

Nonlinear Sampling Recovery for Multivariate Function Classes

Tino Ullrich

Faculty of Mathematics Chemnitz University of Technology

SIGMA 2024 Workshop Luminy, France

Joint work with...

Thomas Jahn (KU Eichstätt-Ingolstadt) **Felix Voigtlaender** (KU Eichstätt-Ingolstadt)

recently published as

Sampling numbers of smoothness classes via l₁-minimization, J.
 Complexity, 79, 2023

Sampling widths

$$\varrho_m(\mathcal{F})_X := \inf_{t_1,\dots,t_m \in \Omega} \inf_{R:\mathbb{C}^m \to X} \sup_{\|f\|_{\mathcal{F}} \le 1} \|f - R(f(t_1),\dots,f(t_m))\|_X.$$

sampling width = minimal worst-case error for optimal standard information

Bartel, Cohen, Dai, Dolbeault, Düng, Heinrich, Kämmerer, Krieg, Nagel, Novak, Schäfer, Sickel, Temlyakov, Triebel, M. Ullrich, T. Ullrich, Voigtlaender, Vybíral, Wojtaszczyk, Woźniakowski, ...

Sampling widths vs. best *n*-term approximation

$$\varrho_{\lceil Cn\log(n)^4\rceil}(\mathcal{F})_{L_2} \leq \tilde{C}\sigma_n(\mathcal{F},\mathcal{B})_{L_{\infty}}$$

Approximate using $\geq Cn \log(n)^4$

samples of $f \in \mathcal{F}$,

error measured in L_2

approximate $f \in \mathcal{F}$ by linear com-

binations of n basis elements of \mathcal{B} ,

error measured in L_{∞}

- Simplified version of main result
- **•** Example: best-*m*-term trig. approximation
- Constant C and \tilde{C} are under control!
- Quantity on the right-hand side has been studied intensively in various scenarios

Sparse (non-linear) approximation

- ▶ Best *n*-term approximation wrt. a dictionary $\mathcal{B} = (\varphi_j)_j$
- ▶ X quasi-Banach space, $f \in X$

$$\sigma_s(f, \mathcal{B})_X = \inf\left\{ \left\| f - \sum_{j \in \Lambda} \lambda_j \varphi_j \right\|_X : |\Lambda| \le n, \lambda_j \in \mathbb{C}, \varphi_j \in \mathcal{B} \right\}$$
$$= \inf_{g \in \Sigma_n} \| f - g \|_X$$

Best *n*-term widths

$$\sigma_n(\mathcal{F},\mathcal{B})_X := \sup_{f\in\mathcal{F}} \sigma_n(f,\mathcal{B})_X$$

Non-linear vs. linear approximation

 $V_J :=$ linear combinations of basis elements with coeff. in J

 $\Sigma_n :=$ linear combinations of n dictionary elements

$$\sigma_n(\mathcal{F}, \mathcal{B})_X := \sup_{\|f\|_{\mathcal{F}} \le 1} \inf_{g \in \Sigma_n} \|f - g\|_X \quad , \quad E_J(\mathcal{F})_X := \sup_{\|f\|_{\mathcal{F}} \le 1} \inf_{g \in V_J} \|f - g\|_X$$

Sparse trigonometric polynomials

Sparsity s: Only few frequencies are "active", i.e.,

 $|\{k : c_k \neq 0\}| \le s$

Goal: Reconstruct f from samples $y^T = (f(t_1), ..., f(t_m))$ where $m \ll N$.

Sparse recovery

Perturbed samples: $\tilde{y_i} = y_i + \delta = A \cdot x + \delta$, A satisfies RIP of order s Basis pursuit denoising: $\min_{x \in \mathbb{C}^N} \|x\|_1$ subject to $\|y - Ax\|_2 \le \delta \sqrt{m}$

$$||x - x^{\#}||_{\ell^2} \le \frac{C_1}{\sqrt{s}} \sigma_s(x)_1 + C_2 \delta.$$

Foucart, Rauhut '13: A mathematical introduction to CS

RIP for bounded orthonormal systems

B := (φ_j)_{j∈[N]} ⊂ L₂(μ) bounded orthonormal system, i.e. ||φ_j||_{L∞} ≤ K
 Number of samples

$$m \geq C \cdot K^2 \cdot s \cdot \log(s)^3 \cdot \log(N)$$

•
$$t_1, \ldots, t_m \stackrel{iid}{\sim} \mu$$

• Then, for $A = (\phi_j(t_\ell))_{\ell \in [m], j \in [N]}$, the matrix $\frac{1}{\sqrt{m}}A$ has RIP(s).

Sparse signals can be recovered robustly using $\ell^1\text{-minimization}$ for the measurements given by A.

Candes, Tao, Donoho, Foucart, Rauhut ...
 Bourgain '14, Haviv, Regev '17: log(s)² for Fourier basis

Minimal number of samples

Lemma (Foucart, Pajor, Rauhut, T. Ullrich 2010)

Let $0 and <math>N, m, s \in \mathbb{N}$. If $A \in \mathbb{R}^{m \times N}$ is a matrix such that every 2s-sparse vector is exactly recovered by ℓ_1 -minimization. Then

$$m \ge cs \log\left(\frac{N}{4s}\right),$$

where $c := 1/\log 9 \approx 0.455$.

Corollary: Sharp behavior of Gelfand widths for ℓ_p with $0 in <math>\ell_2$

$$c_m(\ell_p, \ell_2) \asymp \left(\frac{\log(eN/m)}{m}\right)^{1/p-1/2}$$

Recovery with high probability

Theorem [Jahn, T. Ullrich, Voigtlaender '23]

Let $\mathcal{F} \hookrightarrow L_\infty$ and $P: L_\infty \to L_\infty$ a $(J,J^*)\text{-quasi-projection}.$ Put

$$\eta := 2 \|P\|_{\infty \to \infty} \cdot \sigma_n(\mathcal{F})_{L_{\infty}} + (1 + \|P\|_{\infty \to \infty}) \cdot E_J(\mathcal{F})_{L_{\infty}}$$

and $N := |J^*|$. Drawing at least

$$m \mathrel{\mathop:}= \left\lceil CK^2 \kappa \cdot n \cdot \log(n)^3 \cdot \log(N) \right\rceil$$

nodes $t_1,\ldots,t_m \stackrel{iid}{\sim} \mu$, then, with prob. $\geq 1 - N^{-\gamma \log(n)^3}$

$$\sup_{\|f\|_{\mathcal{F}} \le 1} \|f - R_{\eta}(f(t_1), \dots, f(t_m))\|_{L_2} \le \tilde{C}\eta$$

with universal constants $C, \tilde{C}, \gamma > 0$. The approximant $R_{\eta}(f(t_1), \ldots, f(t_m))$ is contained in V_{J^*} .

Sampling widths

Corollary

$$\begin{aligned}
\varrho_{\lceil Cn \log(n)^3 \log(M)\rceil}(\mathcal{F})_{L_2} \\
&\leq \widetilde{C} \left(\sigma_n(\mathcal{F}, \mathcal{B})_{L_\infty} + E_{\{0, \dots, M\}}(\mathcal{F})_{L_\infty} \right)
\end{aligned}$$

For trigonometric polynomials improvement (due to improved RIP):

Corollary (Trigonometric system)

$$\begin{aligned}
\varrho[Cd\log(d+1)n\log(n)^{2}\log(M)](\mathcal{F})_{L_{2}} \\
&\leq \widetilde{C}\left(\sigma_{n}(\mathcal{F},\mathcal{T}^{d})_{L_{\infty}}+E_{[-M,M]^{d}\cap\mathbb{Z}^{d}}(\mathcal{F})_{L_{\infty}}\right).
\end{aligned}$$
(2)

 \blacktriangleright Constant \tilde{C} is universal and absolute, i.e., not depending on d

 $\blacktriangleright \ \mathbb{T}^d...d$ -torus represented by $[0,1)^d$

▶ $I_j = I_{j_1} imes \cdots imes I_{j_d}$ dyadic frequency block, where $I_0 = \{-1, 0, 1\}$ and

$$I_n = \{k \in \mathbb{Z} : 2^{n-1} < |k| \le 2^n\}$$

• Sobolev spaces mixed smoothness r > 0, integrability 1

$$\mathbf{W}_{p}^{r}(\mathbb{T}^{d}) := \left\{ f \in L_{p}(\mathbb{T}^{d}) : \left\| \left(\sum_{j \in \mathbb{N}_{0}^{d}} 2^{r|j|_{1}2} \right| \sum_{k \in I_{j}} \hat{f}(k) \exp(i2\pi k \cdot x) \right|^{2} \right)^{1/2} \right\|_{p} \le 1 \right\}$$

Besov spaces mixed smoothness r > 0, fine index $0 < \theta \leq \infty$

$$\mathbf{B}_{p,\theta}^{r}(\mathbb{T}^{d}) := \left\{ f \in L_{p}(\mathbb{T}^{d}) : \left(\sum_{j \in \mathbb{N}_{0}^{d}} 2^{r|j|_{1}\theta} \right\| \sum_{k \in I_{j}} \widehat{f}(k) \exp(i2\pi k \cdot x) \Big\|_{p}^{\theta} \right)^{1/\theta} \le 1 \right\}$$

- ▶ r > 1/p embedding into $C(\mathbb{T}^d)$
- Amanov, Nikolskij, Temlyakov, Schmeisser, Triebel ...

Hyperbolic cross projection

Mixed Sobolev regularity

$$\|f\|_{\mathbf{W}_{2}^{r}}^{2} \asymp \sum_{\mathbf{k} \in \mathbb{Z}^{d}} |\hat{f}(\mathbf{k})|^{2} \prod_{i=1}^{d} (1+|k_{i}|^{2})^{r}$$

Hyperbolic cross projection

$$P_{\mathcal{H}_n}f := \sum_{\mathbf{k}\in\mathcal{H}_n} \hat{f}(\mathbf{k})e^{2\pi i\mathbf{k}\cdot\mathbf{x}}$$

- **Error:** $||f P_{\mathcal{H}_n}f||_{L_2} \lesssim n^{-r}$
- **Cost:** $m := \sharp$ grid points in \mathcal{H}_n

• Rate: $m^{-r} (\log m)^{(d-1)r}$

$$\begin{aligned} \varrho_{\lceil Cd \log(d+1)n \log(n)^3 \rceil} (\mathbf{W}_p^r(\mathbb{T}^d)_{L_2} &\leq \sigma_n (\mathbf{W}_p^r, \mathcal{T}^d)_{L_{\infty}} \\ &\lesssim \left(\frac{\log(n)^{d-1}}{n}\right)^{r-\frac{1}{p}+\frac{1}{2}} \log(n)^{\frac{1}{2}-(d-1)(\frac{1}{p}-\frac{1}{2})} \end{aligned}$$

Compare to $\varrho_n^{\text{lin}}(\mathbf{W}_p^r(\mathbb{T}^d)_{L_2} \asymp \left(\frac{\log(n)^{d-1}}{n}\right)^{r-\frac{1}{p}+\frac{1}{2}}$ (Sparse grids, least squares) Worse in the logarithm if d is large! Effect not present for isotropic spaces, see Heinrich '09 Very recent results by Feng Dai and V.N. Temlyakov improve the bound for $\varrho_n(\mathbf{W}_p^r(\mathbb{T}^d)_{L_2}$ by $\sqrt{\log n}$

Tractability

► Consequence of general Theorem: Moeller, Stasyuk, T. Ullrich '24 considered the space $\mathbf{B}_{p,\theta}^r(\mathbb{T}^d)$, for $2 and <math>r = 1/\theta - 1/2$

$$\varrho_{\lceil cd^2(\log^2 d)n(\log^3 n)\rceil}(\mathbf{B}_{p,\theta}^r(\mathbb{T}^d))_{L_2} \le C_{p,\theta}d^{3/2}n^{-r}\log(dn)^{1/2}$$
(3)

Compare with corresponding results for Gelfand widths in Dirksen, T. Ullrich '18

$$n^{-r} \lesssim c_n (\mathbf{B}_{p,\theta}^r)_{L_2} \lesssim n^{-r} (\log \log n)^{r+1}$$

Information complexity vs. computational cost

- \blacktriangleright Nonlinear recovery error in terms of samples is sometimes smaller by the factor $n^{-1/2}$
- Good Basis pursuit denoising needs a search space $\Lambda=[-M,M]^d,$ where its size (dimension) $N=(2M+1)^d$ enters only logarithmically in the number of samples

$$m \ge C \cdot K^2 \cdot s \cdot \log(s)^3 \cdot \log(N)$$

Bad A matrix vector multiplication needs $(2M)^d$ flops and hence the **computational cost** of the recovery algorithm increases dramatically!

Discussion

- F. Dai, V. Temylakov: Random points are good for universal discretization, J. Math. Anal. Appl, 529(1), 2024
- **D.** Dũng, V. Temlyakov, T. Ullrich: Hyperbolic Cross Approximation, Birkhäuser/Springer, Cham, 2018.
- S. Foucart, H. Rauhut: A Mathematical Introduction to Compressive Sensing, Birkhäuser/Springer, New York, NY, 2013.
- I. Haviv, O. Regev: The restricted isometry property of subsampled Fourier matrices in: Geometric Aspects of Functional Analysis, p. 163–179, 2017.
- T. Jahn, T. Ullrich, F. Voigtlaender: Sampling numbers of smoothness classes via l₁-mi in: J. Complexity, 79, 2023.
- D. Krieg: Tractability of sampling numbers on unweighted function classes. in: Proc. Amer. Math. Soc. 11, 115–125. 2024
- E. Novak, H. Woźniakowski: Tractability of Multivariate Problems. Vol. 1: Linear Inforr European Mathematical Society, Zürich, 2008.
- B H. Rauhut, R. Ward: Sparse Legendre expansions via ℓ₁-minimization, J. Approx. Theory 164(5):517–533, 2012.

Thank you for your attention!

References

Control the quasi-projection

Let $\kappa, n \in \mathbb{N}$, $J, J^* \subset I$ and $\tau > 0$.

A linear operator $P: L_2 \rightarrow L_2$ is called a $(\kappa, n, J, J^*, \tau)$ quasi-projection if

$$\begin{array}{l} & P(\Sigma_n) \subset \Sigma_{\kappa n}, \\ & Pf = f \text{ for all } f \in V_J, \\ & Pf \in V_{J^*} \text{ for all } f \in L_2, \\ & P: L_\infty \to L_\infty \text{ is well-defined and } \|P\|_{L_\infty \to L_\infty} \leq \tau. \end{array}$$

Filbir, Temistoclacis 2004: If \mathcal{B} is the Fourier basis or an OPS, take de la Vallée Poussin operators.