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Framework

We consider the following setting:

@ a set of inputs F C X with a normed space X,
(often, F = Bx is the unit ball of X)

@ a normed space Y, (— specifying the error measure)
@ a solution operator S: X — Y, and

@ a class of admissible information A C X' = {dual space of X};
today only A = X’

Goal: Compute S(f) for f € F up to error € using only info from A.

Example: S: X — Y with S(f) = f, i.e., approximation of f € X in || - ||y.
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Algorithms

For functionals cy, ..., ¢, € A (aka information maps), we may use

arbitrary reconstruction mappings to approximate S: X — Y on F:
An(f) = p(a(f),. .., alf)) € ¥

with some (nonlinear) mapping ¢ : R” — Y, and (adaptively chosen)
information ¢;. We write A, = ¢ o N, with N, = (c1,...,¢,) € A".

We do not care much about ¢ here and ask the following question:

How much can be gained by choosing the information

adaptively and/or randomly?
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Algorithms: deterministic

Adaption: information mapping is given recursively by

Nn(f) = (anl(f)a Ln(f))a

where the choice of the n-th linear functional may depend on the first

n — 1 measurements, i.e., L, = Lp(-; Np—1(F), L1, ..., Ln—1)

We denote the set of all such algorithms by A°t(F, Y), or just Adet,
An algorithm is called non-adaptive if N, = (L1, ..., L,), i.e., the

same functionals are used for every input.

We denote by Ad¢tm°n the corresponding class of algorithms.
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Algorithms: randomized

Randomized algorithms are random variables whose realizations are
deterministic algorithms.

That is, a randomized algorithm A,: Q x F — Y is specified by a
family of algorithms (A%),cq C A%Y(F,Y) and a probability space
(Q,A,P).

o A™(FY) is the class of all such (possibly adaptive) algorithms

o Arnmon(F Y s the class of randomized algorithms whose

realizations are non-adaptive.

(In general, Adet ¢ A™" due to measurability, see the paper.)
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Worst-case errors

We define the worst-case error for approximating S over F ...

e for an algorithm A, € Adet Y Adet-non py

e(An,S,F) i= sup HS(f)—A,,(f)Hy.

e for an algorithm A, € A2 U Afan-non py

e(An, S, F) i= sup EHS(f) - An(f)Hy.

(We may omit the Y in || - ||v. )
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Minimal worst-case errors

The n-th minimal worst-case errors for approximating S over F:
(S,F) := inf An S, F
en( bl ) A,:E.Aﬁ e( n» bl )7

where % € {det, det-non, ran, ran-non}.

Known: these minimal errors can be quite different...

Can we say something about the maximal difference?

In the following, we assume S € £(X,Y), i.e., S is linear & bounded.
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Known results in special cases

Theorem [Bakhvalov '71, Gal/Micchelli '80, Traub/Wozniakowski '80]

For every convex & symmetric F C X and n € N, we have

el (S, F) < 264(S, F).

Theorem [Novak '92]
Let H, G be Hilbert spaces and S € L(H, G). For all n € N, we have

edetmon(S By) < 2e(S, By).

Theorem [Novak '95]

For every convex F C X and n € N, we have

e;let—non(57 F) < 4(n_|_ 1)2 eget(57 F)
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Is adaption useless for symmetric sets?

If Fis convex and symmetric, adaption does not help for deterministic
algorithms. It was open for a long time whether the same holds for

randomized algorithms.

This problem was recently solved by Stefan Heinrich who considered

parametric integration using function values as A.

For A = X'

Theorem [Kunsch/Novak/Wnuk '24, Kunsch/Wnuk '24]
Let S: (" — (3, S(f) = f, and By := Bym for suitable m = m(n),
then

I
(S, Bl) S —2= €IS, By).

This (clearly) also implies €f*(S, By) Siog L - d°(S, By).
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Main result

Theorem [Krieg/Novak/U '24]
Let X, Y be Banach spaces and S € L(X,Y).

For every convex F C X and n € N, we have

1/n
e oS, F) < 1203/ ( IT e(s. F)) :
k<n
In special cases, the following improvements hold:
if F is symmetric, we can replace n*/? with n,
if Y is a Hilbert space, we can replace n*/? with n,

if F is symmetric and Y a Hilbert space, replace n*/? with n'/2,

©0 00

1/2

if X is a Hilbert space and F its unit ball, we can replace n*/? with n'/? if we

additionally replace the index 2n with 4n.
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Main result Il

It might be easier to digest in the following form:

Theorem [Krieg/Novak/U '24]

For every convex F C X, n € N and a > 0, we have

NS, F) < Cor 2 sup (k1) (S,F) )
k<n

where C, < 12o+1,

If Fis convex and symmetric (like F = Bx), then

det non(s F) S Ca n—a+1 - sup ((k+1)a ran(S F)>
k<n

Again, more improvements for X or Y being Hilbert spaces.
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State of the art

These bounds on the maximal gain in the rate of convergence,

together with some specific examples, imply the following table:

Gain from Aget—non A;an—non A(]_‘}et
o to A%et A;an-non Azan
: 1
F convex+symmetric 0 {5, 1} 1 1
13 13 3 3
F convex {5, 5} [5, 5} {1, 5} [1, 5}

(We ignore logarithmic factors.)
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n-widths and s-numbers

A crucial tool are inequalities between n-widths of sets and/or
s-numbers of operators (in the sense of Pietsch), for which we
provide a common generalization.

First, we define the Gelfand numbers of S € £(X,Y) on F C X by

) 1
Cn(S’ F) = L1,...I,nL{r:EX’ f,sguepF: 5 HS(f) B S(g)H

Li(f)=L(g)

For § = idy, i.e., identity on X, these are the Gelfand widths of F,
and for F = By these are the Gelfand numbers of S.
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Two other “widths"...

The Bernstein numbers of S € L(X,Y) on F C X:

bn(5,F) = su su S S(e)l,
( ) VcX Effme gEFrEV fEVm(X\F) S(f) — S(g)ll
dim(V)=n+1

i.e., the largest (n+ 1)-dim. ball in F w.r.t. norm ||f||s := ||S(f)]|y.

The Hilbert numbers of S € £(X,Y) on F C X:

ho(S, F) = sup{ca(CSA, By,): C € L(Y, o) with [[C]| <1,

A€ L(t2,X) and x € F with A(By,) +x C F},

i.e., Gelfand numbers of the “most difficult Hilbertian sub-problem”.
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Bounds between s-numbers

For F = By, i.e., for s-numbers, a lot is known, mainly due to Pietsch
(who recently passed away). For example, from [Pietsch '74]:

h,,(S, Bx) § b,,(S, Bx) § C,,(S, Bx).

The following reverse inequality was essentially proved by Pietsch in

the 1980s; better constant and accessible proof were recently observed.

Theorem [Pietsch '80, U '24]

Forall S € £L(X,Y) and n € N,

(S, Bx) < n- <H hi(S, BX))I/H.

k<n

We extended this to general F, which requires an additional /n.
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Widths versus minimal errors

It remains to connect minimal errors to the different widths.

First, Gelfand numbers are basically the minimal errors for A‘,i,et'non:

Theorem [Traub/Wozniakowski '80]

For every S € L(X,Y), F C X and n € Ny, we have

cn(S, F) < edetmon(S F) < 2¢,(S, F).

Second, Bernstein numbers are lower bounds on errors for A"

Theorem [Kunsch '17]

For every S € L(X,Y), convex F C X and n € Ny, we have

1
ran > . .
e™(S,F) > 30 bon(S, F)
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Other widths

The Kolmogorov numbers of S on F:

do(S,F) == inf  sup inf ||S(f)—gly,
ASF) = e 1) sl

i.e., the error of best-approximation on an optimal subspace.

(— no direct relation to algorithms)

Theorem [Pietsch '80]

Let S € £(X,Y) and F convex and symm. with b,(S, F) < ban(S, F).

Then, for all n € N,
dn(S,F) < n-by(S,F).

This solves an old problem of Mityagin and Henkin (1963), at least for
regularly decaying b,.  (This seems to have gone unnoticed...)
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Other widths [l

There are also non-linear widths that can be bounded by this method.
The manifold widths of F C X are defined by

on(F) :==  inf f—o (N,
(F) = o dnf o sep If = o (V)]
e C(R",X)
where C(X, Y) denotes the class of continuous maps from X to Y.

It is known that 0,(F) = bs(F). [DeVore et al '89]

Theorem [KNU '24]
For all convex F, we have

can(idx, F) < n=@t3/2 Lsup (k + 1) 6,(F),
k<n

Also holds with "d»,", and smaller exponents under assumptions.
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Teaser: Adaption with continuous info

What if we allow adaptive, continuous information, i.e.,
N,(f) = (N,,,l(f), L,,(f)) with L, € C(X,R) chosen adaptively?

Denote the corresponding minimal errors by econt-ada(S F),

Very recently, we obtained the following (surprising?) result:

Theorem [KNU '257]

Let X, Y be Banach spaces, Y separable and S € L(X,Y).
Then, for all F C X and n € N, we have

xS, F) S dan(S, F).

E.g., every x € R™ can be recovered up to an arbitrary small € using

only ~ log(m) adaptive measurements. Discussion?!?
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What about ...

@ bounds for individual n?  (i.e., without geometric mean)
@ the maximal gain for convex sets?  (Is it > 1?)
@ restricted classes of linear information?

@ non-linear S?

A particularly interesting question on randomization:

Open problem
Is there some S € £L(X,Y) and o > 1/2 with

e;;an-non(s7 BX) < n“. eSet-non(S’ BX)?
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Thank you!

Gain from Adet-non Aran-non | gdet
n
for to A(,%et Azan—non Azan
i 1
F convex-+symmetric 0 {5’ 1} 1 1
1 3 1 3 3 3
Feomer | (3] | [b2) | B | 1
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