Optimal spline spaces and outlier-removal strategies in isogeometric analysis

Espen Sande¹

¹Institute of Mathematics, EPFL

- M. S. Floater and E. S., Optimal spline spaces for L² n-width problems with boundary conditions, Constr. Approx. (2019).
- E. S., C. Manni and H. Speleers, Sharp error estimates for spline approximation: explicit constants, n-widths, and eigenfunction convergence, Math. Models Methods Appl. Sci. (2019).
- A. Bressan and E. S., Approximation in FEM, DG and IGA: A Theoretical Comparison, Numer. Math. (2019).
- Y. Voet, E. S. and A. Buffa, A mathematical theory for mass lumping and its generalization with applications to isogeometric analysis, Comput. Methods Appl. Mech. Engrg. (2023).
- Y. Voet, E. S. and A. Buffa, Robust mass lumping and outlier removal strategies in isogeometric analysis, (preprint).

We look for $u\colon \Omega \times [0, T] \to \mathbb{R}$ such that

$$\begin{split} \partial_{tt}^2 u(\mathbf{x},t) - \Delta u(\mathbf{x},t) &= f(\mathbf{x},t) & \text{ in } \Omega \times (0,T], \\ u(\mathbf{x},t) &= 0 & \text{ on } \partial \Omega \times (0,T], \\ u(\mathbf{x},0) &= u_0(\mathbf{x}) & \text{ in } \Omega, \\ \partial_t u(\mathbf{x},0) &= v_0(\mathbf{x}) & \text{ in } \Omega, \end{split}$$

We look for $u \colon \Omega \times [0, T] \to \mathbb{R}$ such that

$$\begin{array}{ll} \partial_{tt}^2 u(\mathbf{x},t) - \Delta u(\mathbf{x},t) = f(\mathbf{x},t) & \quad \text{in } \Omega \times (0,T], \\ u(\mathbf{x},t) = 0 & \quad \text{on } \partial \Omega \times (0,T], \\ u(\mathbf{x},0) = u_0(\mathbf{x}) & \quad \text{in } \Omega, \\ \partial_t u(\mathbf{x},0) = v_0(\mathbf{x}) & \quad \text{in } \Omega, \end{array}$$

Looking for a discrete approximation $u_n(\mathbf{x}, t) = \sum_{i=1}^{n} u_i(t)B_i(\mathbf{x})$ and using a Galerkin method leads to the semi-discrete problem

$$\begin{split} & \mathcal{M}\ddot{\mathbf{u}}(t) + \mathcal{K}\mathbf{u}(t) = \mathbf{f}(t) & \text{for } t \in [0, T], \\ & \mathbf{u}(0) = \mathbf{u}_0, \\ & \dot{\mathbf{u}}(0) = \mathbf{v}_0, \end{split}$$

where

$$M_{ij} = \int_{\Omega} B_i(\mathbf{x}) B_j(\mathbf{x}) d\mathbf{x}, \quad K_{ij} = \int_{\Omega} \nabla B_i(\mathbf{x}) \cdot \nabla B_j(\mathbf{x}) d\mathbf{x}$$

$$\begin{split} M \ddot{\mathbf{u}}(t) + \mathcal{K} \mathbf{u}(t) &= \mathbf{f}(t) & \text{for } t \in [0, T], \\ \mathbf{u}(0) &= \mathbf{u}_0, \\ \dot{\mathbf{u}}(0) &= \mathbf{v}_0, \end{split}$$

Explicit methods are very popular in engineering practice to solve this system of ODEs.

$$\begin{split} M \ddot{\mathbf{u}}(t) + \mathcal{K} \mathbf{u}(t) &= \mathbf{f}(t) & \text{for } t \in [0, T], \\ \mathbf{u}(0) &= \mathbf{u}_0, \\ \dot{\mathbf{u}}(0) &= \mathbf{v}_0, \end{split}$$

Explicit methods are very popular in engineering practice to solve this system of ODEs.

Challenges:

- This involves computing M⁻¹ which can be computationally very costly.
- The largest stable time-step depends inversely on the largest eigenvalue $\lambda_n(K, M)$ which can become quite large.

$$\begin{split} M \ddot{\mathbf{u}}(t) + \mathcal{K} \mathbf{u}(t) &= \mathbf{f}(t) & \text{for } t \in [0, T], \\ \mathbf{u}(0) &= \mathbf{u}_0, \\ \dot{\mathbf{u}}(0) &= \mathbf{v}_0, \end{split}$$

Explicit methods are very popular in engineering practice to solve this system of ODEs.

Challenges:

- This involves computing M⁻¹ which can be computationally very costly.
- The largest stable time-step depends inversely on the largest eigenvalue λ_n(K, M) which can become quite large.

Standard solutions:

▶ Mass lumping: Replace *M* by some approximation *M* that is easy to invert (classical choice: diagonal row-sum).

$$\begin{split} M \ddot{\mathbf{u}}(t) + \mathcal{K} \mathbf{u}(t) &= \mathbf{f}(t) & \text{for } t \in [0, T], \\ \mathbf{u}(0) &= \mathbf{u}_0, \\ \dot{\mathbf{u}}(0) &= \mathbf{v}_0, \end{split}$$

Explicit methods are very popular in engineering practice to solve this system of ODEs.

Challenges:

- This involves computing M⁻¹ which can be computationally very costly.
- The largest stable time-step depends inversely on the largest eigenvalue λ_n(K, M) which can become quite large.

Standard solutions:

- ▶ Mass lumping: Replace *M* by some approximation *M* that is easy to invert (classical choice: diagonal row-sum).
- Mass scaling: Ensure that the largest eigenvalue λ_n(K, M̃) is "small" (typical choice: ad-hoc modification of the diagonal row-sum).

$$\begin{split} M \ddot{\mathbf{u}}(t) + \mathcal{K} \mathbf{u}(t) &= \mathbf{f}(t) & \text{for } t \in [0, T], \\ \mathbf{u}(0) &= \mathbf{u}_0, \\ \dot{\mathbf{u}}(0) &= \mathbf{v}_0, \end{split}$$

Explicit methods are very popular in engineering practice to solve this system of ODEs.

Challenges:

- This involves computing M⁻¹ which can be computationally very costly.
- The largest stable time-step depends inversely on the largest eigenvalue λ_n(K, M) which can become quite large.

Standard solutions:

- ▶ Mass lumping: Replace *M* by some approximation *M* that is easy to invert (classical choice: diagonal row-sum).
- Mass scaling: Ensure that the largest eigenvalue λ_n(K, M̃) is "small" (typical choice: ad-hoc modification of the diagonal row-sum).

Requirement: Smallest eigenvalues must not change!

Minimizing $\lambda_n(K, M)$

Mass lumping in Isogeometric Analysis

Minimizing $\lambda_n(K, \tilde{M})$

Spline spaces

Knot vector Ξ :

$$0 = \xi_0 < \xi_1 < \dots < \xi_N < \xi_{N+1} = 1,$$

$$I_j := [\xi_j, \xi_{j+1}), \ j = 0, \dots, N-2, \ I_N := [\xi_{N-1}, 1]$$

$$h := \max_{0 \le j \le N-1} (\xi_{j+1} - \xi_j)$$

Spline space of degree p and smoothness k:

$$\mathbb{S}_{\rho,\Xi}^k := \{ s \in C^k[0,1] : s |_{I_j} \in \mathbb{P}_{\rho}, j = 0, 1, \dots, N-1 \}$$

Spline spaces

Knot vector Ξ :

$$0 = \xi_0 < \xi_1 < \dots < \xi_N < \xi_{N+1} = 1,$$

$$I_j := [\xi_j, \xi_{j+1}), \ j = 0, \dots, N-2, \ I_N := [\xi_{N-1}, 1]$$

$$h := \max_{0 \le j \le N-1} (\xi_{j+1} - \xi_j)$$

Spline space of degree p and smoothness k:

$$\mathbb{S}_{\rho,\Xi}^k := \{ s \in C^k[0,1] : s |_{I_j} \in \mathbb{P}_{\rho}, j = 0, 1, \dots, N-1 \}$$

Maximal smoothness:

$$\mathbb{S}_{p,\Xi} := \mathbb{S}_{p,\Xi}^{p-1}$$

Spline spaces

Knot vector Ξ :

$$0 = \xi_0 < \xi_1 < \dots < \xi_N < \xi_{N+1} = 1,$$

$$I_j := [\xi_j, \xi_{j+1}), \ j = 0, \dots, N-2, \ I_N := [\xi_{N-1}, 1]$$

$$h := \max_{0 \le j \le N-1} (\xi_{j+1} - \xi_j)$$

Spline space of degree p and smoothness k:

$$\mathbb{S}_{\rho,\Xi}^k := \{ s \in C^k[0,1] : s |_{I_j} \in \mathbb{P}_{\rho}, j = 0, 1, \dots, N-1 \}$$

Maximal smoothness:

$$\mathbb{S}_{p,\Xi} := \mathbb{S}_{p,\Xi}^{p-1}$$

Norm:

$$\|\cdot\|$$
: L^2 -norm

Isogeometric Analysis

- Mapped (tensor-product) splines.
- In general the domain is divided into several patches, each described by a geometric mapping F_i.

Isogeometric Analysis

- Mapped (tensor-product) splines.
- In general the domain is divided into several patches, each described by a geometric mapping F_i.

Due to the (local) tensor-product structure, we will first consider 1D.

Eigenvalue problem

The eigenvalues $\lambda_j(K, M)$ approximate the eigenvalues $\lambda_j(-\Delta)$ and (for a conforming method) the best we could hope for is

 $\lambda_n(K,M) \approx \lambda_n(-\Delta).$

Eigenvalue problem

The eigenvalues $\lambda_j(K, M)$ approximate the eigenvalues $\lambda_j(-\Delta)$ and (for a conforming method) the best we could hope for is

 $\lambda_n(K,M) \approx \lambda_n(-\Delta).$

Define

•
$$\omega_j := \lambda_j (-\Delta)^{1/2}$$

• $\omega_{h,j} := \lambda_j (K, M)^{1/2}$

 $\blacktriangleright p - k$ branches

only a single branch approximates the true spectrum

• maximal smoothness (k = p - 1) no spurious branches

See [Cottrell et al. 2006], [Hughes et al. 2008], [Garoni et al. 2019]...

Outliers

....however there is a problem for large j.

See [Cottrell et al. 2006], [Hughes et al. 2008], [Hughes et al. 2014], [Gallistl et al. 2017] [Chan and Evans 2018] etc.

For a class of functions A ⊂ L² and an n-dimensional subspace X_n ⊂ L², let

 $E(A,\mathbb{X}_n)=\sup_{u\in A}\|u-\Pi_n u\|,$

where Π_n is the L^2 projection onto \mathbb{X}_n .

For a class of functions A ⊂ L² and an n-dimensional subspace X_n ⊂ L², let

 $E(A,\mathbb{X}_n)=\sup_{u\in A}\|u-\Pi_n u\|,$

where Π_n is the L^2 projection onto \mathbb{X}_n .

► The Kolmogorov *n*-width of *A* is

$$d_n(A) = \inf_{\mathbb{X}_n} E(A, \mathbb{X}_n).$$

For a class of functions A ⊂ L² and an *n*-dimensional subspace X_n ⊂ L², let

 $E(A,\mathbb{X}_n)=\sup_{u\in A}\|u-\Pi_n u\|,$

where Π_n is the L^2 projection onto \mathbb{X}_n .

▶ The Kolmogorov *n*-width of *A* is

$$d_n(A) = \inf_{\mathbb{X}_n} E(A, \mathbb{X}_n).$$

• The subspace X_n is called an optimal subspace for A if

 $d_n(A) = E(A, \mathbb{X}_n).$

If
$$A^r = \{ u \in H^r(0,1) : ||u^{(r)}|| \le 1 \},\$$

If
$$A^r = \{u \in H^r(0,1) : ||u^{(r)}|| \le 1\}$$
, then for all $u \in H^r$
 $||u - \prod_n u|| \le C ||u^{(r)}||,$

where $C = E(A^r, \mathbb{X}_n)$ is the smallest possible constant for the space \mathbb{X}_n .

If
$$A^r = \{u \in H^r(0,1) : ||u^{(r)}|| \le 1\}$$
, then for all $u \in H^r$
 $||u - \prod_n u|| \le C ||u^{(r)}||,$

where $C = E(A^r, \mathbb{X}_n)$ is the smallest possible constant for the space \mathbb{X}_n .

If X_n is optimal then $C = d_n(A^r)$, the least possible constant over all *n*-dimensional subspaces.

If
$$A^r = \{u \in H^r(0,1) : ||u^{(r)}|| \le 1\}$$
, then for all $u \in H^r$
 $||u - \prod_n u|| \le C ||u^{(r)}||,$

where $C = E(A^r, \mathbb{X}_n)$ is the smallest possible constant for the space \mathbb{X}_n .

If X_n is optimal then $C = d_n(A^r)$, the least possible constant over all *n*-dimensional subspaces.

Note that the constant $C = d_n(A^r)$ can also be achieved for other projections than Π_n (for example for Ritz projections).

 Kolmogorov (1936) showed that the first n eigenfunctions of (-1)^rΔ^r (with the proper B.C.) span an optimal space for A^r.

- Kolmogorov (1936) showed that the first n eigenfunctions of (-1)^rΔ^r (with the proper B.C.) span an optimal space for A^r.
- For a special non-uniform Ξ there exist optimal spline spaces of degrees p = r − 1, 2r − 1, 3r − 1, [Melkman and Micchelli 1978, Floater and S. 2017]

- Kolmogorov (1936) showed that the first n eigenfunctions of (-1)^rΔ^r (with the proper B.C.) span an optimal space for A^r.
- For a special non-uniform Ξ there exist optimal spline spaces of degrees p = r − 1, 2r − 1, 3r − 1, [Melkman and Micchelli 1978, Floater and S. 2017]

► For uniform Ξ we have [Bressan, Floater and S. 2020]:

$$\frac{E(A^r,\mathbb{S}_{p,\boldsymbol{\tau}})}{d_n(A^r)} \leq \frac{\left(\frac{1}{(n-p)\pi}\right)^r}{\left(\frac{1}{n\pi}\right)^r} = \left(\frac{1}{1-\frac{p}{n}}\right)^r \xrightarrow[n\to\infty]{} 1, \quad \forall p \geq r-1.$$

- Kolmogorov (1936) showed that the first n eigenfunctions of (-1)^rΔ^r (with the proper B.C.) span an optimal space for A^r.
- For a special non-uniform Ξ there exist optimal spline spaces of degrees p = r − 1, 2r − 1, 3r − 1, [Melkman and Micchelli 1978, Floater and S. 2017]
- ► For uniform Ξ we have [Bressan, Floater and S. 2020]:

$$\frac{E(A^r,\mathbb{S}_{p,\boldsymbol{\tau}})}{d_n(A^r)} \leq \frac{\left(\frac{1}{(n-p)\pi}\right)^r}{\left(\frac{1}{n\pi}\right)^r} = \left(\frac{1}{1-\frac{p}{n}}\right)^r \xrightarrow[n\to\infty]{} 1, \quad \forall p \geq r-1.$$

 The above limit is not 1 for C⁰ (FEM/SEM) or C⁻¹ (DG) [Bressan and S. 2019].

Example: Other boundary conditions Define

$$\begin{aligned} A_0^r &:= \{ u \in H^r : \| u^{(r)} \| \le 1, \ u^{(\alpha)}(0) = u^{(\alpha)}(1) = 0, \ 0 \le \alpha < r, \ \alpha \text{ even} \} \\ A_1^r &:= \{ u \in H^r : \| u^{(r)} \| \le 1, \ u^{(\alpha)}(0) = u^{(\alpha)}(1) = 0, \ 0 \le \alpha < r, \ \alpha \text{ odd} \}. \end{aligned}$$

Then

$$d_n(A_0^r) = \frac{1}{(n+1)^r \pi^r}, \qquad d_n(A_1^r) = \frac{1}{(n\pi)^r},$$

and the classical optimal spaces are

 $\mathbb{T}_{n,0} = \operatorname{span}\{\sin(\pi x), \sin(2\pi x), \dots, \sin(n\pi x)\},\$ $\mathbb{T}_{n,1} = \operatorname{span}\{1, \cos(\pi x), \cos(2\pi x), \dots, \cos((n-1)\pi x)\}.$

Example: Other boundary conditions Define

$$\begin{aligned} A_0^r &:= \{ u \in H^r : \| u^{(r)} \| \le 1, \ u^{(\alpha)}(0) = u^{(\alpha)}(1) = 0, \ 0 \le \alpha < r, \ \alpha \text{ even} \} \\ A_1^r &:= \{ u \in H^r : \| u^{(r)} \| \le 1, \ u^{(\alpha)}(0) = u^{(\alpha)}(1) = 0, \ 0 \le \alpha < r, \ \alpha \text{ odd} \}. \end{aligned}$$

Then

$$d_n(A_0^r) = \frac{1}{(n+1)^r \pi^r}, \qquad d_n(A_1^r) = \frac{1}{(n\pi)^r},$$

and the classical optimal spaces are

$$\mathbb{T}_{n,0} = \operatorname{span}\{\sin(\pi x), \sin(2\pi x), \dots, \sin(n\pi x)\},\$$
$$\mathbb{T}_{n,1} = \operatorname{span}\{1, \cos(\pi x), \cos(2\pi x), \dots, \cos((n-1)\pi x)\}.$$

The optimal spline spaces are [Floater and S. 2019]

$$\begin{split} \mathbb{S}_{p,n,0} &:= \{ s \in \mathbb{S}_{p,\tau_0} : s^{(\alpha)}(0) = s^{(\alpha)}(1) = 0, \quad 0 \le \alpha \le p, \quad \alpha \text{ even} \}, \\ \mathbb{S}_{p,n,1} &:= \{ s \in \mathbb{S}_{p,\tau_1} : s^{(\alpha)}(0) = s^{(\alpha)}(1) = 0, \quad 0 \le \alpha \le p, \quad \alpha \text{ odd} \} \end{split}$$

Even derivatives

Odd derivatives

Figure: Basis functions for $\mathbb{S}_{p,n,1}$ of degree p = 0, 1, 2, 3 for n = 5. Similar to the 'reduced spline spaces' in [Takacs and Takacs 2016]

Solve $K\mathbf{u}_j = \omega_{h,j}^2 M\mathbf{u}_j$ in $\mathbb{S}_{p,n,0}$, then we have shown that

$$\omega_j \leq \omega_{h,j} \leq \frac{\omega_j}{1 - \left(\frac{\omega_j}{\omega_{n+1}}\right)^{p+1}},$$

Solve $K\mathbf{u}_j = \omega_{h,j}^2 M\mathbf{u}_j$ in $\mathbb{S}_{p,n,0}$, then we have shown that

$$\omega_j \leq \omega_{h,j} \leq \frac{\omega_j}{1 - \left(\frac{\omega_j}{\omega_{n+1}}\right)^{p+1}},$$

Main ingredients of the proof:

- ▶ $\mathbb{S}_{p,n,0}$ is optimal for A_0^r .
- ▶ The Ritz projection onto $S_{p,n,0}$ also achieves the *n*-width.
- Use the min-max formulation of the eigenvalues as in [Strang and Fix 1973].

Solve $K\mathbf{u}_j = \omega_{h,j}^2 M\mathbf{u}_j$ in $\mathbb{S}_{p,n,0}$, then we have shown that

$$\omega_j \leq \omega_{h,j} \leq \frac{\omega_j}{1 - \left(\frac{\omega_j}{\omega_{n+1}}\right)^{p+1}},$$

Main ingredients of the proof:

- ▶ $\mathbb{S}_{p,n,0}$ is optimal for A_0^r .
- ▶ The Ritz projection onto $S_{p,n,0}$ also achieves the *n*-width.
- Use the min-max formulation of the eigenvalues as in [Strang and Fix 1973].

Explicit estimates for $||u_j - u_{h,j}||$ and $||\partial(u_j - u_{h,j})||$ now follows from the theory in [Strang and Fix 1973].

Solve $K\mathbf{u}_j = \omega_{h,j}^2 M\mathbf{u}_j$ in $\mathbb{S}_{p,n,0}$, then we have shown that

$$\omega_j \leq \omega_{h,j} \leq \frac{\omega_j}{1 - \left(\frac{\omega_j}{\omega_{n+1}}\right)^{p+1}},$$

Main ingredients of the proof:

- ▶ $\mathbb{S}_{p,n,0}$ is optimal for A_0^r .
- ▶ The Ritz projection onto $S_{p,n,0}$ also achieves the *n*-width.
- Use the min-max formulation of the eigenvalues as in [Strang and Fix 1973].

Explicit estimates for $||u_j - u_{h,j}||$ and $||\partial(u_j - u_{h,j})||$ now follows from the theory in [Strang and Fix 1973].

The argument also covers the tensor-product case and the biharmonic/polyharmonic case [Manni, S., Speleers 2023].

Eigenvalue problem in higher dimensions

Consider the eigenvalue problem

$$a(u_j, v) = \omega_j^2(u_j, v) \qquad \forall v \in H_0^1(\Omega),$$
 (1)

Eigenvalue problem in higher dimensions

Consider the eigenvalue problem

$$a(u_j, v) = \omega_j^2(u_j, v) \qquad \forall v \in H_0^1(\Omega), \tag{1}$$

► Let $n := \dim \mathbb{S}_{p, \Xi}^{k}$ with uniform Ξ . Theorem (Voet, S. and Buffa) For all $0 \le k \le p - 1$ and any j = 1, ..., n we have

$$\frac{\|u_j - P_{\mathbf{p}}^{\mathbf{k}} u_j\|_{L^2}}{\|u_j\|_{L^2}} \leq C_{PDE} C_{Geo} \frac{C_{p,k,1}^{Spline}}{n} \omega_j.$$

Eigenvalue problem in higher dimensions

Consider the eigenvalue problem

$$a(u_j, v) = \omega_j^2(u_j, v) \qquad \forall v \in H_0^1(\Omega), \tag{1}$$

► Let $n := \dim \mathbb{S}_{p, \equiv}^{k}$ with uniform \equiv . Theorem (Voet, S. and Buffa) For all $0 \le k \le p - 1$ and any j = 1, ..., n we have

$$\frac{\|u_j - P_{\mathbf{p}}^{\mathbf{k}} u_j\|_{L^2}}{\|u_j\|_{L^2}} \le C_{PDE} C_{Geo} \frac{C_{\mathbf{p},k,1}^{Spline}}{n} \omega_j.$$

Theorem (Voet, S. and Buffa) For all $0 \le k \le p-1$ and any j = 1, ..., n such that u_j is smooth we have

$$\frac{\|u_{j} - P_{\mathbf{p}}^{\mathsf{k}} u_{j}\|_{L^{2}}}{\|u_{j}\|_{L^{2}}} \leq C_{PDE} C_{Geo} C_{p,k,p+1}^{Spline} \left(\frac{1}{n}\right)^{p+1} \omega_{j}^{p+1},$$
18/2

Spline approximation constant

Figure: Numerical values of $C_{p,k,r}^{\text{Spline}}$ for r = p + 1 and different choices of $p \ge 1$ and $-1 \le k \le p - 1$, see [S., Manni, Speleers 2020].

Mass lumping: Going beyond the diagonal row-sum

 For tensor-product FEM, the spectral element method obtains diagonal lumped matrices with high order of convergence [Komatitsch and Vilotte 1998]. Mass lumping: Going beyond the diagonal row-sum

- For tensor-product FEM, the spectral element method obtains diagonal lumped matrices with high order of convergence [Komatitsch and Vilotte 1998].
- In IGA, using B-splines with together with their dual basis is proposed in [Anitescu et al. 2019], however it has many drawbacks.

Mass lumping: Going beyond the diagonal row-sum

- For tensor-product FEM, the spectral element method obtains diagonal lumped matrices with high order of convergence [Komatitsch and Vilotte 1998].
- In IGA, using B-splines with together with their dual basis is proposed in [Anitescu et al. 2019], however it has many drawbacks.
- In [Voet, S. and Buffa 2023] we use different block-wise lumping strategies to obtain several lumped mass matrices.

Mass lumping in 1D Let

$$M=D_i+R_i$$

- D_i: all super and sub-diagonals with distance from the diagonal smaller than i.
- ► *R_i*: remainder.

Our lumped mass matrices:

$$P_i = D_i + \mathcal{L}(R_i), \quad i = 1, \ldots, n$$

- ► *L*: diagonal row-sum.
- $\blacktriangleright P_1 = \mathcal{L}(M).$

Mass lumping in 1D

$$M=D_i+R_i$$

- D_i: all super and sub-diagonals with distance from the diagonal smaller than i.
- ► *R_i*: remainder.

Our lumped mass matrices:

$$P_i = D_i + \mathcal{L}(R_i), \quad i = 1, \ldots, n$$

- ► *L*: diagonal row-sum.
- $\blacktriangleright P_1 = \mathcal{L}(M).$

We have shown that

$$\lambda_k(K, P_1) \leq \cdots \leq \lambda_k(K, P_n) = \lambda_k(K, M), \quad \forall k = 1, 2, \dots, n.$$
(2)

Example: Laplacian in 1D

Mass lumping in higher dimensions: Strategy 1

Figure: Example: Block tridiagonal matrix \mathcal{P}_2 constructed from a block septadiagonal matrix $\mathcal B$

 \mathcal{P}_i : Lumps all super and sub blocks with block-distance $\geq i$ from the block-diagonal.

Mass scaling

We propose a classical deflation technique going back to [Hotelling 1943].

Figure: Truncation of the largest eigenvalues

Mass scaling

We propose a classical deflation technique going back to [Hotelling 1943].

Figure: Truncation of the largest eigenvalues

It requires computing the last r eigenvalues $\lambda_j(K, P_i)$, $j = n - r + 1, \dots n$ and their corresponding eigenfunctions. Using Lanczos method has essentially the same computational cost as time-stepping forward.

Example: Laplacian on trimmed domain

Figure: Shifted and rotated square

Example: Laplacian on trimmed domain for p = 3

Example: Laplacian on trimmed domain for p = 3

It was observed in [Leidinger 2020] that the diagonal row-sum lumping strategy does not need to be mass scaled when trimming. However, there are outliers among the lowest eigenvalues.

Conclusion

We have related the outlier problem in Isogeometric Analysis to the *n*-width problem and explained why smooth splines provide a good approximation of a large part of the spectrum of a differential operator.

Conclusion

- We have related the outlier problem in Isogeometric Analysis to the *n*-width problem and explained why smooth splines provide a good approximation of a large part of the spectrum of a differential operator.
- We have generalized the classical diagonal row-sum mass lumping strategy for use in Isogeometric Analysis.

Conclusion

- We have related the outlier problem in Isogeometric Analysis to the *n*-width problem and explained why smooth splines provide a good approximation of a large part of the spectrum of a differential operator.
- We have generalized the classical diagonal row-sum mass lumping strategy for use in Isogeometric Analysis.
- Due to the relatively small amount of outlier-frequencies when using maximally smooth splines we have seen that a classical deflation technique works very well in this case.

Thank you for your attention!