Algorithms and error	Adaption & Randomization	Widths of convex sets	Add-ons	End 00

Widths of convex sets and the power of adaption and randomization

Mario Ullrich JKU Linz

SIGMA workshop, October 2024

Mario Ullrich Power of adaption and randomization

Algorithms and error ●○○○○○	Adaption & Randomization	Widths of convex sets	Add-ons	End 00
Framework				

We consider the following setting:

- a set of *inputs* $F \subset X$ with a normed space X, (often, $F = B_X$ is the unit ball of X)
- a normed space Y, $(\rightarrow$ specifying the error measure)
- a solution operator $S \colon X \to Y$, and
- a class of admissible information Λ ⊂ X' = {dual space of X}; today only Λ = X'

Goal: Compute S(f) for $f \in F$ up to error ε using only info from Λ .

Example: $S: X \to Y$ with S(f) = f, i.e., approximation of $f \in X$ in $\|\cdot\|_Y$.

Algorithms and error ○●○○○○	Adaption & Randomization	Widths of convex sets	Add-ons	End 00
Algorithms				

For functionals $c_1, \ldots, c_n \in \Lambda$ (aka information maps), we may use arbitrary reconstruction mappings to approximate $S: X \to Y$ on F:

$$A_n(f) = \varphi(c_1(f), \ldots, c_n(f)) \in Y$$

with some (nonlinear) mapping $\varphi : \mathbb{R}^n \to Y$, and (adaptively chosen) information c_i . We write $A_n = \varphi \circ N_n$, with $N_n = (c_1, \ldots, c_n) \in \Lambda^n$.

We do not care much about φ here and ask the following question:

How much can be gained by choosing the information adaptively and/or randomly?

Algorithms and error	Adaption & Randomization	Widths of convex sets	Add-ons	End 00
Algorithms: d	eterministic			

Adaption: information mapping is given recursively by

$$N_n(f) = (N_{n-1}(f), L_n(f)),$$

where the choice of the *n*-th linear functional may depend on the first n-1 measurements, i.e., $L_n = L_n(\cdot; N_{n-1}(f), L_1, \ldots, L_{n-1})$

We denote the set of all such algorithms by $\mathcal{A}_n^{\text{det}}(F, Y)$, or just $\mathcal{A}_n^{\text{det}}$.

An algorithm is called **non-adaptive** if $N_n = (L_1, \ldots, L_n)$, i.e., the same functionals are used for every input. We denote by $\mathcal{A}_n^{\text{det-non}}$ the corresponding class of algorithms.

Algorithms and error	Adaption & Randomization	Widths of convex sets	Add-ons	End 00
Algorithms: r	andomized			

Randomized algorithms are random variables whose realizations are deterministic algorithms.

That is, a randomized algorithm $A_n \colon \Omega \times F \to Y$ is specified by a family of algorithms $(A_n^{\omega})_{\omega \in \Omega} \subset \mathcal{A}_n^{\det}(F, Y)$ and a probability space $(\Omega, \mathcal{A}, \mathbb{P})$.

- $\mathcal{A}_n^{\mathrm{ran}}(F, Y)$ is the class of all such (possibly adaptive) algorithms
- $\mathcal{A}_n^{\text{ran-non}}(F, Y)$ is the class of randomized algorithms whose realizations are non-adaptive.

(In general, $\mathcal{A}_n^{\det} \not\subset \mathcal{A}_n^{\operatorname{ran}}$ due to measurability, see the paper.)

Algorithms and error ○○○○●○	Adaption & Randomization	Widths of convex sets	Add-ons	End 00
Worst-case e	rrors			

We define the worst-case error for approximating S over F ...

• for an algorithm $A_n \in \mathcal{A}_n^{\mathrm{det}} \cup \mathcal{A}_n^{\mathrm{det-non}}$ by

$$e(A_n, S, F) := \sup_{f\in F} \left\|S(f) - A_n(f)\right\|_Y$$

• for an algorithm $A_n \in \mathcal{A}_n^{\mathrm{ran}} \cup \mathcal{A}_n^{\mathrm{ran-non}}$ by

$$e(A_n, S, F) := \sup_{f \in F} \mathbb{E} \left\| S(f) - A_n(f) \right\|_Y$$

(We may omit the Y in $\|\cdot\|_{Y}$.)

Algorithms and error 00000●	Adaption & Randomization	Widths of convex sets	Add-ons	End 00
Minimal worst-	-case errors			

The *n*-**th minimal worst-case errors** for approximating *S* over *F*:

$$e_n^*(S,F) := \inf_{A_n \in \mathcal{A}_n^*} e(A_n,S,F),$$

where $* \in \{\det, \det, \operatorname{non}, \operatorname{ran}, \operatorname{ran-non}\}$.

Known: these minimal errors can be quite different...

Can we say something about the maximal difference?

In the following, we assume $S \in \mathcal{L}(X, Y)$, i.e., S is linear & bounded.

Theorem

[Novak '92]

Let H, G be Hilbert spaces and $S \in \mathcal{L}(H, G)$. For all $n \in \mathbb{N}$, we have

$$e_{2n}^{\text{det-non}}(S, B_H) \leq 2 e_n^{\text{ran}}(S, B_H).$$

Theorem

[Novak '95]

For every convex $F \subset X$ and $n \in \mathbb{N}$, we have

$$e_n^{\text{det-non}}(S,F) \leq 4(n+1)^2 e_n^{\text{det}}(S,F).$$

Is adaption useless for symmetric sets?

If F is convex and symmetric, adaption does not help for deterministic algorithms. It was open for a long time whether the same holds for randomized algorithms.

This problem was recently solved by Stefan Heinrich who considered parametric integration using function values as Λ . For $\Lambda = X'$:

Theorem	[Kunsch/Novak/Wnuk '24, Kunsch/Wnuk '24]
Let $S: \ \ell_1^m o \ell_\infty^m, \ S(f) = f$	F, and $B_1:=B_{\ell_1^m}$ for suitable $m=m(n),$
then $e_n^{\mathrm{ran}}(S,B_1)$	$) \lesssim rac{\log n}{n} e_n^{\mathrm{ran-non}}(S, B_1).$

This (clearly) also implies $e_n^{ran}(S, B_1) \lesssim_{\log} \frac{1}{n} \cdot e_n^{det}(S, B_1)$.

Algorithms and error	Adaption & Randomization	Widths of convex sets	Add-ons	End 00
Main result				

Theorem

[Krieg/Novak/U '24]

Let X, Y be Banach spaces and $S \in \mathcal{L}(X, Y)$. For every convex $F \subset X$ and $n \in \mathbb{N}$, we have

$$e_{2n}^{\text{det-non}}(S,F) \leq 12 n^{3/2} \left(\prod_{k < n} e_k^{\text{ran}}(S,F)\right)^{1/n}$$

In special cases, the following improvements hold:

- **()** if F is symmetric, we can replace $n^{3/2}$ with n,
- 2) if Y is a Hilbert space, we can replace $n^{3/2}$ with n,
- **(3)** if F is symmetric and Y a Hilbert space, replace $n^{3/2}$ with $n^{1/2}$,
- if X is a Hilbert space and F its unit ball, we can replace n^{3/2} with n^{1/2} if we additionally replace the index 2n with 4n.

Algorithms and error	Adaption & Randomization	Widths of convex sets	Add-ons	End 00
Main result II				

It might be easier to digest in the following form:

Theorem[Krieg/Novak/U '24]For every convex $F \subset X$, $n \in \mathbb{N}$ and $\alpha > 0$, we have $e_{2n}^{\text{det-non}}(S,F) \leq C_{\alpha} n^{-\alpha+3/2} \cdot \sup_{k < n} \left((k+1)^{\alpha} e_k^{\text{ran}}(S,F) \right)$,where $C_{\alpha} \leq 12^{\alpha+1}$.

If F is convex and symmetric (like $F = B_X$), then

$$e_{2n}^{ ext{det-non}}(S,F) \leq C_{\alpha} n^{-lpha+1} \cdot \sup_{k < n} \left((k+1)^{lpha} e_k^{ ext{ran}}(S,F) \right).$$

Again, more improvements for X or Y being Hilbert spaces.

Algorithms and error	Adaption & Randomization	Widths of convex sets	Add-ons	End 00
State of the a	rt			

These bounds on the **maximal gain in the rate of convergence**, together with some specific examples, imply the following table:

Gain from	$\mathcal{A}_n^{ ext{det-non}}$		$\mathcal{A}_n^{\mathrm{ran-non}}$	$\mathcal{A}_n^{\mathrm{det}}$
to for	$\mathcal{A}_n^{\mathrm{det}}$	$\mathcal{A}_n^{\mathrm{ran-non}}$	$\mathcal{A}_n^{\mathrm{ran}}$	
F convex+symmetric	0	$\left[rac{1}{2},1 ight]$	1	1
F convex	$\left[\frac{1}{2},\frac{3}{2}\right]$	$\left[\frac{1}{2},\frac{3}{2}\right]$	$\left[1, \frac{3}{2}\right]$	$\left[1, \frac{3}{2}\right]$

(We ignore logarithmic factors.)

Algorithms and error	Adaption & Randomization	Widths of convex sets ●○○○	Add-ons	End 00
<i>n</i> -widths and	s-numbers			

A crucial tool are inequalities between *n*-widths of sets and/or **s-numbers of operators** (in the sense of Pietsch), for which we provide a common generalization.

First, we define the **Gelfand numbers** of $S \in \mathcal{L}(X, Y)$ on $F \subset X$ by

$$c_n(S,F) := \inf_{L_1,...,L_n \in X'} \sup_{\substack{f,g \in F: \ L_k(f) = L_k(g)}} \frac{1}{2} \|S(f) - S(g)\|.$$

For $S = id_X$, i.e., identity on X, these are the *Gelfand widths* of F, and for $F = B_X$ these are the *Gelfand numbers* of S.

Algorithms and error	Adaption & Randomization	Widths of convex sets ○●○○	Add-ons	End 00
Two other "v	widths"			

The **Bernstein numbers** of $S \in \mathcal{L}(X, Y)$ on $F \subset X$:

$$b_n(S,F) := \sup_{\substack{V \subset X \text{ affine} \\ \dim(V)=n+1}} \sup_{g \in F \cap V} \inf_{f \in V \cap (X \setminus F)} \|S(f) - S(g)\|,$$

i.e., the largest (n + 1)-dim. ball in F w.r.t. norm $||f||_S := ||S(f)||_Y$.

The **Hilbert numbers** of $S \in \mathcal{L}(X, Y)$ on $F \subset X$:

$$egin{aligned} h_n(S,F) &:= \sup iggl\{ c_n(CSA,B_{\ell_2}) \colon \ C \in \mathcal{L}(Y,\ell_2) \ ext{with} \ \|C\| \leq 1, \ A \in \mathcal{L}(\ell_2,X) \ ext{and} \ x \in F \ ext{with} \ A(B_{\ell_2}) + x \subset F iggr\}, \end{aligned}$$

i.e., Gelfand numbers of the "most difficult Hilbertian sub-problem".

Algorithms and error	Adaption & Randomization	Widths of convex sets ○○●○	Add-ons	End 00
Rounds betwe	en c'numberc			

For $F = B_X$, i.e., for s-numbers, a lot is known, mainly due to Pietsch (who recently passed away). For example, from [Pietsch '74]:

$$h_n(S, B_X) \leq b_n(S, B_X) \leq c_n(S, B_X).$$

The following reverse inequality was essentially proved by Pietsch in the 1980s; better constant and accessible proof were recently observed.

Theorem	[Pietsch '80, U '24]
For all $S\in\mathcal{L}(X,Y)$ and $n\in\mathbb{N}$,	
$c_n(S, B_X) \leq n \cdot \left(\prod_{k < n} h_k(S, B_X)\right)^1$./n

We extended this to general F, which requires an additional \sqrt{n} .

Algorithms and error	Adaption & Randomization	Widths of convex sets ○○○●	Add-ons	End 00
Widths versus	minimal errors			

It remains to connect minimal errors to the different widths.

First, Gelfand numbers are basically the minimal errors for $\mathcal{A}_n^{\text{det-non}}$:

Theorem[Traub/Wozniakowski '80]For every
$$S \in \mathcal{L}(X, Y)$$
, $F \subset X$ and $n \in \mathbb{N}_0$, we have $c_n(S, F) \leq e_n^{\text{det-non}}(S, F) \leq 2 c_n(S, F).$

Second, Bernstein numbers are lower bounds on errors for $\mathcal{A}_n^{\operatorname{ran}}$:

Theorem[Kunsch '17]For every
$$S \in \mathcal{L}(X, Y)$$
, convex $F \subset X$ and $n \in \mathbb{N}_0$, we have $e_n^{\mathrm{ran}}(S, F) \ge \frac{1}{30} b_{2n}(S, F).$

Algorithms and error	Adaption & Randomization	Widths of convex sets	Add-ons ●○○	End 00
Other widths				

The **Kolmogorov numbers** of *S* on *F*:

$$d_n(S,F) := \inf_{\substack{M \subset Y \\ \dim(M) \le n}} \sup_{f \in F} \inf_{g \in M} \|S(f) - g\|_Y,$$

i.e., the error of best-approximation on an optimal subspace.

 $(\rightarrow$ no direct relation to algorithms)

Theorem[Pietsch '80]Let $S \in \mathcal{L}(X, Y)$ and F convex and symm. with $b_n(S, F) \asymp b_{2n}(S, F)$.Then, for all $n \in \mathbb{N}$, $d_n(S, F) \lesssim n \cdot b_n(S, F)$.

This solves an old problem of Mityagin and Henkin (1963), at least for regularly decaying b_n . (This seems to have gone unnoticed...)

Algorithms and error	Adaption & Randomization	Widths of convex sets	Add-ons ○●○	End 00
Other widths	П			

There are also *non-linear widths* that can be bounded by this method. The **manifold widths** of $F \subset X$ are defined by

$$\delta_n(F) := \inf_{\substack{N \in C(X,\mathbb{R}^n) \\ \varphi \in C(\mathbb{R}^n, X)}} \sup_{f \in F} \|f - \varphi(N(f))\|,$$

where C(X, Y) denotes the class of continuous maps from X to Y. It is known that $\delta_n(F) \gtrsim b_n(F)$. [DeVore et al '89]

Theorem

[KNU '24]

For all convex F, we have

$$c_{2n}(\operatorname{id}_X, F) \lesssim n^{-\alpha+3/2} \cdot \sup_{k < n} (k+1)^{\alpha} \delta_k(F),$$

Also holds with " d_{2n} ", and smaller exponents under assumptions.

End

Teaser: Adaption with continuous info

What if we allow **adaptive, continuous information**, i.e., $N_n(f) = (N_{n-1}(f), L_n(f))$ with $L_n \in C(X, \mathbb{R})$ chosen adaptively?

Denote the corresponding minimal errors by $e_n^{\text{cont-ada}}(S, F)$.

Very recently, we obtained the following (surprising?) result:

Theorem	[KNU '25?]
Let X, Y be Banach spaces, Y separable and $S \in \mathcal{L}(X, Y)$	
Then, for all $F \subset X$ and $n \in \mathbb{N}$, we have	
$e_{n+1}^{ ext{cont-ada}}(S,F)\ \lesssim\ d_{2^n}(S,F).$	

E.g., every $x \in \mathbb{R}^m$ can be recovered up to an arbitrary small ε using only $\sim \log(m)$ adaptive measurements. Discussion?!?

Algorithms and error	Adaption & Randomization	Widths of convex sets	Add-ons	End ●○
What about				

- bounds for individual *n*? (i.e., without geometric mean)
- the maximal gain for convex sets? (Is it > 1?)
- restricted classes of linear information?
- non-linear *S*?

A particularly interesting question on randomization:

Open problem

Is there some
$$\mathcal{S} \in \mathcal{L}(\mathcal{X}, \mathcal{Y})$$
 and $lpha > 1/2$ with

$$e_n^{\operatorname{ran-non}}(S, B_X) \leq n^{-\alpha} \cdot e_n^{\operatorname{det-non}}(S, B_X)?$$

End ⊙●

Thank you!

Gain from	$\mathcal{A}_n^{ ext{det-non}}$		$\mathcal{A}_n^{\mathrm{ran-non}}$	$\mathcal{A}_n^{\mathrm{det}}$
to for	$\mathcal{A}_n^{\mathrm{det}}$	$\mathcal{A}_n^{\mathrm{ran-non}}$	$\mathcal{A}_n^{\mathrm{ran}}$	
F convex+symmetric	0	$\left[rac{1}{2},1 ight]$	1	1
F convex	$\left[\frac{1}{2},\frac{3}{2}\right]$	$\left[\frac{1}{2},\frac{3}{2}\right]$	$\left[1, \frac{3}{2}\right]$	$\left[1, \frac{3}{2}\right]$