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Goal

@ Build smooth splines on arbitrary (possibly refined) triangulations
@ Equip them with a good local basis

@ Have efficient algorithms for their manipulation



Splines on triangulations

@ Let 7g be a triangulation of a polygonal domain Q € R?

@ A spline space on 7p:
Sp(To) :={f € C"(Q) : fia € Py, VA € To}

with [P, := space of polynomials of degree < p



Splines on triangulations

@ Let 7g be a triangulation of a polygonal domain Q € R?

@ A spline space on 7p:
Sp(To) ={f € C"(Q) : fia € Py, VA € To}

@ Practical request: stable dimension & local construction



Stable dimension

A stable dimension only depends on degree, smoothness, topology

(# vertices, edges, triangles in 7p)
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A stable dimension only depends on degree, smoothness, topology
(# vertices, edges, triangles in 7o)

S3(To)

dim =6 dim=7

Morgan—Scott triangulation



Stable dimension

A stable dimension only depends on degree, smoothness, topology
(# vertices, edges, triangles in Tp)

Sp(To) :=={f € C'(Q) : fia €Pp, ¥V A € T}

Lower Bound < dim(S},(70)) < Upper Bound

L. Schumaker, Bounds on the dimension of spaces of multivariate piecewise polynomials, Rocky Mnt. Math., 1984

A. Ibrahim, L. Schumaker, Super spline spaces of smoothness r and degree d > 3r + 2, Constr. Approx., 1991



Stable dimension

A stable dimension only depends on degree, smoothness, topology
(# vertices, edges, triangles in 7p)

Sp(To) :={f € C"(Q) : fian € Py, VA € To}
Lower Bound < dim(S;(70)) < Upper Bound

Lower Bound = dim(S,(70)) if p>3r+2

L. Schumaker, Bounds on the dimension of spaces of multivariate piecewise polynomials, Rocky Mnt. Math., 1984

A. Ibrahim, L. Schumaker, Super spline spaces of smoothness r and degree d > 3r + 2, Constr. Approx., 1991



Stable dimension

A stable dimension only depends on degree, smoothness, topology
(# vertices, edges, triangles in Tp)

Sp(To) :=={f € C'(Q) : fia €Pp, ¥V A € T}

Lower Bound < dim(S},(75)) < Upper Bound

dim(SY(75)) = 777

L. Schumaker, Bounds on the dimension of spaces of multivariate piecewise polynomials, Rocky Mnt. Math., 1984

A. Ibrahim, L. Schumaker, Super spline spaces of smoothness r and degree d > 3r + 2, Constr. Approx., 1991



Why smooth splines of low degrees?

@ Smoother splines give the same approximation order as less smooth
splines of the same degree, using fewer degrees of freedom

@ Polynomials of low degrees tend to oscillate less than those of high
degrees
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Single element construction (finite element):

Degree 4r + 1 for C": — St (Argyris), S3, Si, ...



Why smooth splines of low degrees?

@ Smoother splines give the same approximation order as less smooth
splines of the same degree, using fewer degrees of freedom

@ Polynomials of low degrees tend to oscillate less than those of high
degrees

@ But for C" splines on an arbitrary triangulation we need high degrees

Single element construction (finite element):

Degree 4r + 1 for C": — St (Argyris), S3, Si, ...

Solution: consider refined triangulations



Triangulation with subpatches

A

A splitting 71 of each triangle in 7g into subpatches:

Sp(T1) :={feC(Q):fireP,, VT T}

M.J. Lai and L.L. Schumaker, Spline Functions on Triangulations, Cambridge University Press, 2007



Triangulation with subpatches: popular splits

CT

PS6

PS12

M.J. Lai and L.L. Schumaker, Spline Functions on Triangulations, Cambridge University Press,



Triangulation with subpatches: popular splits
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M.J. Lai and L.L. Schumaker, Spline Functions on Triangulations, Cambridge University Press, 2007



Triangulation with subpatches: Wang-Shi splits

WS,-split: complete graph of p + 1 uniform points on each edge
p=2

R.H. Wang and X.Q. Shi, $5+1 surface interpolations over triangulations, in: Approximation, Optimization and
Computing: Theory and Applications, Elsevier Science Publishers, pp. 205-208, 1990

[m]
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Triangulation with subpatches: Wang-Shi splits

WS,-split: complete graph of p + 1 uniform points on each edge

@ cross-cut partitions

@ S5 '(Aws,) on such partition Aws,

R.H. Wang and X.Q. Shi, 55+1 surface interpolations over triangulations, in: Approximation, Optimization and
Computing: Theory and Applications, Elsevier Science Publishers, pp. 205-208, 1990

A



Dimension formula

On a cross-cut partition A of a simply connected domain in R? with
m interior cross cuts, we have dim S5~ '(A.) = dimP, +m, pe N
provided at most p + 1 lines cross at each interior vertex

WS,-split: m = 3p(p — 1) cross cuts

T. Lyche, C. Manni, and H. Speleers, Construction of C? cubic splines on arbitrary triangulations, Found. Comput.
Math., 22:1309-1350, 2022
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Dimension formula: local and global

@ Dimension comparisons with no split A:
° dim(Sl(/\)) =12 < dim(Si(A)) = 21
° dim(SZ( £4)) =28 & dim(S3(A)) =
o dim(S3(4)) =51 < dim(SL(A)) = 105



Dimension formula: local and global

@ Dimension comparisons with no split A:
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@ Degrees of freedom for Aws,:

o dim(S%(71)) = 6n, +3ne.+n;

o dim(S3(71))

10n, + 6ne + 3n;



Dimension formula: local and global

@ Dimension comparisons with no split A:
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@ Degrees of freedom for Aws,:
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Macro-triangles: many subpatches. ..

C! cubic C! quadratic C! quadratic




Macro-triangles: many subpatches. ..

C! cubic C! quadratic C! quadratic

C3 quartic

75 subpatches 250 subpatches



Looking for a good basis

The set of Bernstein polynomials are defined by

IV_]Wk

Bi7j7k(u’ V’ W) = I'_/'k' )

i+j+k=p

where (u, v, w) are the barycentric coordinates w.r.t. triangle

M.J. Lai and L.L. Schumaker, Spline Functions on Triangulations, Cambridge University Press, 2007



Looking for a good basis

The set of Bernstein polynomials are defined by

ik
v-w
k] ’

Bij(u,v,w) = i+j+k=p
where (u, v, w) are the barycentric coordinates w.r.t. triangle

They form a basis for the polynomial space P,:

g €< IP)p = g(u, v, W) = Z Ci,j,kBi,j,k(uv v, W)
i+j+k=p

M.J. Lai and L.L. Schumaker, Spline Functions on Triangulations, Cambridge University Press, 2007



Looking for a good basis

Properties of Bernstein polynomials:

. . . p=3
@ nonnegative partition of unity

@ differentiation formula, recurrence relation

@ domain points and control points



Looking for a good basis

Properties of Bernstein polynomials:

p=3

@ nonnegative partition of unity
@ differentiation formula, recurrence relation

@ domain points and control points

@ simple conditions for smooth joins to neighboring triangles

~



Looking for a good basis

Building a global basis on a triangulation using the MDS principle:

A minimal determining set (MDS) is a set with the minimal number of
domain points such that the corresponding coefficients equal to zero
give the zero function

@ determine all smoothness conditions

@ determine all independent control points
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Looking for a good basis

Building a global basis on a triangulation using the MDS principle:

A minimal determining set (MDS) is a set with the minimal number of
domain points such that the corresponding coefficients equal to zero
give the zero function

@ determine all smoothness conditions

@ determine all independent control points

But... what about




Looking for a very good basis

We would like a B-spline like basis for S57!(Aws, ):

local support

@ nonnegative partition of unity

differentiation formula, recurrence relation

Marsden-like identity: explicit representation of polynomials

= can be used to build dual functionals and quasi-interpolants

simple conditions for smooth joins to neighboring triangles
= can be used to build a global MDS basis



Looking for a very good basis

We would like a B-spline like basis for S57!(Aws, ):

local support

@ nonnegative partition of unity

differentiation formula, recurrence relation

Marsden-like identity: explicit representation of polynomials

= can be used to build dual functionals and quasi-interpolants

simple conditions for smooth joins to neighboring triangles
= can be used to build a global MDS basis

Try simplex splines (multivariate B-splines)

C.A. Micchelli, On a numerically efficient method for computing multivariate B-splines, in: Multivariate
Approximation Theory, Birkhauser, pp. 211-248, 1979

W. Dahmen, On multivariate B-splines, SIAM J. Numer. Anal., 17:179-191, 1980



Simplex lifting

'y
%)
=~

s=2,n=3
@ Given a sequence of n+ 1 points = := {&;,...,&,, 1} inR®
@ Assume nondegenerate (Z): vols((Z)) > 0

@ &,,...,&,,, points in R” whose projection 7 : R” — R* onto the

first s coordinates satisfies m(&;) =€, for i=1,...,n+ 1.

@ The simplex o := (£;,...,&,,1) has positive volume



Simplex splines: geometric definition
= {51, s ’€n+1} SN (knOtS)

e =
e o:=(£,...€,,,) € R" (lifted simplex)
@ p:=n—s>0 (degree)

)

vol, (o)
0, otherwise

vol, (o N~ 1(x
M= : RS - R, l\/lz(x);_{ (o 017 () if volo((Z)) > 0

§ 5E&

univariate linear  univariate quadratic bivariate linear




Simplex splines: properties

@ Knot dependence: M= only depends on =; in particular, it is
independent of the choice of o and the ordering of the knots

@ Nonnegativity: M= is a nonnegative piecewise polynomial of total
degree p and support (=)

@ Normalization: M= has unit integral

@ The ABC recurrence relations (n = p + s):
o Differentiation formula (A-recurrence): For any u € R®

(u-V)Mz=(p+s) X0 aMoye,, Y a6 =u, Y;a=0

@ Recurrence relation (B-recurrence): For any x € R®

Mz(x) = B2 P biMog (x), 32 big = x, ;b =1

@ Knot insertion formula (C-recurrence): For any y € R®

ZP+S+ CIMEUy\f,-a Zi Cl'sf =Y Ei Ci = 1



Simplex splines: univariate case

s=1

@ M= = univariate B-spline of degree p with knots =

normalized to have integral one in the nondegenerate case

05 1 s 2 25 3 35 4



Simplex splines: bivariate case

s=2
The lines in the complete graph of = are called knot lines, providing a
partition of (=) into polygonal regions

@ The simplex spline M= is a polynomial of degree
p=#=-3

in each region of this partition

@ Across a knot line:
Mz € CPHi—w

1 = number of knots on that knot line, including multiplicities

@ At any boundary line: zero or univariate B-spline



Simplex splines: cubic example, p =3, s =2

@ Across horizontal boundary line: CPH1=# = C45 = C~!

@ Univariate cubic B-spline restricted to that line
@ CPTl=1 = C43 = (C! across left boundary line

@ Across remaining knot lines: CPT1—# = C4=2 = (?



C! quadratics

A nonnegative partition of unity (scaled) simplex spline basis

(000 /2

E. Cohen, T. Lyche, and R.F. Riesenfeld, A B-spline-like basis for the Powell-Sabin 12-split based on simplex
splines, Math. Comput., 82:1667-1707, 2013



C? cubics

A nonnegative partition of unity (scaled) simplex spline basis

Bi,...,Bag

T. Lyche, C. Manni, and H. Speleers, Construction of C2? cubic splines on arbitrary triangulations, Found. Comput.
Math., 22:1309-1350, 2022



C3 quartics

A nonnegative partition of unity (scaled) simplex spline basis

Blv"'7B51

T. Lyche, C. Manni, and H. Speleers, A local simplex spline basis for c3 quartic splines on arbitrary triangulations,
Appl. Math. Comput., 462:128330, 2024



C? cubics: details of construction

A nonnegative partition of unity (scaled) simplex spline basis

Bi,...,Bag

T. Lyche, C. Manni, and H. Speleers, Construction of C2 cubic splines on arbitrary triangulations, Found. Comput.
Math., 22:1309-1350, 2022



C? cubics: construction of By, ..., By

By, ..., Bg related to value and first derivatives at vertices




C? cubics: construction of B, ..., Bis

Bio, . . ., Big related to second derivatives at vertices




C? cubics: construction of By, ..., By

Big, ..., Boy related to first and second derivatives across edges

1
1 1
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C? cubics: construction of Byg

Bog related to interior value




CP~1 splines of degree p: properties

Properties of the (scaled) simplex spline basis p = 2,3, 4:
@ Basis: they are linearly independent on A = basis of S5~ (Aws,)
@ Nonnegativity: they form a nonnegative partition of unity
@ Classical B-splines when restricted to boundary
@ Simplex recurrence relations for their manipulation

@ Marsden-like identity: representation of polynomials

(1+y"x)P =) i(y)Bi(x), yeR’ xecA

with ¢;(y) == [1_,(1 + yTr;;) for almost all i

@ They can be extended in a Bernstein—Bézier fashion to compute
smooth surfaces on arbitrary triangulations



Domain points and control net for p = 3

Domain points and a possible control net for p = 3

The control mesh is at a distance O(h?) from the surface
where h is the longest side of the triangle



Smoothness across an edge for p = 3

CO%, C*, C? smoothness conditions analogous to the Bernstein
representation in triangular polynomial case




Smoothness across an edge for p = 3

C! conditions in the C? cubic case

=] = = = = Q@ 28/30



Conclusions

@ The WS,-splits, p = 2, 3,4 allow to locally construct C1/C?/C3
quadratic/cubic/quartic splines on any triangulation

@ They seem extremely complicated, but

e the computation can be done in a Bernstein—Bézier fashion
using a simplex spline basis on each macro-triangle which
forms a nonnegative partition of unity

e for their manipulation one can exploit the features of
simplex splines (recurrence relations)



Conclusions

@ The WS,-splits, p = 2, 3,4 allow to locally construct C*/C?/C3
quadratic/cubic/quartic splines on any triangulation

@ Local approximation methods can be developed by exploiting
Marsden-like identity

@ Tailored quadrature rules can be constructed by exploiting the
inter-element maximal smoothness

e 4 nodes suffice for integration of C' quadratics
o 10 nodes suffice for integration of C2 cubics
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