Maximally smooth splines on triangulations

Hendrik Speleers

University of Rome Tor Vergata

Joint work with T. Lyche and C. Manni

1/30

KORKA EX KEY OR ADY KING

Goal

• Build smooth splines on arbitrary (possibly refined) triangulations

2/30

K □ ▶ K @ ▶ K ミ X X B X 3 E X 9 Q Q Q

- Equip them with a good local basis
- **•** Have efficient algorithms for their manipulation

Splines on triangulations

- Let \mathcal{T}_0 be a triangulation of a polygonal domain $\Omega \in \mathbb{R}^2$
- A spline space on \mathcal{T}_0 :

$$
\mathbb{S}'_p(\mathcal{T}_0):=\{f\in C^r(\Omega): f_{|\Delta}\in\mathbb{P}_p, \ \forall\ \Delta\in\mathcal{T}_0\}
$$

with $\mathbb{P}_p :=$ space of polynomials of degree $\leq p$

Splines on triangulations

- Let \mathcal{T}_0 be a triangulation of a polygonal domain $\Omega \in \mathbb{R}^2$
- A spline space on \mathcal{T}_0 :

$$
\mathbb{S}'_p(\mathcal{T}_0):=\{f\in C^r(\Omega): f_{|\Delta}\in\mathbb{P}_p, \ \forall\ \Delta\in\mathcal{T}_0\}
$$

• Practical request: stable dimension & local construction

A stable dimension only depends on degree, smoothness, topology (# vertices, edges, triangles in \mathcal{T}_0)

A stable dimension only depends on degree, smoothness, topology (# vertices, edges, triangles in \mathcal{T}_0)

Morgan–Scott triangulation

A stable dimension only depends on degree, smoothness, topology (# vertices, edges, triangles in \mathcal{T}_0)

$$
\mathbb{S}'_p(\mathcal{T}_0):=\{f\in C^r(\Omega): f_{|\Delta}\in\mathbb{P}_p, \ \forall\ \Delta\in\mathcal{T}_0\}
$$

Lower Bound $\leq \mathsf{dim}(\mathbb{S}'_p(\mathcal{T}_0)) \leq \mathsf{Upper}\; \mathsf{Bound}$

L. Schumaker, Bounds on the dimension of spaces of multivariate piecewise polynomials, Rocky Mnt. Math., 1984 A. Ibrahim, L. Schumaker, Super spline spaces of smoothness r and degree $d \geq 3r + 2$, Constr. Approx., 1991

A stable dimension only depends on degree, smoothness, topology (# vertices, edges, triangles in \mathcal{T}_0)

$$
\mathbb{S}'_p(\mathcal{T}_0):=\{f\in C^r(\Omega): f_{|\Delta}\in\mathbb{P}_p, \ \forall\ \Delta\in\mathcal{T}_0\}
$$

Lower Bound $\leq \mathsf{dim}(\mathbb{S}'_p(\mathcal{T}_0)) \leq \mathsf{Upper}\; \mathsf{Bound}$

Lower Bound = dim($\mathbb{S}'_p(\mathcal{T}_0)$) if $p \geq 3r + 2$

L. Schumaker, Bounds on the dimension of spaces of multivariate piecewise polynomials, Rocky Mnt. Math., 1984 A. Ibrahim, L. Schumaker, Super spline spaces of smoothness r and degree $d \geq 3r + 2$, Constr. Approx., 1991

A stable dimension only depends on degree, smoothness, topology (# vertices, edges, triangles in \mathcal{T}_0)

$$
\mathbb{S}'_p(\mathcal{T}_0):=\{f\in C^r(\Omega): f_{|\Delta}\in\mathbb{P}_p, \ \forall\ \Delta\in\mathcal{T}_0\}
$$

Lower Bound $\leq \mathsf{dim}(\mathbb{S}'_p(\mathcal{T}_0)) \leq \mathsf{Upper}\; \mathsf{Bound}$

 $\mathsf{dim}(\mathbb{S}^1_3(\mathcal{T}_0))=$???

L. Schumaker, Bounds on the dimension of spaces of multivariate piecewise polynomials, Rocky Mnt. Math., 1984 A. Ibrahim, L. Schumaker, Super spline spaces of smoothness r and degree $d \geq 3r + 2$, Constr. Approx., 1991

Why smooth splines of low degrees?

- Smoother splines give the same approximation order as less smooth splines of the same degree, using fewer degrees of freedom
- Polynomials of low degrees tend to oscillate less than those of high degrees

Why smooth splines of low degrees?

- Smoother splines give the same approximation order as less smooth splines of the same degree, using fewer degrees of freedom
- Polynomials of low degrees tend to oscillate less than those of high degrees
- But for C^r splines on an arbitrary triangulation we need high degrees

5/30

ADD 4 THAT A FIX ADD 4 OLD A

Single element construction (finite element):

Degree $4r + 1$ for $C^r: \rightarrow \mathbb{S}^1_5$ (Argyris), \mathbb{S}^2_9 , \mathbb{S}^3_{13} , ...

Why smooth splines of low degrees?

- Smoother splines give the same approximation order as less smooth splines of the same degree, using fewer degrees of freedom
- Polynomials of low degrees tend to oscillate less than those of high degrees
- But for C^r splines on an arbitrary triangulation we need high degrees

Single element construction (finite element):

Degree $4r + 1$ for $C^r: \rightarrow \mathbb{S}^1_5$ (Argyris), \mathbb{S}^2_9 , \mathbb{S}^3_{13} , ...

Solution: consider refined triangulations

Triangulation with subpatches

A splitting \mathcal{T}_1 of each triangle in \mathcal{T}_0 into subpatches:

$$
\mathbb{S}_p^r(\mathcal{T}_1):=\{f\in C^r(\Omega): f_{|T}\in\mathbb{P}_p, \ \forall \ T\in\mathcal{T}_1\}
$$

M.J. Lai and L.L. Schumaker, Spline Functions on Triangulations, Cambridge University Press, 2007

Triangulation with subpatches: popular splits

M.J. Lai and L.L. Schumaker, Spline Functions on Triangulations, Cambridge University Press, 2007

KORK EXTERNE DRAM 7/30 Triangulation with subpatches: popular splits

M.J. Lai and L.L. Schumaker, Spline Functions on Triangulations, Cambridge University Press, 2007

Triangulation with subpatches: Wang–Shi splits

 WS_p -split: complete graph of $p + 1$ uniform points on each edge

R.H. Wang and X.Q. Shi, $S^{\mu}_{\mu+1}$ surface interpolations over triangulations, in: Approximation, Optimization and Computing: Theory and Applications, Elsevier Science Publishers, pp. 205–208, 1990

Triangulation with subpatches: Wang–Shi splits

 WS_p -split: complete graph of $p + 1$ uniform points on each edge

 $\mathbb{S}_\rho^{p-1}(\Delta_{\mathrm{WS}_\rho})$ on such partition $\Delta_{\mathrm{WS}_\rho}$

o cross-cut partitions

R.H. Wang and X.Q. Shi, $S^{\mu}_{\mu+1}$ surface interpolations over triangulations, in: Approximation, Optimization and Computing: Theory and Applications, Elsevier Science Publishers, pp. 205–208, 1990

Dimension formula

On a cross-cut partition Δ_ϵ of a simply connected domain in \mathbb{R}^2 with m interior cross cuts, we have $\dim\mathbb{S}_p^{p-1}(\Delta_\textup{c}) = \dim\mathbb{P}_p + m, \,\, p\in\mathbb{N}$ provided at most $p + 1$ lines cross at each interior vertex

WS_p-split: $m = 3p(p-1)$ cross cuts

T. Lyche, C. Manni, and H. Speleers, Construction of C² cubic splines on arbitrary triangulations, Found. Comput. Math., 22:1309–1350, 2022

Dimension formula

On a cross-cut partition Δ_ϵ of a simply connected domain in \mathbb{R}^2 with m interior cross cuts, we have $\dim\mathbb{S}_p^{p-1}(\Delta_\textup{c}) = \dim\mathbb{P}_p + m, \,\, p\in\mathbb{N}$ provided at most $p + 1$ lines cross at each interior vertex

WS_p-split: $m = 3p(p-1)$ cross cuts

T. Lyche, C. Manni, and H. Speleers, Construction of C² cubic splines on arbitrary triangulations, Found. Comput. Math., 22:1309–1350, 2022

Dimension formula: local and global

Dimension comparisons with no split ∆:

• dim(
$$
\mathbb{S}_2^1(\mathbb{A})
$$
) = 12 \Leftrightarrow dim($\mathbb{S}_5^1(\Delta)$) = 21
\n• dim($\mathbb{S}_3^2(\mathbb{A})$) = 28 \Leftrightarrow dim($\mathbb{S}_9^2(\Delta)$) = 55

$$
\bullet \dim(\mathbb{S}^3_4(\triangle)) = 51 \quad \Leftrightarrow \quad \dim(\mathbb{S}^3_{13}(\triangle)) = 105
$$

10/30

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ ... 할 → 9 Q @

Dimension formula: local and global

Dimension comparisons with no split ∆:

\n- \n
$$
\dim(\mathbb{S}_2^1(\mathbb{A})) = 12
$$
\n
\n- \n $\dim(\mathbb{S}_3^2(\mathbb{A})) = 28$ \n
\n- \n $\dim(\mathbb{S}_3^2(\mathbb{A})) = 28$ \n
\n- \n $\dim(\mathbb{S}_9^2(\mathbb{A})) = 55$ \n
\n- \n $\dim(\mathbb{S}_4^3(\mathbb{A})) = 51$ \n
\n- \n $\dim(\mathbb{S}_3^3(\mathbb{A})) = 105$ \n
\n

Degrees of freedom for Δ_{WS_p} :

- $\dim(\mathbb{S}_3^2(\mathcal{T}_1)) = 6n_v + 3n_e + n_t$
- $\dim(\mathbb{S}_4^3(\mathcal{T}_1)) = 10n_v + 6n_e + 3n_t$

Dimension formula: local and global

• Dimension comparisons with no split Δ:

\n- \n
$$
\text{dim}(\mathbb{S}_2^1(\mathbb{A})) = 12 \quad \Leftrightarrow \quad \dim(\mathbb{S}_5^1(\Delta)) = 21
$$
\n
\n- \n
$$
\text{dim}(\mathbb{S}_3^2(\mathbb{A})) = 28 \quad \Leftrightarrow \quad \dim(\mathbb{S}_9^2(\Delta)) = 55
$$
\n
\n- \n
$$
\text{dim}(\mathbb{S}_4^3(\mathbb{A})) = 51 \quad \Leftrightarrow \quad \dim(\mathbb{S}_{13}^3(\Delta)) = 105
$$
\n
\n

Degrees of freedom for Δ_{WS_p} :

Macro-triangles: many subpatches...

Macro-triangles: many subpatches...

The set of Bernstein polynomials are defined by

$$
B_{i,j,k}(u,v,w) = \frac{p!}{i!j!k!}u^{i}v^{j}w^{k}, \quad i+j+k=p
$$

where (u, v, w) are the barycentric coordinates w.r.t. triangle

M.J. Lai and L.L. Schumaker, Spline Functions on Triangulations, Cambridge University Press, 2007

The set of Bernstein polynomials are defined by

$$
B_{i,j,k}(u,v,w) = \frac{p!}{i!j!k!}u^{i}v^{j}w^{k}, \quad i+j+k=p
$$

where (u, v, w) are the barycentric coordinates w.r.t. triangle

They form a basis for the polynomial space \mathbb{P}_{p} :

$$
g\in\mathbb{P}_p\quad\Rightarrow\quad g(u,v,w)=\sum_{i+j+k=p}c_{i,j,k}B_{i,j,k}(u,v,w)
$$

M.J. Lai and L.L. Schumaker, Spline Functions on Triangulations, Cambridge University Press, 2007

KID KAR KE KE KE YA GA GA 12/30

Properties of Bernstein polynomials:

- nonnegative partition of unity
- **o** differentiation formula, recurrence relation
- **•** domain points and control points

KORK ERKER ADAM DE KORA

13/30

Properties of Bernstein polynomials:

- nonnegative partition of unity
- **o** differentiation formula, recurrence relation
- **•** domain points and control points

• simple conditions for smooth joins to neighboring triangles

Building a global basis on a triangulation using the MDS principle:

A minimal determining set (MDS) is a set with the minimal number of domain points such that the corresponding coefficients equal to zero give the zero function

14/30

K ロ ▶ K 個 ▶ K 로 ▶ K 로 ▶ - 로 - K 9 Q @

- **o** determine all smoothness conditions
- **o** determine all independent control points

Building a global basis on a triangulation using the MDS principle:

A minimal determining set (MDS) is a set with the minimal number of domain points such that the corresponding coefficients equal to zero give the zero function

- **o** determine all smoothness conditions
- **o** determine all independent control points

Building a global basis on a triangulation using the MDS principle:

A minimal determining set (MDS) is a set with the minimal number of domain points such that the corresponding coefficients equal to zero give the zero function

- **o** determine all smoothness conditions
- **o** determine all independent control points

We would like a B-spline like basis for $\mathbb{S}_p^{p-1}(\Delta_{\mathrm{WS}_p})$:

- **·** local support
- **•** nonnegative partition of unity
- **•** differentiation formula, recurrence relation
- Marsden-like identity: explicit representation of polynomials

 \Rightarrow can be used to build dual functionals and quasi-interpolants

• simple conditions for smooth joins to neighboring triangles \Rightarrow can be used to build a global MDS basis

We would like a B-spline like basis for $\mathbb{S}_p^{p-1}(\Delta_{\mathrm{WS}_p})$:

- **·** local support
- **•** nonnegative partition of unity
- **•** differentiation formula, recurrence relation
- Marsden-like identity: explicit representation of polynomials

 \Rightarrow can be used to build dual functionals and quasi-interpolants

• simple conditions for smooth joins to neighboring triangles \Rightarrow can be used to build a global MDS basis

Try simplex splines (multivariate B-splines)

C.A. Micchelli, On a numerically efficient method for computing multivariate B-splines, in: Multivariate Approximation Theory, Birkhäuser, pp. 211–248, 1979 W. Dahmen, On multivariate B-splines, SIAM J. Numer. Anal., 17:179-191, 1980

Simplex lifting

$$
s=2,\;n=3
$$

- Given a sequence of $n+1$ points $\Xi := \{ \boldsymbol{\xi}_1, \ldots, \boldsymbol{\xi}_{n+1} \}$ in \mathbb{R}^s
- Assume nondegenerate $\langle \Xi \rangle$: vol_s $(\langle \Xi \rangle) > 0$
- $\overline{\xi}_1,\ldots, \overline{\xi}_{n+1}$ points in \mathbb{R}^n whose projection $\pi:\mathbb{R}^n\to \mathbb{R}^s$ onto the first s coordinates satisfies $\pi(\xi_i)=\xi_i$ for $i=1,\ldots,n+1.$
- The simplex $\sigma:=\langle \boldsymbol{\xi}_1,\ldots,\boldsymbol{\xi}_{n+1}\rangle$ has positive volume

Simplex splines: geometric definition

\n- \n
$$
\bullet \ \Xi := \{\xi_1, \ldots, \xi_{n+1}\} \in \mathbb{R}^s \text{ (knots)}
$$
\n
\n- \n $\sigma := \langle \overline{\xi}_1, \ldots \overline{\xi}_{n+1} \rangle \in \mathbb{R}^n \text{ (lifted simplex)}$ \n
\n- \n $\bullet \ \rho := n - s \geq 0 \text{ (degree)}$ \n
\n- \n $M_{\Xi} : \mathbb{R}^s \to \mathbb{R}, \quad M_{\Xi}(x) := \n \begin{cases} \n \frac{\text{vol}_p(\sigma \cap \pi^{-1}(x))}{\text{vol}_n(\sigma)}, & \text{if } \text{vol}_s(\langle \Xi \rangle) > 0 \\
0, & \text{otherwise}\n \end{cases}$ \n
\n

Simplex splines: properties

- Knot dependence: $M=$ only depends on Ξ ; in particular, it is independent of the choice of σ and the ordering of the knots
- Nonnegativity: $M=$ is a nonnegative piecewise polynomial of total degree p and support $\langle \Xi \rangle$
- \bullet Normalization: $M=$ has unit integral
- The ABC recurrence relations $(n = p + s)$:
	- \bullet Differentiation formula (A-recurrence): For any $\mathbf{u} \in \mathbb{R}^s$ $(\bm{u}\cdot\nabla)M_{\Xi}=(\rho+s)\sum_{i=1}^{\rho+s+1}a_iM_{\Xi\setminus\bm{\xi}_i},\hspace{0.5cm}\sum_i a_i\bm{\xi}_i=\bm{u},\hspace{0.1cm}\sum_i a_i=0$
	- **•** Recurrence relation (B-recurrence): For any $x \in \mathbb{R}^s$ $\mathcal{M}_\Xi(\pmb{\mathrm{x}}) = \frac{p+s}{p} \sum_{i=1}^{p+s+1} b_i \mathcal{M}_{\Xi \backslash \boldsymbol{\xi}_i}(\pmb{\mathrm{x}}), \quad \sum_i b_i \boldsymbol{\xi}_i = \pmb{\mathrm{x}}, \ \sum_i b_i = 1$
	- Knot insertion formula (C-recurrence): For any $y \in \mathbb{R}^s$ $\mathcal{M}_\Xi = \sum_{i=1}^{p+s+1} c_i \mathcal{M}_{\Xi \cup \mathbf{y} \setminus \boldsymbol{\xi}_i}, \quad \sum_i c_i \boldsymbol{\xi}_i = \mathbf{y}, \ \sum_i c_i = 1$

KORKA SERKER ORA 18/30

Simplex splines: univariate case

 $s = 1$

• M_{Ξ} = univariate B-spline of degree p with knots Ξ normalized to have integral one in the nondegenerate case

Simplex splines: bivariate case

 $s = 2$

The lines in the complete graph of Ξ are called knot lines, providing a partition of $\langle \Xi \rangle$ into polygonal regions

• The simplex spline $M=$ is a polynomial of degree

 $p = #\Xi - 3$

in each region of this partition

Across a knot line:

 $M_{\Xi} \in C^{p+1-\mu}$

 $\mu =$ number of knots on that knot line, including multiplicities

At any boundary line: zero or univariate B-spline

Simplex splines: cubic example, $p = 3$, $s = 2$

 $p+s+1=6$ knots with double knot at vertex $\pmb{\heartsuit\hspace{-0.5ex}}\mathbf{0}\mathbf{0}\mathbf{0}$ 1

- Across horizontal boundary line: $C^{p+1-\mu}=C^{4-5}=C^{-1}$
- Univariate cubic B-spline restricted to that line
- $C^{p+1-\mu} = C^{4-3} = C^1$ across left boundary line
- Across remaining knot lines: $C^{p+1-\mu} = C^{4-2} = C^2$

$C¹$ quadratics

A nonnegative partition of unity (scaled) simplex spline basis

B_1, \ldots, B_{12}

22/30

KID KAR KEI KEI E YAN

E. Cohen, T. Lyche, and R.F. Riesenfeld, A B-spline-like basis for the Powell–Sabin 12-split based on simplex splines, Math. Comput., 82:1667–1707, 2013

C^2 cubics

A nonnegative partition of unity (scaled) simplex spline basis

 B_1, \ldots, B_{28}

T. Lyche, C. Manni, and H. Speleers, Construction of C² cubic splines on arbitrary triangulations, Found. Comput. Math., 22:1309–1350, 2022

22/30

KID KARA KE KAEK E YOKO

C^3 quartics

A nonnegative partition of unity (scaled) simplex spline basis

$$
\mathcal{B}_1,\ldots,\mathcal{B}_{51}
$$

T. Lyche, C. Manni, and H. Speleers, *A local simplex spline basis for* C^3 *quartic splines on arbitrary triangulations*, Appl. Math. Comput., 462:128330, 2024

22/30

KID KAR KE KE KE YA GA GA

C 2 cubics: details of construction

A nonnegative partition of unity (scaled) simplex spline basis

 B_1, \ldots, B_{28}

T. Lyche, C. Manni, and H. Speleers, Construction of C^2 cubic splines on arbitrary triangulations, Found. Comput. Math., 22:1309–1350, 2022

23/30

K ロ ▶ K 레 ▶ K 코 ▶ K 코 ▶ - 코 - YO Q @

C^2 cubics: construction of B_1, \ldots, B_9

 B_1, \ldots, B_9 related to value and first derivatives at vertices

C^2 cubics: construction of B_{10}, \ldots, B_{18}

 B_{10}, \ldots, B_{18} related to second derivatives at vertices

 4 ロ) 4 \overline{r}) 4 \overline{z}) 4 \overline{z}) \equiv 990 24/30

C^2 cubics: construction of B_{19}, \ldots, B_{27}

 B_{19}, \ldots, B_{27} related to first and second derivatives across edges

C^2 cubics: construction of B_{28}

B_{28} related to interior value

K ロ ▶ K 레 ▶ K 코 ▶ K 코 ▶ - 코 - YO Q @ 24/30

C^{p-1} splines of degree p: properties

Properties of the (scaled) simplex spline basis $p = 2, 3, 4$:

- Basis: they are linearly independent on $\Delta \Rightarrow$ basis of $\mathbb{S}_p^{p-1}(\Delta_{\mathrm{WS}_p})$
- Nonnegativity: they form a nonnegative partition of unity
- Classical B-splines when restricted to boundary
- **•** Simplex recurrence relations for their manipulation
- Marsden-like identity: representation of polynomials

$$
(1 + \mathbf{y}^T \mathbf{x})^p = \sum_i \psi_i(\mathbf{y}) B_i(\mathbf{x}), \quad \mathbf{y} \in \mathbb{R}^2, \quad \mathbf{x} \in \Delta
$$

with $\psi_i({\bm y}) := \prod_{j=1}^p (1 + {\bm y}^\mathsf{T} {\bm r}_{i,j})$ for almost all i

• They can be extended in a Bernstein–Bézier fashion to compute smooth surfaces on arbitrary triangulations

Domain points and control net for $p = 3$

Domain points and a possible control net for $p = 3$

The control mesh is at a distance $O(h^2)$ from the surface where h is the longest side of the triangle

Smoothness across an edge for $p = 3$

 C^0 , C^1 , C^2 smoothness conditions analogous to the Bernstein representation in triangular polynomial case

Smoothness across an edge for $p = 3$

 C^1 conditions in the C^2 cubic case

Conclusions

- The WS_p -splits, $p=2,3,4$ allow to locally construct $\mathsf{C}^1/\mathsf{C}^2/\mathsf{C}^3$ quadratic/cubic/quartic splines on any triangulation
- They seem extremely complicated, but
	- the computation can be done in a Bernstein–Bézier fashion using a simplex spline basis on each macro-triangle which forms a nonnegative partition of unity
	- for their manipulation one can exploit the features of simplex splines (recurrence relations)

Conclusions

- The WS_p -splits, $p = 2, 3, 4$ allow to locally construct $\text{C}^1/\text{C}^2/\text{C}^3$ quadratic/cubic/quartic splines on any triangulation
- Local approximation methods can be developed by exploiting Marsden-like identity
- Tailored quadrature rules can be constructed by exploiting the inter-element maximal smoothness
	- 4 nodes suffice for integration of C^1 quadratics
	- 10 nodes suffice for integration of C^2 cubics

References

- 晶
- E. Cohen, T. Lyche, and R.F. Riesenfeld, A B-spline-like basis for the Powell–Sabin 12-split based on simplex splines, Math. Comput., 82:1667–1707, 2013
- ā.
- S. Eddargani, T. Lyche, C. Manni, and H. Speleers, *Quadrature rules for* C^1 quadratic spline finite elements on the Powell–Sabin 12-split, Comput. Methods Appl. Mech. Eng., 430:117196, 2024
- Ħ
- T. Lyche, C. Manni, and H. Speleers, *Construction of* C^2 *cubic splines on* arbitrary triangulations, Found. Comput. Math., 22:1309–1350, 2022
- T. Lyche, C. Manni, and H. Speleers, *A local simplex spline basis for* C^3 *quartic* splines on arbitrary triangulations, Appl. Math. Comput., 462:128330, 2024
- 螶
- M. Marsala, C. Manni, and H. Speleers Maximally smooth cubic spline quasi-interpolants on arbitrary triangulations, Comput. Aided Geom. Design, 112:102348, 2024
- R.H. Wang and X.Q. Shi, $S_{\mu+1}^\mu$ surface interpolations over triangulations, in: 螶 Approximation, Optimization and Computing: Theory and Applications, Elsevier Science Publishers, pp. 205–208, 1990

Announcement

SIAM Conference on Computational Geometric Design

July 28–30, 2025 Montréal Convention Center Montréal, Québec, Canada

<https://www.siam.org/conferences-events/siam-conferences/gd25/>

Keynote speakers

Henry Bucklow (ITI CADfix), Géraldine Morin (U Toulouse), Helmut Pottman (TU Wien), Alla Sheffer (U British Columbia), Wenping Wang (Texas A&M)

Deadline dates

Minisymposium proposal: January 13, 2025 Abstract submission: January 27, 2025