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The Setup

Moment sequences

1 Sequence µ= (
µα :α ∈Ns

0

)
2 Moments: µα = ℓ ((·)α)

⇔ linear functional ℓ on Π=C[x]

3 Polynomials:

f (x) = ∑
α∈Ns

0

f̂α xα

⇒ ℓ(f ) =µT f̂ = ∑
α∈Ns

0

µα f̂α= eT
0 Mn f̂ = ℓ(1 f )

Hankel operator/matrix

H =
(
µα+β :

α ∈Ns
0

β ∈Ns
0

)
, Hn =

(
µα+β :

|α| ≤ n
|β| ≤ n

)

ℓ(fg) = f̂ T ĝ, f ,g ∈
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Tomas Sauer (UP & IIS) Prony & Quadrature Luminy, October 2024 2 / 16



The Setup

Moment sequences

1 Sequence µ= (
µα :α ∈Ns

0

)
2 Moments: µα = ℓ ((·)α)

⇔ linear functional ℓ on Π=C[x]

3 Polynomials:

f (x) = ∑
α∈Ns

0

f̂α xα

⇒ ℓ(f ) =µT f̂ = ∑
α∈Ns

0

µα f̂α= eT
0 Mn f̂ = ℓ(1 f )

Hankel operator/matrix

H =
(
µα+β :

α ∈Ns
0

β ∈Ns
0

)
, Hn =

(
µα+β :

|α| ≤ n
|β| ≤ n

)

ℓ(fg) = f̂ T ĝ, f ,g ∈
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Example: Quadrature

Approximation of functionals

1 Functional Π→R of finite rank

Θ(f ) := ∑
α∈Ns

0

θα f̂α

2 Exactness: θα =µα, α ∈ Γ⊂Ns
0

Quadrature

/Cubature

1 ℓ(f ) =
∫
Ω

f (x)w(x)dx

2 Qn(f ) = ∑
|α|≤n

wα f (ξα)

3 Exactness: Γ= Γ2n = {α : |α| ≤ 2n}

. |Γ2n| > 2|Γn|

4 For s > 1 this works only in rare situations

. Why? Numbers?

Tomas Sauer (UP & IIS) Prony & Quadrature Luminy, October 2024 3 / 16
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Gauß Quadrature

Qn(f ) = ∑
|α|≤n

wα f (ξα)

Finding knots and weights

1 Knots: xα = zeros of orthogonal polynomial

s

2 Weights: interpolatory formula

Gauß’ original approach

1 Moment generating function: µ(z) =∑
µαz−α

2 Rational approximation µ(z) ≈ p(z)

q(z)
3 Continued fractions . . .

Tomas Sauer (UP & IIS) Prony & Quadrature Luminy, October 2024 4 / 16
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Gauß Quadrature

Qn(f ) = ∑
|α|≤n

wα f (ξα)

Finding knots and weights

1 Knots: xα = common zeros of orthogonal polynomials
2 Weights: interpolatory formula

Gauß’ original approach

1 Moment generating function: µ(z) =∑
µαz−α

2 Rational approximation µ(z) ≈ p(z)
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Advertisement

Want to know more?
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A Very Special Case

Simplest integral

1 ℓ(f ) = 1
4

∫ 1
−1

∫ 1
−1 f (x)dx

2 Centrally symmetric (bad)
3 No common zeros of orthogonal polynomials.

A formula

Q(f ) = 1

36a+1
f (6a,6a)

+ 18a

36a+1
f

− 1

36a
+

√(
1

36a

)2
+ 1

6
,− 1

36a
−

√(
1

36a

)2
+ 1

6


+ 18a

36a+1
f

− 1

36a
−

√(
1

36a

)2
+ 1

6
,− 1

36a
+

√(
1

36a

)2
+ 1

6



has quadratic accuracy. Why?
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Flat Extension & Orthogonality

Canonical decomposition

& flat extension

Hn =
(

Hn−1 Hn,n−1

HT
n,n−1 Hn,n

)

→ H♭
n =

(
Hn−1 Hn,n−1

HT
n,n−1 HT

n,n−1H−1
n−1Hn,n−1

)

Schur complement, but: is H♭
n Hankel?

Orthogonality

1 Vector polynomials Pn with coefficients P̂n :=
(−H−1

n−1Hn,n−1

I

)
2 ℓ

(
Πn−1PT

n

)= 0

, ℓ
(
PnPT

n

)
nonsingular, P̂n = ker H♭

n

3 Pn monic orthogonal basis for inner product
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Multiplication and Recurrence

Multplication

xj Pn(x) = An,jPn+1(x)+Bn,jPn(x)+Cn,jPn−1(x)+·· ·+En,jP0(x)

1 Three term recurrence due to orthogonality
2 An,j and Cn,j have maximal rank

Consistency

Commuting of multiplication xk
(
xj Pn(x)

)= xj (xk Pn(x)) implies

An−1,jAn,k = An−1,kAn,j

An−1,jBn,k +Bn−1,jAn−1,k = An−1,kBn,j +Bn−1,kAn−1,j

An−1,jCn,k +Bn−1,jBn−1,k +Cn−1,jAn−2,k = An−1,kCn,j +Bn−1,kBn−1,j +Cn−1,kAn−2,j

Bn−1,jCn−1,k +Cn−1,jBn−2,k = Bn−1,kCn−1,j +Cn−1,kBn−2,j

Cn−1,jCn−2,k = Cn−1,kCn−2,j .
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Time for a Summary

Observation

1 If µ is definite then there exist monic orthogonal polynomials
Pn with respect to µ and their recurrence coefficients satisfy

An−1,jAn,k = An−1,kAn,j
An−1,jBn,k +Bn−1,jAn−1,k = An−1,kBn,j +Bn−1,kAn−1,j

An−1,jCn,k +Bn−1,jBn−1,k +Cn−1,jAn−2,k = An−1,kCn,j +Bn−1,kBn−1,j +Cn−1,kAn−2,j
Bn−1,jCn−1,k +Cn−1,jBn−2,k = Bn−1,kCn−1,j +Cn−1,kBn−2,j

Cn−1,jCn−2,k = Cn−1,kCn−2,j .

(♥)

Necessary for consistency!

2 Moreover: Commuting of multiplication in Π/〈Pn〉
3 Important additional condition is the commuting

An−1,jCn,k = An−1,kCn,j (♥+)

4 None of this conditions occurs in s = 1
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A Bit of Algebra

Theorem

Suppose recurrence matrices satisfy (♥). Then Pn, n ∈N0, are
H-bases iff (♥+) holds true.

The reason . . .

1 Characterization of “good bases” by commuting
2 Multiplication tables

/Companion matrices

Mj := (
I −H−1

n−1Hn,n−1
)

Ln−1,j, Ln,j =
∑

|α|=n
eα+ϵj eα

3 Pn H-basis iff Mj commute

⇔

4 Based on f (M) :=∑
α

f̂αMα1
1 · · ·Mα1

s ⇒ f (M)1 = f , f ∈Πn−1
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The Way Back

Ideals and zeros

Suppose that (♥) + (♥+) hold:
1 Π/〈Pn+1〉 =Πn

2 Pn+1 has rn = dimΠn common zeros:

(ζ,Qζ),
∑
ζ

dimQζ = rn

3 Recall: Qζ is D-invariant space, multiplicity

. Simple ζ: Qζ = {1}

Consequence

Nonsingular Vandermonde matrix

Vn :=
((

q(D)(·)α)
(ζ) :

q ∈Qζ,ζ
|α| ≤ n

)
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. Simple ζ: Qζ = {1}

Consequence

Nonsingular Vandermonde matrix

Vn :=
((

q(D)(·)α)
(ζ) :

q ∈Qζ,ζ
|α| ≤ n

)
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Back to Prony

Recovery issue

f (x) = ∑
ζ∈Z

fζ(x)ζx, fζ ∈Qζ

from µα := f (α), α ∈Ns
0.

Prony ideal

1 Prony ideal: Hf̂ = 0, f ∈I

2 Factorization:

H = V T
∞DV∞, V∞ :=

((
q(D)(·)α)

(ζ) :
q ∈Qζ,ζ
α ∈Ns

0

)
with D block diagonal of rank dimΠ/〈I 〉

→ [Curto & Fialkow]
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Putting Things Together

What we got so far

Assume (♥) + (♥+) and rank conditions
1 The Pn+1 are H-bases

and have rn common zeros Zn+1

2 Use them as exponents ζ for Prony function

fn+1(x) = ∑
ζ∈Zn+1

fn+1,ζ(x)ζx

3 Sample: µn+1
α = fn+1(α)

Connecting the levels

fn+1(α) =µn
α, |α| ≤ n

⇔ (
µn
α : |α| ≤ n

)= V T
n f̂n+1,ζ

→ sequence µn of moment sequences, µn
α =µn+1

α , |α| ≤ n

Tomas Sauer (UP & IIS) Prony & Quadrature Luminy, October 2024 13 / 16



Putting Things Together

What we got so far

Assume (♥) + (♥+) and rank conditions
1 The Pn+1 are H-bases

and have rn common zeros Zn+1

2 Use them as exponents ζ for Prony function

fn+1(x) = ∑
ζ∈Zn+1

fn+1,ζ(x)ζx

3 Sample: µn+1
α = fn+1(α)

Connecting the levels

fn+1(α) =µn
α, |α| ≤ n

⇔ (
µn
α : |α| ≤ n

)= V T
n f̂n+1,ζ

→ sequence µn of moment sequences, µn
α =µn+1

α , |α| ≤ n

Tomas Sauer (UP & IIS) Prony & Quadrature Luminy, October 2024 13 / 16



Putting Things Together

What we got so far

Assume (♥) + (♥+) and rank conditions
1 The Pn+1 are H-bases and have rn common zeros Zn+1

2 Use them as exponents ζ for Prony function

fn+1(x) = ∑
ζ∈Zn+1

fn+1,ζ(x)ζx

3 Sample: µn+1
α = fn+1(α)

Connecting the levels

fn+1(α) =µn
α, |α| ≤ n

⇔ (
µn
α : |α| ≤ n

)= V T
n f̂n+1,ζ

→ sequence µn of moment sequences, µn
α =µn+1

α , |α| ≤ n

Tomas Sauer (UP & IIS) Prony & Quadrature Luminy, October 2024 13 / 16



Putting Things Together

What we got so far

Assume (♥) + (♥+) and rank conditions
1 The Pn+1 are H-bases and have rn common zeros Zn+1

2 Use them as exponents ζ for Prony function

fn+1(x) = ∑
ζ∈Zn+1

fn+1,ζ(x)ζx

3 Sample: µn+1
α = fn+1(α)

Connecting the levels

fn+1(α) =µn
α, |α| ≤ n

⇔ (
µn
α : |α| ≤ n

)= V T
n f̂n+1,ζ

→ sequence µn of moment sequences, µn
α =µn+1

α , |α| ≤ n

Tomas Sauer (UP & IIS) Prony & Quadrature Luminy, October 2024 13 / 16



Putting Things Together

What we got so far

Assume (♥) + (♥+) and rank conditions
1 The Pn+1 are H-bases and have rn common zeros Zn+1

2 Use them as exponents ζ for Prony function

fn+1(x) = ∑
ζ∈Zn+1

fn+1,ζ(x)ζx

3 Sample: µn+1
α = fn+1(α)

Connecting the levels

fn+1(α) =µn
α, |α| ≤ n

⇔ (
µn
α : |α| ≤ n

)= V T
n f̂n+1,ζ

→ sequence µn of moment sequences, µn
α =µn+1

α , |α| ≤ n

Tomas Sauer (UP & IIS) Prony & Quadrature Luminy, October 2024 13 / 16



Putting Things Together

What we got so far

Assume (♥) + (♥+) and rank conditions
1 The Pn+1 are H-bases and have rn common zeros Zn+1

2 Use them as exponents ζ for Prony function

fn+1(x) = ∑
ζ∈Zn+1

fn+1,ζ(x)ζx

3 Sample: µn+1
α = fn+1(α)

Connecting the levels

fn+1(α) =µn
α, |α| ≤ n

⇔ (
µn
α : |α| ≤ n

)= V T
n f̂n+1,ζ

→ sequence µn of moment sequences, µn
α =µn+1

α , |α| ≤ n

Tomas Sauer (UP & IIS) Prony & Quadrature Luminy, October 2024 13 / 16



Putting Things Together

What we got so far

Assume (♥) + (♥+) and rank conditions
1 The Pn+1 are H-bases and have rn common zeros Zn+1

2 Use them as exponents ζ for Prony function

fn+1(x) = ∑
ζ∈Zn+1

fn+1,ζ(x)ζx

3 Sample: µn+1
α = fn+1(α)

Connecting the levels

fn+1(α) =µn
α, |α| ≤ n ⇔ (

µn
α : |α| ≤ n

)= V T
n f̂n+1,ζ

→ sequence µn of moment sequences, µn
α =µn+1

α , |α| ≤ n

Tomas Sauer (UP & IIS) Prony & Quadrature Luminy, October 2024 13 / 16



Putting Things Together

What we got so far

Assume (♥) + (♥+) and rank conditions
1 The Pn+1 are H-bases and have rn common zeros Zn+1

2 Use them as exponents ζ for Prony function

fn+1(x) = ∑
ζ∈Zn+1

fn+1,ζ(x)ζx

3 Sample: µn+1
α = fn+1(α)

Connecting the levels

fn+1(α) =µn
α, |α| ≤ n ⇔ (

µn
α : |α| ≤ n

)= V T
n f̂n+1,ζ

→ sequence µn of moment sequences

, µn
α =µn+1

α , |α| ≤ n

Tomas Sauer (UP & IIS) Prony & Quadrature Luminy, October 2024 13 / 16



Putting Things Together

What we got so far

Assume (♥) + (♥+) and rank conditions
1 The Pn+1 are H-bases and have rn common zeros Zn+1

2 Use them as exponents ζ for Prony function

fn+1(x) = ∑
ζ∈Zn+1

fn+1,ζ(x)ζx

3 Sample: µn+1
α = fn+1(α)

Connecting the levels

fn+1(α) =µn
α, |α| ≤ n ⇔ (

µn
α : |α| ≤ n

)= V T
n f̂n+1,ζ

→ sequence µn of moment sequences, µn
α =µn+1

α , |α| ≤ n

Tomas Sauer (UP & IIS) Prony & Quadrature Luminy, October 2024 13 / 16



More Is True

Theorem

Assume (♥) + (♥+) and rank conditions. Then
1 for µ= limµn

µn
α =µα, |α| ≤ 2n−1

Gauss cubature

2 H♭
n is Hankel

and defines cubature moments

Theorem Equivalences

1 µ is definite and (♥+) holds
2 µ is definite and H♭

n is Hankel
3 µ is definite and each Hn admits a flat extension
4 µ is definite and the Mj commute
5 There exists Gauss cubature
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And the Gauß Quadrature?

Simple observation

1 Hn−1 depends on µα, |α| ≤ 2n−2.
2 Hn,n−1 can be decomposed

Hn,n−1 =


µα+β : |α| = 0, |β| = n−1

...
µα+β : |α| = n−1, |β| = n−1
µα+β : |α| = n, |β| = n−1



=:

(
H<n,n−1

µT
2n−1

)

3 Free parameter for extension of Hn−1

4 Commute
(
I M−1

n−1

(
H<n,n−1

µT
2n−1

))
Ln−1,j

: quadratic equations

5 Works for s = 2 and n = 1,2

. Challenge for CAS
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Time’s up

\end – questions?
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