

Widths of convex sets and the power of adaption and randomization

Mario Ullrich JKU Linz

SIGMA workshop, October 2024

We consider the following setting:

• a set of *inputs* $F \subset X$ with a normed space X,

(often, $F = B_X$ is the unit ball of X)

- a normed space Y, ϕ specifying the error measure)
- a solution operator $S: X \rightarrow Y$, and
- a class of *admissible information* $\Lambda \subset X' = \{$ dual space of $X\};$ today only $\Lambda = X'$

Goal: *Compute* $S(f)$ for $f \in F$ up to error ε using only info from Λ .

Example: $S: X \to Y$ with $S(f) = f$, i.e., approximation of $f \in X$ in $\|\cdot\|_Y$.

For functionals $c_1, \ldots, c_n \in \Lambda$ (aka information maps), we may use arbitrary reconstruction mappings to approximate $S: X \rightarrow Y$ on F:

$$
A_n(f) = \varphi\Bigl(c_1(f), \ldots, c_n(f)\Bigr) \in Y
$$

with some (nonlinear) mapping $\varphi:\mathbb{R}^n\to Y$, and (adaptively chosen) information c_i . We write $A_n = \varphi \circ N_n$, with $N_n = (c_1, \ldots, c_n) \in \Lambda^n$.

We do not care much about *φ* here and ask the following question:

How much can be gained by choosing the information adaptively and/or randomly?

Adaption: information mapping is given recursively by

$$
N_n(f) = (N_{n-1}(f), L_n(f)),
$$

where the choice of the n -th linear functional may depend on the first $n-1$ measurements, i.e., $L_n = L_n(\cdot; N_{n-1}(f), L_1, \ldots, L_{n-1})$

We denote the set of all such algorithms by $\mathcal{A}_n^{\mathrm{det}}(F,Y)$, or just $\mathcal{A}_n^{\mathrm{det}}.$

An algorithm is called **non-adaptive** if $N_n = (L_1, \ldots, L_n)$, i.e., the same functionals are used for every input.

Randomized algorithms are random variables whose realizations are deterministic algorithms.

That is, a randomized algorithm $A_n: \Omega \times F \to Y$ is specified by a family of algorithms $(A^\omega_n)_{\omega \in \Omega} \subset \mathcal{A}^{\mathrm{det}}_n(\mathcal{F},\mathcal{Y})$ and a probability space $(\Omega, \mathcal{A}, \mathbb{P}).$

- $\mathcal{A}_n^{\mathrm{ran}}(F, Y)$ is the class of all such (possibly adaptive) algorithms
- $\mathcal{A}_n^{\text{ran-non}}(F,Y)$ is the class of randomized algorithms whose realizations are non-adaptive.

(In general, $\mathcal{A}_n^{\mathrm{det}}\not\subset\mathcal{A}_n^{\mathrm{ran}}$ due to measurability, see the paper.)

We define the **worst-case error** for approximating S over F ...

for an algorithm $A_n \in \mathcal{A}^{\mathrm{det}}_n \cup \mathcal{A}^{\mathrm{det-non}}_n$ by

$$
e(A_n, S, F) := \sup_{f \in F} ||S(f) - A_n(f)||_Y.
$$

for an algorithm $A_n \in \mathcal{A}_n^{\text{ran}} \cup \mathcal{A}_n^{\text{ran-non}}$ by

$$
e(A_n, S, F) := \sup_{f \in F} \mathbb{E} \left\|S(f) - A_n(f)\right\|_Y.
$$

(We may omit the Y in $\|\cdot\|_Y$.)

The n**-th minimal worst-case errors** for approximating S over F:

$$
e_n^*(S, F) := \inf_{A_n \in \mathcal{A}_n^*} e(A_n, S, F),
$$

where $* \in \{ \det, \det, \text{non}, \text{ran}, \text{ran}-\text{non} \}.$

Known: these minimal errors can be quite different...

Can we say something about the maximal difference?

In the following, we assume $S \in \mathcal{L}(X, Y)$, i.e., S is linear & bounded.

Theorem [Novak '92]

Let H, G be Hilbert spaces and $S \in \mathcal{L}(H, G)$. For all $n \in \mathbb{N}$, we have

$$
e_{2n}^{\text{det-non}}(S, B_H) \leq 2 e_n^{\text{ran}}(S, B_H).
$$

Theorem [Novak '95]

For every convex $F \subset X$ and $n \in \mathbb{N}$, we have

$$
e_n^{\text{det-non}}(S,F) \leq 4(n+1)^2 e_n^{\text{det}}(S,F).
$$

Is adaption useless for symmetric sets?

If F is convex and symmetric, adaption does not help for deterministic algorithms. It was open for a long time whether the same holds for randomized algorithms.

This problem was recently solved by Stefan Heinrich who considered parametric integration using function values as Λ. For $\Lambda = X'$:

This (clearly) also implies $e^{\mathrm{ran}}_{n}(S,B_{1}) \lesssim_{\textsf{log}} \frac{1}{n}$ $\frac{1}{n} \cdot e_n^{\text{det}}(S, B_1).$

Theorem [Krieg/Novak/U '24]

Let X, Y be Banach spaces and $S \in \mathcal{L}(X, Y)$.

For every convex $F \subset X$ and $n \in \mathbb{N}$, we have

$$
e_{2n}^{\text{det-non}}(S, F) \leq 12 n^{3/2} \left(\prod_{k < n} e_k^{\text{ran}}(S, F) \right)^{1/n}.
$$

In special cases, the following improvements hold:

- **1** if F is symmetric, we can replace $n^{3/2}$ with n,
- $\overline{\textbf{2}}$ if Y is a Hilbert space, we can replace $n^{3/2}$ with $n,$
- **3** if F is symmetric and Y a Hilbert space, replace $n^{3/2}$ with $n^{1/2}$,
- \bullet if X is a Hilbert space and F its unit ball, we can replace $n^{3/2}$ with $n^{1/2}$ if we additionally replace the index $2n$ with $4n$.

It might be easier to digest in the following form:

For every convex $F \subset X$, $n \in \mathbb{N}$ and $\alpha > 0$, we have

$$
e_{2n}^{\det\text{-non}}(S,F) \ \leq \ C_{\alpha} \, n^{-\alpha+3/2} \cdot \sup_{k < n} \left((k+1)^{\alpha} \, e_k^{\text{ran}}(S,F) \right),
$$

Theorem [Krieg/Novak/U '24]

where $C_{\alpha} \leq 12^{\alpha+1}$.

If F is convex and symmetric (like $F = B_X$), then

$$
e_{2n}^{\text{det-non}}(S,F) \ \leq \ C_{\alpha} \, n^{-\alpha+1} \cdot \sup_{k < n} \left((k+1)^{\alpha} \, e_k^{\text{ran}}(S,F) \right).
$$

Again, more improvements for X or Y being Hilbert spaces.

These bounds on the **maximal gain in the rate of convergence**, together with some specific examples, imply the following table:

(We ignore logarithmic factors.)

A crucial tool are inequalities between n**-widths of sets** and/or **s-numbers of operators** (in the sense of Pietsch), for which we provide a common generalization.

First, we define the Gelfand numbers of $S \in \mathcal{L}(X, Y)$ on $F \subset X$ by

$$
c_n(S, F) := \inf_{L_1, \ldots, L_n \in X'} \sup_{\substack{f, g \in F: \\ L_k(f) = L_k(g)}} \frac{1}{2} ||S(f) - S(g)||.
$$

For $S = id_X$, i.e., identity on X, these are the Gelfand widths of F, and for $F = B_x$ these are the Gelfand numbers of S.

The **Bernstein numbers** of $S \in \mathcal{L}(X, Y)$ on $F \subset X$:

$$
b_n(S, F) := \sup_{\substack{V \subset X \text{ affine} \\ \dim(V) = n+1}} \sup_{g \in F \cap V} \inf_{f \in V \cap (X \setminus F)} \|S(f) - S(g)\|,
$$

i.e., the largest $(n + 1)$ -dim. ball in F w.r.t. norm $||f||_S := ||S(f)||_Y$.

The **Hilbert numbers** of $S \in \mathcal{L}(X, Y)$ on $F \subset X$:

$$
h_n(S, F) := \sup \Big\{ c_n(CSA, B_{\ell_2}) : C \in \mathcal{L}(Y, \ell_2) \text{ with } ||C|| \leq 1,
$$

$$
A \in \mathcal{L}(\ell_2, X) \text{ and } x \in F \text{ with } A(B_{\ell_2}) + x \subset F \Big\},
$$

i.e., Gelfand numbers of the "most difficult Hilbertian sub-problem".

Bounds between s-numbers

For $F = B_X$, i.e., for s-numbers, a lot is known, mainly due to Pietsch (who recently passed away). For example, from [Pietsch '74]:

$$
h_n(S, B_X) \leq b_n(S, B_X) \leq c_n(S, B_X).
$$

The following reverse inequality was essentially proved by Pietsch in the 1980s; better constant and accessible proof were recently observed.

We extended this to general \bar{F} , which requires an additional \sqrt{n} .

It remains to connect minimal errors to the different widths.

First, Gelfand numbers are basically the minimal errors for $\mathcal{A}_n^{\mathrm{det-non}}$:

Theorem

\n[Traub/Wozniakowski '80]

\nFor every
$$
S \in \mathcal{L}(X, Y)
$$
, $F \subset X$ and $n \in \mathbb{N}_0$, we have

\n
$$
c_n(S, F) \leq e_n^{\text{det-non}}(S, F) \leq 2 c_n(S, F).
$$

Second, Bernstein numbers are lower bounds on errors for $\mathcal{A}_n^{\text{ran}}$:

Theorem

\n[Kunsch '17]

\nFor every
$$
S \in \mathcal{L}(X, Y)
$$
, convex $F \subset X$ and $n \in \mathbb{N}_0$, we have

\n
$$
e_n^{\text{ran}}(S, F) \geq \frac{1}{30} b_{2n}(S, F).
$$
\nMatrix: $\text{Matrix: } \text{Poisson and randomization}$

The **Kolmogorov numbers** of S on F:

$$
d_n(S, F) := \inf_{\substack{M \subset Y \\ \dim(M) \leq n}} \sup_{f \in F} \inf_{g \in M} \|S(f) - g\|_Y,
$$

i.e., the error of best-approximation on an optimal subspace.

 $(\rightarrow$ no direct relation to algorithms)

Theorem [Pietsch '80] Let $S \in \mathcal{L}(X, Y)$ and F convex and symm. with $b_n(S, F) \asymp b_{2n}(S, F)$. Then, for all $n \in \mathbb{N}$, $d_n(S, F) \leq n \cdot b_n(S, F)$.

This solves an old problem of Mityagin and Henkin (1963), at least for regularly decaying b_n . (This seems to have gone unnoticed...)

There are also *non-linear widths* that can be bounded by this method. The **manifold widths** of $F \subset X$ are defined by

$$
\delta_n(F) := \inf_{\substack{N \in C(X,\mathbb{R}^n) \\ \varphi \in C(\mathbb{R}^n,X)}} \sup_{f \in F} ||f - \varphi(N(f))||,
$$

where $C(X, Y)$ denotes the class of continuous maps from X to Y. It is known that $\delta_n(F) \gtrsim b_n(F)$. [DeVore et al '89]

Theorem [KNU '24]

For all convex F , we have

$$
c_{2n}(\mathrm{id}_X,F) \ \lesssim \ n^{-\alpha+3/2} \cdot \sup_{k < n} \, (k+1)^\alpha \, \delta_k(F),
$$

Also holds with " d_{2n} ", and smaller exponents under assumptions.

Teaser: Adaption with continuous info

What if we allow **adaptive, continuous information**, i.e., $\mathcal{N}_n(f)=\big(\mathcal{N}_{n-1}(f),\, L_n(f)\big)$ with $L_n\in\mathcal{C}(X,\mathbb{R})$ chosen adaptively?

Denote the corresponding minimal errors by $e_n^{\text{cont-ada}}(S, F)$.

Very recently, we obtained the following (surprising?) result:

E.g., every $x \in \mathbb{R}^m$ can be recovered up to an arbitrary small ε using only \sim log(m) adaptive measurements. Discussion?!?

- \bullet bounds for individual n ? (i.e., without geometric mean)
- the maximal gain for convex sets? (Is it > 1 ?)
- restricted classes of linear information?
- non-linear S?

A particularly interesting question on randomization:

Open problem

Is there some
$$
S \in \mathcal{L}(X, Y)
$$
 and $\alpha > 1/2$ with

$$
e_n^{\text{ran-non}}(S, B_X) \leq n^{-\alpha} \cdot e_n^{\text{det-non}}(S, B_X)?
$$

Thank you!

