [14].
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CASE STUDY OF REGULARITY II

Figure: Asymptotic hypothesis
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TECHNICAL ASPECTS OF ASYMPTOTIC CONSISTENCY

• Two natural questions for the study of asymptotic consistency in graph algorithms:

1. How does one adapt the graph setting to growing data sets?

2. What is the limit of our variational problems En and what can be said about the
convergence of the functions un?
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GRAPH CONSTRUCTION

• As the number of vertices increases, one needs to systematically define weights. We choose:

wε,ij = 1
εd
η

(
|xi − xj |

ε

)
for some ε > 0 and non-increasing η : [0,∞) 7→ [0,∞)

• If η = 1[0,1], vertices further apart than ε are not connected by an edge

• wε,ij allows to link the extrinsic Euclidean geometry to the intrinsic geometry of the graph:
leverages the geometry of the data
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RANDOM GEOMETRIC GRAPHS

Figure: Visualization of a random geometric graph [35]
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SCALED LAPLACIAN MATRIX

• For a graph G = (Ωn,Wn,ε), the definition of the graph Laplacian matrix is slightly different:

∆n,ε = C

nε2 (Dn,ε −Wn,ε)

where Dn,ε is the diagonal matrix with entries dε,ii =
∑n

j=1 wε,ij and C is a constant that
depends on η

• We note that
C

n2ε2

n∑
i,j=1

wε,ij (un(xi) − un(xj))2 = ⟨un,∆ε,nun⟩L2(µn)

where ⟨un, vn⟩L2(µn) = 1
n

∑n

i=1 un(xi)vn(xi) and µn is the empirical measure of Ωn
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THREE REASONS WHY εn → 0

• Geometry: When n → ∞, it is natural to let εn → 0 as there is increasingly more local
information available at each point which allows one to resolve the geometry in the graph at finer
scales

• Numerics: The numerical cost correlates with the number of neighbours (or the density of the
matrix Wn,ε) so scaling εn → 0 has the advantage of decreasing computation time

• Analysis: Scaling εn → 0 allows us to replace the discrete objective En,εn based on finite
differences with a continuum objective E∞ based on derivatives
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CONVERGENCE OF un THROUGH Γ-CONVERGENCE

• Functions un are all minimizers of functionals En

• Framework of choice to deal with convergence of minimizers of functionals is Γ-convergence
[4]

• Γ-convergence is a property of functionals

• We say that En Γ-converge to E∞ in some metric space X if:

– for all xn → x in X, lim infn→∞ En(xn) ≥ E∞(x)

– for all x ∈ X, there exists xn → x in X such that lim supn→∞ En(xn) ≤ E∞(x)
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CONVERGENCE OF MINIMIZERS

• Fundamental property of Γ-convergence: “compactness of un = argmin En in X” +
“Γ-convergence of functionals En to E∞” = “convergence in X of un to u∞ = argmin E∞”

• Similar to the direct method in calculus of variations is: “compactness of minimizing sequence” +
“lower semi-continuity of functional” = “existence of minimizer”

⇒ We need to find a metric space X in which we can have convergence of un to u∞.
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DISCRETE AND CONTINUUM COMPARISONS I

• Intuition: as n → ∞, the discrete sets Ωn ⊆ Ω “converge” to the continuum set Ω

⇒ It is therefore reasonable to assume that E∞ is defined for functions u : Ω → R

⇒ our metric space X must include functions defined on Ωn and Ω

⇒ in order to define a metric on X, we need to compare discrete functions un to continuum
functions u
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DISCRETE AND CONTINUUM COMPARISONS II

• Since u is not necessarily regular, we need to compare
∫
u dµ and

∫
un dµn where µn is the

empirical measure of Ωn

⇒ The metric space X will be subset of {(ν, v) | ν is a measure on Ω, v ∈ L1(ν)}

• Standard way to compare integrals w.r.t. different measures is through Optimal Transport

• Let Tn : Ω → Ωn be a function that links µ to µn by satisfying the consistency condition
µn(xi) = µ(T−1

n {xi}) for all xi ∈ Ωn

⇒ Tn “projects” Ω to Ωn by conserving the measure of sets

• if there exists such Tn, we could consider
∫

|u− un ◦ Tn|p dµ for the metric
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SPECIAL CASES OF
∫

|u − un ◦ Tn|p dµ → 0

• if u is regular enough and we set un = u|Ωn , then

“
∫

|u− un ◦ Tn|p dµ → 0 ⇔ Tn → Id ”

• if u = un = Id, then (by Optimal Transport theory)

“
∫

|u− un ◦ Tn|p dµ → 0 ⇔ µn converge weakly to µ”

⇒ Our convergence definition has to cover these two cases at least

• Does there exist a metric space in which convergence is characterized by all of the above?
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METRIC SPACE FOR DISCRETE-TO-CONTINUUM ANALYSIS: THE
TLp-SPACE

• We define the TLp-space [18] as follows:

TLp = {(ν, v) | ν ∈ Pp(Ω), v ∈ Lp(ν)}

• For (ν1, v1), (ν2, v2) ∈ TLp, we define the TLp distance dTLp :

dTLp ((ν1, v1), (ν2, v2)) = inf
π∈Π(µ,ν)

∫
Ω×Ω

|x− y|p + |u(x) − v(y)|p dπ(x, y)

where Π(ν1, ν2) the set of all probability measures on Ω × Ω such that the first marginal is ν1 and
the second marginal is ν2
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METRIC IN TLp-SPACE

• dTLp is equal to the p-Wasserstein distance in a special case: this allows one to deduce lots
of properties of dTLp

• In particular, we can define convergence between {(νn, vn)}∞
n=1 and (ν, v) in the TLp-space

conveniently [18]:

– There exists Tn such that Tn#ν = νn and ∥Tn − Id ∥L∞ → 0

– νn converges weakly to ν

– ∥v − vn ◦ Tn∥Lp → 0

⇒ We recover all the requirements from above
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STRATEGY FOR DISCRETE-TO-CONTINUUM ANALYSIS

1. We will consider {(µn, un)}∞
n=1 and (µ, u∞) as elements of TLp(Ω)

– We note that µn converges weakly to µ and, by (for example in Euclidean space) [18,
Theorem 2.5], the appropriate transport maps Tn (between µn and µ) exist, so showing
TLp-convergence is equivalent to ∥u− un ◦ Tn∥Lp → 0

2. We (naturally extend En and E∞ to TLp and) show that En Γ-converges to E∞ in TLp(Ω)

3. We show that {(µn, un)}∞
n=1 is pre-compact and therefore deduce that its limit points are the

minimizer(s) of E∞
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FRACTIONAL LAPLACIAN LEARNING



REGULARITY THROUGH ASYMPTOTIC ANALYSIS

• Reminder: functions un defined on the discrete set Ωn are supposed to help in the SSL problem
and should satisfy:

– for all n, un(xi) = ℓi for all i ≤ N

– if the geometry is well-captured in the graph, then xj ≈ xk implies un(xj) ≈ un(xk), i.e.
we have some regularity

• Regularity in discrete setting is not so convenient to define, but it is easy in the continuum
domain

• Ideally: if the problem is well-posed, the functions un converge to some u∞ which is regular and
satisfies u∞(xi) = ℓi for all i ≤ N

⇒ We would like to have an objective function E∞ whose minimizers are at least continuous in
the well-posed case
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DERIVATION OF E∞ FOR LAPLACE LEARNING

Let us pick η = 1[0,1], ρ the uniform density and u ∈ C∞(Ω) with ∂u
∂n

= 0 on ∂Ω:

⟨u,∆n,εnu⟩L2(µn) = C

n2ε2
n

n∑
i,j=1

1
εd

n
1{|xi−xj |≤εn} (u(xi) − u(xj))2

n→∞−−−−→ C

ε2+d
n

∫
Ω

∫
Ω
1{|y−x|≤εn}(u(y) − u(x))2 dydx

= C

ε2
n

∫
Ω

∫
{|z|≤1}

(u(x+ εnz) − u(x))2 dzdx

= C

∫
Ω

|∇u(x)|2
∫

{|z|≤1}
z2 dzdx+ o(εn)

εn→0−−−−→
∫

Ω
|∇u(x)|2 dx = ⟨u,∆u⟩L2(µ) where ∆ is Laplace operator
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REGULARITY CONSIDERATIONS OF LAPLACE LEARNING

• For general η and ρ, E∞(u) = ⟨u,∆ρu⟩L2(µ) where ∆ρ = − 1
ρ(x) div(ρ2∇u) is the weighted

Laplace operator and ρ is the density of µ with respect to Lebesgue measure

• Minimizers u∞ of E∞ are in the Sobolev space W1,2(Ω)

• In order to get at least continuity, by Sobolev embeddings:

u∞

{
is continuous if d = 1
is only in W1,2 if d > 1

⇒ Very constraining in practice!
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LAPLACE LEARNING WHEN d > 1
• When d > 1, the solution of Laplace learning for large n is almost constant and is not useful for

SSL

Figure: Spikes in Laplace learning [9]

• It is shown in [39] that in this case, un converges (in TL2) to the minimizers of
E∞ =

∫
Ω |∇u(x)|2 dx without the pointwise constraints, i.e. a constant
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HIGHER ORDER LAPLACE LEARNING

• Recall from general Sobolev inequalities, Wk,p(Ω) is embedded in a space of continuous
functions if k > d/p

• Other variational problems on graphs have been proposed where the limiting functional E∞ is a
higher order Sobolev seminorm and the conditions to obtain continuous minimizers are less
constraining:

– Pick k = 1, but let p > 1 (p-Laplacian learning [39] if p < ∞ and Lipschitz learning [7] if
p = ∞)

– Pick p = 2, but let k > 1 (fractional Laplacian learning [14]): we will write s instead of k to
emphasize that we can pick s ∈ R instead of k ∈ N
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p-LAPLACIAN VERSUS FRACTIONAL LAPLACIAN

Attributes p-Laplacian fractional Laplacian
Discrete energy 1

n2ε
p+d
n

∑n

i,j=1 wεn,ij |un(xi) − un(xj)|p ⟨v,∆s
n,εn

v⟩L2(µn)

Solution in SSL Approximate Exact
Computation method Gradient descent Lagrange multipliers

• Note that Laplace learning is 2-Laplacian learning and fractional Laplacian learning with s = 1

• Characterization of well-posed and ill-posed regimes in p-Laplacian learning has been proven in
[39]

• Our work deals with the characterization of the well-posed and ill-posed regimes in
fractional Laplacian learning [43]
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FRACTIONAL LAPLACIAN REGULARIZATION IN SSL

• For s > 0, in the discrete case, we look for:

un ∈ argmin
v:Ωn→R

⟨v,∆s
n,εn

v⟩L2(µn) such that v(xi) = ℓi for i ≤ N

and we define E(s)
n,εn (v) = ⟨v,∆s

n,εn
v⟩L2(µn)

• For s > 0, in the continuum, we look for:

u∞ ∈
{

argminv∈Ws,2(Ω)⟨v,∆s
ρv⟩L2(µ) such that v(xi) = ℓi for i ≤ N ,

argminv∈Ws,2(Ω)⟨v,∆s
ρv⟩L2(µ)

• E(s)
∞ (v) = ⟨v,∆s

ρv⟩L2(µ) is equivalent to a Ws,2-seminorm [14] (here we consider fractional
Sobolev spaces)
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ILL-POSEDNESS CHARACTERIZATION

32/94



WELL-POSEDNESS CHARACTERIZATION

• Let α be a constant that determines how much control one has of the L∞-norm of the discrete
eigenvectors ∥ψεn,n,k∥L∞ in terms of continuum eigenvalues λk for small k, i.e.
∥ψεn,n,k∥L∞ ≤ Cλα

k
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GEOMETRIC INTERPRETATION OF BOUNDS ON εn

• Lower bound: εn cannot go to 0 too quickly and it has to be higher than the connectivity
threshold of the random geometric graph [35]:

( log(n)
n

)1/d
≪
( log(n)

n

)1/(d+4)
≪ εn

• Upper bound: we need: εn ≪
(

1
n

)2/(s−1)

• Intuition of the bounds:

– Lower bound: in order to capture the geometry of Ω properly, we need the graph to be
connected ⇒ intuitive

– Upper bound: graph cannot be too densely connected ⇒ more surprising
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INTUITION FOR s > max{2α + 2 + d/2, 2d + 9}

• We show that we can pick α = d+ 1 on the flat torus Rd \ Zd but, we conjecture that in this
setting, actually α = 0

• We also believe that the “+2” part of s > 2α+ 2 + d/2 is an artifact of our proof, which if
removed (and if α = 0) would yield the intuitive condition s > d/2 from Sobolev embeddings

• The “s > 2d+ 9" requirement follows from the fact that we have(
log(n)
n

)1/(d+4)

≪ εn ≪
( 1
n

)2/(s−1)

• For the latter to be consistent we need s/2 − 1/2 > d+ 4 or s > 2d+ 9
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LINK BETWEEN SOBOLEV SPACE INTUITION AND
CHARACTERIZATION

• Sobolev space intuition is relevant: the ill-posed case is partly characterized by the setting
where Ws,2 is not embedded in continuous functions, i.e. s ≤ d/2

• Sobolev space intuition is not sufficient: even when Ws,2 is embedded in continuous functions,
i.e. s > d/2, if the graph is too connected, we are still in the ill-posed regime
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GAPS IN THE CHARACTERIZATION

Figure: Conjectured versus proven characterization
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OVERVIEW OF THE PROOF: COMPACTNESS I

• Compactness of minimizers in TL2 (and therefore for the ill-posed case) is proven in [14]

• For the well-posed case, we need to show that there exists a continuous function u∞ such that
maxk≤n |un(xk) − u∞(xk)| → 0, which ensures that u∞ satisfies the pointwise constraints

• Using the discrete eigenpairs of ∆n,εn to represent un, we show Lipschitz regularity of un

through spectral convergence results between ∆n,εn and ∆ρ

⇒ We deduce equicontinuity of ũn where ũn = Jεn ∗ (un ◦ Tn) and Jεn is a scaled mollifier

⇒ Through the Ascoli-Arzela theorem, we have that ũn converges uniformly to some u∞
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OVERVIEW OF THE PROOF: COMPACTNESS II

• We write

|un(xk) − u∞(xk)| ≤ |un(xk) − ũn(xk)| + |ũn(xk) − u∞(xk)| =: T1 + T2

⇒ T1 → 0 since ∥Id − Tn∥L∞ → 0

⇒ T2 → 0 by uniform convergence
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OVERVIEW OF THE PROOF: Γ-CONVERGENCE

• lim inf-inequality

– Well-posed case: depends on discrete Sobolev inequality and above compactness result

– Ill-posed case: depends on [14]

• lim sup-inequality

– Well-posed case: depends on a bound for the discrete Sobolev seminorm E(s)
n,εn (the

discrete Ws,2-version of continuum results for W1,p in [3])

– Ill-posed case: depends on [14]
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RATES OF CONVERGENCE FOR
p-LAPLACIAN REGULARIZATION



DISCRETIZING Ws,2 SEMINORMS ON GRAPHS

• Results in [43] explain how to appropriately approximate Ws,2 seminorms on random geometric
graphs by tuning εn

• A discretization based on random geometric graphs is convenient: mesh-free and not (so)
parametric, i.e. has potential to be easily implemented numerically

⇒ Can we approximate other seminorms on graphs?
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DISCRETIZING W1,p SEMINORMS ON GRAPHS

• Similarity with the Ws,2 case: results in [39] explain how to appropriately approximate W1,p

seminorms on random geometric graphs by tuning εn

• Difference with the Ws,2 case: the proof of Ws,2-case relies on eigenpair decomposition and
spectral convergence results between discrete and continuum operators while the proof of
W1,p-case relies on a nonlocal continuum approximation
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APPROXIMATING W1,p SEMINORMS IN THE CONTINUUM

• In [3] we find a characterization of W1,p through the boundedness of the nonlocal formula∫
Ω

∫
Ω

|f(x) − f(y)|p

|x− y|p ηn(x− y) dxdy (1)

for some kernels ηn

• Modulo slightly changing the kernel, p-Laplacian learning is a discretization of (1):∫
Ω

∫
Ω

|f(x) − f(y)|pηn(x− y) dxdy discretized−−−−−−−→ 1
n2

∑
i,j=1

ηn(xi − xj)|f(xi) − f(xj)|p
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NONLOCAL APPROXIMATIONS ARE CONVENIENT

• Advantage 1, a straight-forward proof strategy:

– discrete → continuum nonlocal → continuum local (i.e. the Sobolev seminorm)

– this is what inspired the proofs in [18] (1-Laplacian learning) and [39] (p-Laplacian learning
with p > 1)

• Advantage 2, conceptually simple rates of convergence:

– for smooth enough functions, finite-differences can be replaced by derivatives

– this is similar to how we derived E(1)
∞ , i.e. Laplace learning
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p-LAPLACIAN REGULARIZATION PROBLEM

• We want to compute

u∞ ∈ argmin
v∈W1,p(Ω)

F(v) := µ

p
∥∇v∥p

Lp(Ω) + 1
2∥v − ℓ∥2

L2(Ω)

• Ideally, we establish rates of convergence between a discrete (numerical) solution and u∞ [42]

• We follow the general strategy: discrete → continuum nonlocal → continuum local
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STEP 1: LOCAL OPTIMIZATION TO LOCAL GRADIENT FLOW

• Our approach is to consider the gradient flow associated to the optimization problem above:
∂
∂t
u(t, x) + µ∆pu(t, x) + u(t, x) = ℓ(x), on Ω × (0, T )

|∇u(t, x)|p−2∇u(t, x) · −→n = 0, on ∂Ω × (0, T )
u(0, x) = u0(x)

where ∆pu = − div(|∇u|p−2∇u) is the p-Laplacian operator
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STEP 2: LOCAL TO NONLOCAL GRADIENT FLOW

• We approximate ∆p by the nonlocal p-Laplacian operator

∆εn,η
p u(x) = − C

εd+p
n

∫
Ω
η

(
|x− y|
εn

)
|u(y) − u(x)|p−2(u(y) − u(x)) dy

for some η

• This yields the nonlocal gradient flow:{
∂
∂t
u+ Aεn

ℓ (u) = 0, on Ω × (0, T )
u(0, x) = u0(x)

where Aεn
ℓ (u) = µ∆εn,η

p u+ u− ℓ
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STEP 3: NONLOCAL TO DISCRETE GRADIENT FLOW

• We approximate ∆εn,η
p by the discrete p-Laplacian operator

(∆εn
p,nun)(xi) = − C

nεd+p
n

nd∑
j=1

wij |un(xj) − un(xi)|p−2(un(xj) − un(xi))

for some weights wij

• With a partition 0 = t0 < t1 < · · · < tN = T and where τk−1 = tk − tk−1, this yields the discrete
gradient flow: {

uk
n−uk−1

n

τk−1 + µ∆εn
p,nu

k
n + uk

n = (ℓ)n, for 1 ≤ k ≤ N

un(0) = (u0)n

where (ℓ)n is a discretization of ℓ and (u0)n is a discretization of u0
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COMMENTS ON DISCRETE-TO-CONTINUUM COMPARISONS

• We partition our space Ω in nd cells πi

• We define the projection operator Pn : L1(Ω) 7→ Rnd

and the injection operator
In : Rnd

7→ L1(Ω) as

(Pnu)i = 1
|πi|

∫
πi

u(x) dx and (Inun)(x) =
nd∑
i=1

un1πi (x)

respectively for u ∈ L1(Ω) and i = 1, . . . , nd, un ∈ Rnd

and x ∈ Ω.

• For example, (u0)n = Pnu0

• Also, ∥InPnu0 − u0∥L2(Ω) depends on the regularity of u0 and the partition of Ω [12]
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RATES OF CONVERGENCE I

• For some κ > 0, we now set T = log(ε−κ
n ), pick 0 = t0 < t1 < · · · < tN(n) = T and let τn be the

maximum step-size of the time-discretization

• We find that for p ≥ 3,

∥Inu
N
n − u∞∥L2 ≤ C

(
εκ/4

n (F(u0) − F(u∞))1/2 + εn log(ε−κ
n )

+ ε−κ
n

[
τn

log(ε−κ
n )2p−3

ε
2(d+p)
n

+ n−α1 + n−α2 + log(ε−κ
n )(p−1)

εd+p+α3
n nα3

])
where, C > 0 is a constant independent of n, κ > 0 and αi > 0 are chosen constants depending
on the regularity of the initial condition u0, the data ℓ and the kernel η.
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RATES OF CONVERGENCE II

• We note that each term in the rates corresponds to an approximation step, namely (from left
to right) the gradient flow convergence, the continuum nonlocal-to-local approximation, the
discrete-to-continuum nonlocal approximation and discrete-to-continuum approximation of u0, ℓ
and η

• For the error to go to 0,

– we obtain results similar to CFL-conditions: the time discretization τn has to be controlled
by the space discretization εn

– εn admits a lower bound
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RATES OF CONVERGENCE III

• We also show that we can discretize our problem on a random graph models inspired by the
study of graphons

• This implies a random-to-deterministic approximation in the discrete setting and yields an
additional term in the rates of convergence

52/94



OVERVIEW OF WELL-POSEDNESS PROOF

• The existence of a solution to the local gradient flow follows from nonlinear PDE results [28]

• For the nonlocal gradient flow, we consider the abstract Cauchy problem:{
∂
∂t
u+ Aεn

ℓ (u) = 0, on Ω × (0, T )
u(0, x) = u0(x)

⇒ we show complete accretivity (i.e. a generalization of maximal monotony in Banach spaces) of
Aεn

ℓ as well as range condition

⇒ we can apply existence results from nonlinear semigroup theory in Banach spaces to get
solution in terms of semigroups [34]
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OVERVIEW OF RATES PROOF I

• For optimization-to-gradient flow rates: standard rates based on convexity

• For continuum nonlocal-to-local gradient flow rates: one needs to consider the error between ∆p

and ∆εn,η
p applied to a regular function and this relies on Taylor expansions
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OVERVIEW OF RATES PROOF II

• For discrete-to-continuum gradient flow rates:

– we show that a time interpolation of Inun solves a nonlocal gradient flow problem with
parameters InPnu0, InPnℓ and InPnη

⇒ we use the continuum well-posedness results to obtain a solution in terms of semigroups

– by considering the error between ∆εn,η
p and ∆εn,InPnη

p and contraction properties of
semigroups, we obtain: for solutions uεn and Inun to our nonlocal gradient flow with
respective parameters u0, ℓ, η and InPnu0, InPnℓ, InPnη, we have

∥uεn (t, ·) − Inun(t, ·)∥L2 ≤ CeT (τn
T 2p−3

ε
2(d+p)
n

+ ∥u0 − InPnu0∥L2

+ ∥ℓ− InPnℓ∥L2 + T (p−1)

εd+p
n

∥η(·/εn) − InPnη(·/εn)∥L2 )
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HYPERGRAPH LEARNING



HYPERGRAPH SETTING

• A hypergraph G is defined as G = (V,E) where V is a set of objects and E a family of subsets e
of V with |e| ≥ 2 (in our case, V = Ωn)

• Intuition: since |e| ≥ 2, we capture higher order relationships between samples, e.g. similarity
of researchers based on paper authorship

Figure: From graphs to hypergraphs
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RELEVANCE OF HYPERGRAPHS

• Learning on hypergraphs is developed in [45, 15, 27]

⇒ How similar are these methodologies with their graph analogues [25, 31, 24, 11]?

• Ideally: Hypergraphs should be valuable geometrical models for data compared to graphs due
to their additional structure [44, 33]
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HYPERGRAPH LEARNING

• The equivalent of Laplace learning on hypergraphs is introduced in [45]

• The idea is to consider the solution to

argmin
v:Ωn→R

∑
e∈E

∑
{xi,xj }⊆e

w0(e, xi, xj)
|e| (v(xi) − v(xj))2 such that v(xi) = yi for i ≤ N (2)

where w0 is the hyperedge weight function

• Key observation: for each hyperedge e, we penalize the smoothness of v between each pair or
vertices {xi, xj} ⊆ e
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HYPERGRAPH DECOMPOSITION
• Let q = maxe∈E |e| − 1 ≤ n− 1 and
E(k) = {{xi, xj} | there exists e ∈ E with |e| = k + 1 and {xi, xj} ∈ e}

Figure: Skeleton graphs
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HYPERGRAPH LEARNING AS A SUM OF LAPLACE LEARNING ON
SUBGRAPHS

• Idea: order the hyperedges by size in the hypergraph energy (2):

q∑
k=1

w1(k + 1)
k + 1

∑
{xi,xj }∈E(k)

w2(xi, xj)(v(xi) − v(xj))2

for some functions w1, w2

• Intuition: the hypergraph structure can be rewritten as sequence of subgraphs (V,E(k)) and
hypergraph learning is the sum of Laplace learning on each of theses subgraphs

⇒ We want to perform asymptotic consistency analysis for this model
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RANDOM GEOMETRIC HYPERGRAPH WEIGHT MODEL

• For hyperedges of degree k + 1, we define weights as

k∏
j=1

j−1∏
r=0

η

(
|xij − xir |

ε

)

• Intuition: Whenever η is 1[0,1], the weights are different from 0 if and only if all the xi0 , . . . , xik

are all within the same ball of radius ε

• For k = 1, this corresponds to the random geometric graph
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UPDATED HYPERGRAPH LEARNING OBJECTIVE

• For a fixed q ≥ 1 and positive coefficients λk, we define the hypergraph learning problem as

argmin
vn:Ωn 7→R

q∑
k=1

λk
1

nk+1εp+kd

n∑
i0,··· ,ik=1

[
k∏

j=1

j−1∏
r=0

η

(
|xij − xir |

ε

)]
|vn(xi1 ) − vn(xi0 )|p (3)

such that vn(xi) = yi for i ≤ N

• For q = 1, this is p-Laplacian learning [39] (and with q = 1, p = 2, this is Laplace learning)

• Intuition: the term |v(xi1 ) − v(xi0 )|p is strongly accounted for if all the xi0 , . . . , xik are all very
close, i.e. in the same hyperedge of size k + 1

⇒ We emphasize regularity more than just on graphs

62/94



ASYMPTOTIC CONSISTENCY ANALYSIS

• If
( log(n)

n

)1/d
≪ εn ≪

(
1
n

)1/p
, then hypergraph learning is well posed and its minimizers

converge to the minimizers of

q∑
k=1

λkσ
(k)
η

∫
Ω

∥∇v(x0)∥p
2 ρ(x0)k+1 dx0 such that v(xi) = yi for i ≤ N (4)

• If
(

1
n

)1/p ≪ εn, then hypergraph learning is ill-posed, i.e. its minimizers converge to the
minimizers of (4) without pointwise constraints, i.e. constants

• The closeness of points captured by hyperedges of size k + 1 is translated into a power of ρ
and high-density regions will be particularly taken into account, i.e. the gradient of v will be small
on the latter

• Observation: Hypergraph learning is a reweighted variant of p-Laplacian learning and we still
only penalize the p-norm of the first derivative of v
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OVERVIEW OF THE PROOF

• The proof is based on Γ-convergence and compactness in TLp-space

• We also use the discrete → continuum nonlocal → continuum local strategy
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HYPERGRAPH LEARNING LAPLACIANS I

• We can show that u minimizing (3) satisfies
∑q

k=1 λk∆(k,p)
n,εn (u) = 0 where

∆(k,p)
n,ε (u)(xi0 ) = 1

nkεp+kd

n∑
i1,...,ik=1

[[ k∏
j=1

j−1∏
r=0

η

(
|xij − xir |

ε

)]

× |u(xi1 ) − u(xi0 )|p−2(u(xi1 ) − u(xi0 ))
]

• For k = 1, this is the p-Laplacian operator on graphs
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HYPERGRAPH LEARNING LAPLACIANS II

• We get the following pointwise consistency result with high probability depending on εn and δ:∣∣∣∣
(

q∑
k=1

λk∆(k,p)
n,εn

)
(u)(xi0 ) −

(
q∑

k=1

λk∆(k,p)
∞

)
(u)(xi0 )

∣∣∣∣ ≤ O
(
δ∥u∥C3(Rd)

)
where

∆(k,p)
∞ (u)(xi0 ) =

(
∥∇u(xi0 )∥p−2

2 ρ(xi0 )k∇ρ(xi0 ) · ∇u(xi0 ) × 2(σ(k,p)
η + (k − 1)σ(k,p,2)

η )
(p− 1)σ(k,p,1)

η

+ ρ(xi0 )k+1∥∇u(xi0 )∥p−2
2

[
Tr(∇2u(xi0 )) + ( σ

(k)
η

σ
(k,p,1)
η

− 1)

× ∇u(xi0 )T ∇2u(xi0 )∇u(xi0 )
∥∇u(xi0 )∥2

2

])
σ

(k,p,1)
η (p− 1)

2ρ(xi0 )

and constants σ(k,p)
η , σ(k,p,1)

η and σ(k,p,2)
η
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HYPERGRAPH LEARNING LAPLACIANS III

• For k = 1, this simplifies to the weighted p-Laplacian operator

∆(1,p)
∞ (u)(xi0 ) = σ

(1,p)
η

2ρ(xi0 )div(∥∇u(xi0 ))∥p−2
2 ∇u(xi0 )ρ(xi0 )2)

• We note that the continuum Laplacian of∫
Ω

∥∇v(x0)∥p
2 ρ(x0)k+1 dx0

is different from ∆(k,p)
∞ (u)

⇒ This is quite unique for these type of problems and pointwise consistency is not sufficient for
discrete-to-continuum analysis in this case!
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HIGHER ORDER HYPERGRAPH LEARNING
• We propose the higher order hypergraph learning energy

q∑
k=1

λk⟨v, (L(k)
n )kv⟩n = ⟨v,

q∑
k=1

λk(L(k)
n )kv⟩n =: F(u)

where L(k)
n is the (regular) Laplacian of the skeleton graphs G(k)

n = (Ωn, E
(k)
n )

Figure: Higher order hypergraph learning is based on the graph decomposition
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INSIGHTS FROM ASYMPTOTIC CONSISTENCY ANALYSIS

• Informally: Ln → ∆ as n → ∞ where ∆ is a weighted Laplace operator

⇒ This implies ⟨v, Lnv⟩n →
∫

Rd |∇v|2 dx

⇒ With powers: ⟨v, (Ln)kv⟩n →
∫

Rd |∇kv|2 dx

• Intuition behind (discrete) higher order hypergraph learning: we penalize the k-th derivative of
our function on hyperedges of degree k + 1
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LINK BETWEEN HYPEREDGES AND DENSITY
• Recall: very close samples ⇒ high degree of hyperedge

Figure: From hypergraph learning to higher order hypergraph learning

• Asymptotic Consistency Analysis: while hypergraph learning converges to a W1,p-seminorm,
higher order hypergraph learning should converge to Wq,2 norm [43, 14]
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MULTISCALE LAPLACE LEARNING

• Higher order Laplace learning corresponds to multiscale Laplace learning [29] on point clouds

• In the latter, subgraphs are constructed directly (without hyperedges)

• However:

– The hyperedge approach through locality theoretically justifies increasing powers on the
Laplacian matrices

– Higher order Laplace learning can also be formulated on non point cloud datasets, i.e.
with an inherent hypergraph structure
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VARYING THE MAXIMAL HYPEREDGE SIZE q + 1

Table: Accuracy of various SSL methods on the digits dataset. We pick ε
(k)
n = 1002−k for

1 ≤ k ≤ 5. Proposed methods are in bold.

q rate Laplace Poisson IP-QC CP-QC IP-SC CP-SC IP-CC CP-CC

2 0.02 11.96 (4.03) 78.81 (2.98) 24.19 (8.92) 15.81 (5.5) 21.91 (8.44) 14.88 (5.48) 19.55 (7.77) 13.44 (5.08)
0.05 19.35 (6.62) 84.87 (1.63) 62.35 (7.28) 34.88 (8.75) 59.01 (7.52) 29.09 (9.18) 53.38 (7.77) 23.86 (7.5)
0.10 42.87 (7.4) 87.13 (1.12) 81.84 (3.6) 58.25 (7.34) 80.96 (3.81) 53.24 (6.98) 79.07 (4.3) 49.71 (6.62)
0.20 68.58 (4.38) 87.61 (0.94) 89.21 (1.5) 84.77 (2.24) 89.11 (1.48) 81.91 (2.7) 88.86 (1.44) 78.27 (3.3)
0.30 82.1 (2.02) 87.58 (0.74) 91.78 (0.86) 90.13 (1.08) 91.78 (0.88) 88.85 (1.2) 91.74 (0.89) 87.13 (1.3)
0.50 88.3 (1.11) 87.85 (0.78) 93.87 (0.72) 92.78 (0.87) 93.87 (0.72) 92.01 (0.87) 93.91 (0.7) 91.08 (0.93)
0.80 89.73 (1.43) 87.88 (1.42) 94.96 (0.98) 93.64 (1.16) 94.94 (0.97) 92.86 (1.22) 94.9 (0.96) 91.89 (1.22)

3 0.02 11.96 (4.03) 78.81 (2.98) 22.57 (9.14) 15.02 (5.8) 20.91 (8.57) 15.46 (5.4) 18.96 (7.82) 13.79 (5.43)
0.05 19.35 (6.62) 84.87 (1.63) 61.81 (7.17) 37.24 (7.55) 58.56 (7.5) 31.54 (9.11) 52.93 (7.74) 24.84 (7.85)
0.10 42.87 (7.4) 87.13 (1.12) 81.57 (3.51) 60.04 (7.23) 80.78 (3.71) 54.66 (7.07) 78.93 (4.26) 50.4 (6.7)
0.20 68.58 (4.38) 87.61 (0.94) 89.12 (1.5) 85.79 (2.17) 89.06 (1.5) 82.83 (2.57) 88.82 (1.47) 79.01 (3.19)
0.30 82.1 (2.02) 87.58 (0.74) 91.74 (0.87) 90.98 (1.02) 91.75 (0.87) 89.44 (1.15) 91.73 (0.88) 87.57 (1.28)
0.50 88.3 (1.11) 87.85 (0.78) 93.87 (0.71) 93.39 (0.81) 93.89 (0.7) 92.45 (0.86) 93.89 (0.71) 91.37 (0.92)
0.80 89.73 (1.43) 87.88 (1.42) 94.98 (0.99) 94.33 (1.13) 94.96 (0.98) 93.3 (1.2) 94.91 (0.96) 92.18 (1.21)
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VARYING THE WEIGHTS λk

Table: Accuracy of various SSL methods on the digits dataset. We pick ε
(k)
n = 1002−k for

1 ≤ k ≤ 5 and λ1 = 1, λ2 = j2, λ3 = (j + 1)2. Proposed methods are in bold.

j rate Laplace Poisson WNLL Properly p-Lap RW CK IP-VQC (2) IP-VQC (3)

1 0.02 12.2 (4.75) 79.0 (2.75) 67.07 (6.07) 78.29 (3.14) 77.83 (3.23) 30.17 (11.33) 60.0 (4.17) 20.58 (8.29) 19.66 (8.71)
0.05 20.42 (7.03) 84.61 (1.72) 69.2 (4.38) 83.11 (2.08) 82.5 (2.19) 32.0 (5.96) 66.19 (3.73) 53.07 (7.79) 50.55 (8.44)
0.10 41.62 (6.59) 86.73 (1.36) 80.73 (3.07) 87.67 (1.45) 87.45 (1.51) 31.95 (5.56) 71.98 (2.73) 78.63 (4.42) 77.94 (4.46)
0.20 68.47 (4.79) 87.61 (0.99) 86.21 (1.53) 89.04 (0.97) 88.93 (1.0) 40.94 (4.75) 78.25 (1.53) 89.19 (1.11) 88.97 (1.1)
0.30 82.17 (2.32) 87.62 (0.8) 88.0 (1.2) 89.81 (0.87) 89.74 (0.89) 44.89 (5.34) 82.11 (0.81) 91.75 (0.84) 91.67 (0.84)
0.50 88.18 (1.0) 87.84 (0.96) 89.04 (1.0) 89.98 (1.0) 89.94 (0.99) 37.33 (2.51) 85.67 (0.98) 93.8 (0.87) 93.77 (0.86)
0.80 89.65 (1.49) 87.88 (1.4) 89.68 (1.45) 89.97 (1.42) 89.97 (1.41) 33.93 (1.16) 88.34 (1.39) 94.86 (1.0) 94.89 (1.02)

2 0.02 12.2 (4.75) 79.0 (2.75) 67.07 (6.07) 78.29 (3.14) 77.83 (3.23) 30.17 (11.33) 60.0 (4.17) 25.16 (9.35) 24.25 (9.65)
0.05 20.42 (7.03) 84.61 (1.72) 69.2 (4.38) 83.11 (2.08) 82.5 (2.19) 32.0 (5.96) 66.19 (3.73) 62.69 (6.84) 61.96 (6.85)
0.10 41.62 (6.59) 86.73 (1.36) 80.73 (3.07) 87.67 (1.45) 87.45 (1.51) 31.95 (5.56) 71.98 (2.73) 81.51 (3.66) 81.25 (3.61)
0.20 68.47 (4.79) 87.61 (0.99) 86.21 (1.53) 89.04 (0.97) 88.93 (1.0) 40.94 (4.75) 78.25 (1.53) 89.49 (1.09) 89.41 (1.1)
0.30 82.17 (2.32) 87.62 (0.8) 88.0 (1.2) 89.81 (0.87) 89.74 (0.89) 44.89 (5.34) 82.11 (0.81) 91.83 (0.86) 91.79 (0.83)
0.50 88.18 (1.0) 87.84 (0.96) 89.04 (1.0) 89.98 (1.0) 89.94 (0.99) 37.33 (2.51) 85.67 (0.98) 93.79 (0.91) 93.77 (0.9)
0.80 89.65 (1.49) 87.88 (1.4) 89.68 (1.45) 89.97 (1.42) 89.97 (1.41) 33.93 (1.16) 88.34 (1.39) 94.91 (1.01) 94.93 (1.0)
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HYPERGRAPH LEARNING AS A QUADRATIC FORM

• Since L(k)
n are positive semi-definite, so is

∑q

k=1 λk(L(k)
n )k and higher order hypergraph

learning is a quadratic form

• Observation: most extensions of Laplace learning lose this mathematical structure which
makes them less convenient to analyze and compute

• Consequence 1: we can use spectral truncation to speed up computations

• Consequence 2: convenient to perform uncertainty quantification and active learning
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BAYESIAN FORMULATION OF HYPERGRAPH LEARNING

• Define a prior for u ∼ N
(

0,
(∑q

k=1 λk(L(k)
n )k

)−1
)

, a likelihood for y|u proportional to e−Ψ(u,y)

for some loss function Ψ

• The posterior u|y is proportional to e−F(u)−Ψ(u,y) and the maximum à posteriori estimator is
minimizer of F(u) + Ψ(u, y)

• Since F(u) is quadratic, it is easy to sample from prior and consequently from the posterior
using the pCN -algorithm [2]: it is possible to perform uncertainty quantification

• Since F(u) is quadratic, the Laplace approximation [37] is precise and we can do active
learning efficiently [30]
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ACTIVE LEARNING

Figure: Accuracy over 100 trials of active learning on the Salinas A dataset using the
Laplace prior with k(1) = 50, the Hypergraph prior 1 with k(1) = 50, k(2) = 30, λ1 = 1, λ2 = 2,
c(1) = 1, c(2) = 2 and the Hypergraph prior 2 with k(1) = 50, k(2) = 30, k(2) = 20, λ1 = 1,
λ2 = 2, λ3 = 4, c(1) = 1, c(2) = 2, c(3) = 3. All priors are truncated at Kn = 100.
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FUTURE RESEARCH DIRECTIONS



GEOMETRIC DIRECTIONS

• Can we consider graph learning problems on other random geometric graph models?

– Bidisperse graphs [32], i.e. local parameter εn(xi, xj) of a special kind

– Soft random geometric graphs [36], i.e. a weight exists between xi and xj with
probability wε,ij

⇒ The latter will imply a random-to-deterministic approximation step

• Can we consider perturbated domains [5]?

⇒ This will modify our Euler-Lagrange equations and introduce a term linked to the capacity of the
perturbated domain

• Can we obtain rates for p-Laplacian regularization on random geometric graphs? Can this be
generalized to other inverse problems?
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ANALYTIC DIRECTIONS

• Can we find the right way to discretize general Wk,p norms on (hyper)graphs, in particular
through nonlocal formulas [16]?

⇒ This will be useful to analyze large data limits of energies similar to
∑q

k=1 λk⟨v, (L(k)
n )kv⟩n

⇒ Nonlocal approximations are useful to discretize inverse problems and PDEs on manifolds
whose geometry are unknown [23]

78/94



MAIN IDEA FOR APPLICATIONS OF HIGHER ORDER HYPERGRAPH
LEARNING

• Higher order hypergraph learning behaves like Laplace learning but captures the geometry of
the data in a better way

• In particular, it has the same mathematical structure

⇒ Replace Laplace learning with higher order hypergraph learning
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APPLICATION I: GRAPH NEURAL NETWORKS

• The graph convolution network is defined in [26] through:

X ′ = Normalized Laplacian ·XΘ

⇒ We could try and replace this with our new matrix
∑q

k=1 λk(L(k)
n )k

⇒ We need to find a way to define normalization appropriately

• We also note that our method can equally be defined on dataset which are not point clouds

⇒ We can compare to classical graph/hypergraph deep learning on graph/hypergraph datasets
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APPLICATION II: EMBEDDINGS AND SPECTRAL CLUSTERING

• Spectral clustering [41] is a very successful unsupervised clustering method

• It relies on the embedding of data through the eigenvectors of the Laplacian matrix

⇒ What about spectral clustering using our new matrix?

• In order to scale the embedding and to apply it to unseen data, SpectralNet [38] was
developped

⇒ Can we do the same thing with the new Laplacian matrix?
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THEORETICAL STUDY OF HIGHER ORDER HYPERGRAPH LEARNING

• Can we prove convergence of posteriors in the large data limit as is done for fractional Laplacian
learning [14]?

• Can we prove consistency in semi-supervised learning as is [39, 43]?
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