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Framework

We consider the following setting:

a set of inputs F ⊂ X with a normed space X ,
(often, F = BX is the unit ball of X )

a normed space Y , (→ specifying the error measure)

a solution operator S : X → Y , and

a class of admissible information Λ ⊂ X ′ = {dual space of X};
today only Λ = X ′

Goal: Compute S(f ) for f ∈ F up to error ε using only info from Λ.

Example: S : X → Y with S(f ) = f , i.e., approximation of f ∈ X in ∥ · ∥Y .
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Algorithms

For functionals c1, . . . , cn ∈ Λ (aka information maps), we may use
arbitrary reconstruction mappings to approximate S : X → Y on F :

An(f ) = φ
(
c1(f ), . . . , cn(f )

)
∈ Y

with some (nonlinear) mapping φ : Rn → Y , and (adaptively chosen)
information ci . We write An = φ ◦ Nn, with Nn = (c1, . . . , cn) ∈ Λn.

We do not care much about φ here and ask the following question:

How much can be gained by choosing the information
adaptively and/or randomly?
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Algorithms: deterministic

Adaption: information mapping is given recursively by

Nn(f ) =
(
Nn−1(f ), Ln(f )

)
,

where the choice of the n-th linear functional may depend on the first
n − 1 measurements, i.e., Ln = Ln(· ; Nn−1(f ), L1, . . . , Ln−1)

We denote the set of all such algorithms by Adet
n (F , Y ), or just Adet

n .

An algorithm is called non-adaptive if Nn = (L1, . . . , Ln), i.e., the
same functionals are used for every input.
We denote by Adet-non

n the corresponding class of algorithms.
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Algorithms: randomized

Randomized algorithms are random variables whose realizations are
deterministic algorithms.

That is, a randomized algorithm An : Ω × F → Y is specified by a
family of algorithms (Aω

n )ω∈Ω ⊂ Adet
n (F , Y ) and a probability space

(Ω, A,P).

Aran
n (F , Y ) is the class of all such (possibly adaptive) algorithms

Aran-non
n (F , Y ) is the class of randomized algorithms whose

realizations are non-adaptive.

(In general, Adet
n ̸⊂ Aran

n due to measurability, see the paper.)
Mario Ullrich Power of adaption and randomization



Algorithms and error Adaption & Randomization Widths of convex sets Add-ons End

Worst-case errors

We define the worst-case error for approximating S over F ...

for an algorithm An ∈ Adet
n ∪ Adet-non

n by

e(An, S, F ) := sup
f ∈F

∥∥∥S(f ) − An(f )
∥∥∥

Y
.

for an algorithm An ∈ Aran
n ∪ Aran-non

n by

e(An, S, F ) := sup
f ∈F

E
∥∥∥S(f ) − An(f )

∥∥∥
Y

.

(We may omit the Y in ∥ · ∥Y . )
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Minimal worst-case errors

The n-th minimal worst-case errors for approximating S over F :

e∗
n(S, F ) := inf

An∈A∗
n

e(An, S, F ),

where ∗ ∈ {det, det-non, ran, ran-non}.

Known: these minimal errors can be quite different...

Can we say something about the maximal difference?

In the following, we assume S ∈ L(X , Y ), i.e., S is linear & bounded.
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Known results in special cases

Theorem [Bakhvalov ’71, Gal/Micchelli ’80, Traub/Wozniakowski ’80]
For every convex & symmetric F ⊂ X and n ∈ N, we have

edet-non
n (S, F ) ≤ 2 edet

n (S, F ).

Theorem [Novak ’92]
Let H, G be Hilbert spaces and S ∈ L(H, G). For all n ∈ N, we have

edet-non
2n (S, BH) ≤ 2 eran

n (S, BH).

Theorem [Novak ’95]
For every convex F ⊂ X and n ∈ N, we have

edet-non
n (S, F ) ≤ 4(n + 1)2 edet

n (S, F ).
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Is adaption useless for symmetric sets?

If F is convex and symmetric, adaption does not help for deterministic
algorithms. It was open for a long time whether the same holds for
randomized algorithms.

This problem was recently solved by Stefan Heinrich who considered
parametric integration using function values as Λ.
For Λ = X ′:
Theorem [Kunsch/Novak/Wnuk ’24, Kunsch/Wnuk ’24]
Let S : ℓm

1 → ℓm
∞, S(f ) = f , and B1 := Bℓm

1
for suitable m = m(n),

then
eran

n (S, B1) ≲
log n

n eran-non
n (S, B1).

This (clearly) also implies eran
n (S, B1) ≲log

1
n · edet

n (S, B1).
Mario Ullrich Power of adaption and randomization



Algorithms and error Adaption & Randomization Widths of convex sets Add-ons End

Main result

Theorem [Krieg/Novak/U ’24]
Let X , Y be Banach spaces and S ∈ L(X , Y ).
For every convex F ⊂ X and n ∈ N, we have

edet-non
2n (S, F ) ≤ 12 n3/2

( ∏
k<n

eran
k (S, F )

)1/n
.

In special cases, the following improvements hold:

1 if F is symmetric, we can replace n3/2 with n,

2 if Y is a Hilbert space, we can replace n3/2 with n,

3 if F is symmetric and Y a Hilbert space, replace n3/2 with n1/2,

4 if X is a Hilbert space and F its unit ball, we can replace n3/2 with n1/2 if we
additionally replace the index 2n with 4n.
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Main result II

It might be easier to digest in the following form:
Theorem [Krieg/Novak/U ’24]
For every convex F ⊂ X , n ∈ N and α > 0, we have

edet-non
2n (S, F ) ≤ Cα n−α+3/2 · sup

k<n

(
(k + 1)α eran

k (S, F )
)

,

where Cα ≤ 12α+1.

If F is convex and symmetric (like F = BX ), then

edet-non
2n (S, F ) ≤ Cα n−α+1 · sup

k<n

(
(k + 1)α eran

k (S, F )
)

.

Again, more improvements for X or Y being Hilbert spaces.
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State of the art

These bounds on the maximal gain in the rate of convergence,
together with some specific examples, imply the following table:

Gain from Adet-non
n Aran-non

n Adet
n

for
to

Adet
n Aran-non

n Aran
n

F convex+symmetric 0
[

1
2 , 1

]
1 1

F convex
[

1
2 , 3

2

] [
1
2 , 3

2

] [
1, 3

2

] [
1, 3

2

]

(We ignore logarithmic factors.)
Mario Ullrich Power of adaption and randomization



Algorithms and error Adaption & Randomization Widths of convex sets Add-ons End

n-widths and s-numbers

A crucial tool are inequalities between n-widths of sets and/or
s-numbers of operators (in the sense of Pietsch), for which we
provide a common generalization.

First, we define the Gelfand numbers of S ∈ L(X , Y ) on F ⊂ X by

cn(S, F ) := inf
L1,...,Ln∈X ′

sup
f ,g∈F :

Lk(f )=Lk(g)

1
2

∥∥S(f ) − S(g)
∥∥.

For S = idX , i.e., identity on X , these are the Gelfand widths of F ,
and for F = BX these are the Gelfand numbers of S.
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Two other “widths”...

The Bernstein numbers of S ∈ L(X , Y ) on F ⊂ X :

bn(S, F ) := sup
V ⊂X affine

dim(V )=n+1

sup
g∈F∩V

inf
f ∈V ∩(X\F )

∥S(f ) − S(g)∥,

i.e., the largest (n + 1)-dim. ball in F w.r.t. norm ∥f ∥S := ∥S(f )∥Y .

The Hilbert numbers of S ∈ L(X , Y ) on F ⊂ X :

hn(S, F ) := sup
{

cn
(
CSA, Bℓ2

)
: C ∈ L(Y , ℓ2) with ∥C∥ ≤ 1,

A ∈ L(ℓ2, X ) and x ∈ F with A(Bℓ2) + x ⊂ F
}

,

i.e., Gelfand numbers of the “most difficult Hilbertian sub-problem”.
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Bounds between s-numbers

For F = BX , i.e., for s-numbers, a lot is known, mainly due to Pietsch
(who recently passed away). For example, from [Pietsch ’74]:

hn(S, BX ) ≤ bn(S, BX ) ≤ cn(S, BX ).

The following reverse inequality was essentially proved by Pietsch in
the 1980s; better constant and accessible proof were recently observed.

Theorem [Pietsch ’80, U ’24]
For all S ∈ L(X , Y ) and n ∈ N,

cn(S, BX ) ≤ n ·
( ∏

k<n
hk(S, BX )

)1/n
.

We extended this to general F , which requires an additional
√

n.
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Widths versus minimal errors

It remains to connect minimal errors to the different widths.

First, Gelfand numbers are basically the minimal errors for Adet-non
n :

Theorem [Traub/Wozniakowski ’80]
For every S ∈ L(X , Y ), F ⊂ X and n ∈ N0, we have

cn(S, F ) ≤ edet-non
n (S, F ) ≤ 2 cn(S, F ).

Second, Bernstein numbers are lower bounds on errors for Aran
n :

Theorem [Kunsch ’17]
For every S ∈ L(X , Y ), convex F ⊂ X and n ∈ N0, we have

eran
n (S, F ) ≥ 1

30 b2n(S, F ).
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Other widths

The Kolmogorov numbers of S on F :

dn(S, F ) := inf
M⊂Y

dim(M)≤n

sup
f ∈F

inf
g∈M

∥S(f ) − g∥Y ,

i.e., the error of best-approximation on an optimal subspace.
(→ no direct relation to algorithms)

Theorem [Pietsch ’80]
Let S ∈ L(X , Y ) and F convex and symm. with bn(S, F ) ≍ b2n(S, F ).
Then, for all n ∈ N,

dn(S, F ) ≲ n · bn(S, F ).

This solves an old problem of Mityagin and Henkin (1963), at least for
regularly decaying bn. (This seems to have gone unnoticed...)
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Other widths II

There are also non-linear widths that can be bounded by this method.
The manifold widths of F ⊂ X are defined by

δn(F ) := inf
N∈C(X ,Rn)
φ∈C(Rn,X)

sup
f ∈F

∥∥f − φ (N(f ))
∥∥,

where C(X , Y ) denotes the class of continuous maps from X to Y .
It is known that δn(F ) ≳ bn(F ). [DeVore et al ’89]

Theorem [KNU ’24]
For all convex F , we have

c2n(idX , F ) ≲ n−α+3/2 · sup
k<n

(k + 1)α δk(F ),

Also holds with ”d2n“, and smaller exponents under assumptions.
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Teaser: Adaption with continuous info

What if we allow adaptive, continuous information, i.e.,
Nn(f ) =

(
Nn−1(f ), Ln(f )

)
with Ln ∈ C(X ,R) chosen adaptively?

Denote the corresponding minimal errors by econt-ada
n (S, F ).

Very recently, we obtained the following (surprising?) result:

Theorem [KNU ’25?]
Let X , Y be Banach spaces, Y separable and S ∈ L(X , Y ).
Then, for all F ⊂ X and n ∈ N, we have

econt-ada
n+1 (S, F ) ≲ d2n(S, F ).

E.g., every x ∈ Rm can be recovered up to an arbitrary small ε using
only ∼ log(m) adaptive measurements. Discussion?!?
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What about ...

bounds for individual n? (i.e., without geometric mean)

the maximal gain for convex sets? (Is it > 1?)

restricted classes of linear information?

non-linear S?

A particularly interesting question on randomization:

Open problem
Is there some S ∈ L(X , Y ) and α > 1/2 with

eran-non
n (S, BX ) ≤ n−α · edet-non

n (S, BX )?
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Thank you!

Gain from Adet-non
n Aran-non

n Adet
n

for
to

Adet
n Aran-non

n Aran
n

F convex+symmetric 0
[

1
2 , 1

]
1 1

F convex
[

1
2 , 3

2

] [
1
2 , 3

2

] [
1, 3

2

] [
1, 3

2

]
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