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Motivating problem
We look for u: © x [0, T] — R such that

O2u(x, t) — Au(x, t) = f(x,t) in Q x (0, T],
u(x,t) =0 on 092 x (0, T],
u(x,0) = up(x) in Q,
Oru(x,0) = vp(x) in Q,
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u(x,t) = on 092 x (0, T],
u(x,0) = up(x) in Q,
0ru(x,0) = vp(x) in Q,

Looking for a discrete approximation up(x, t) = > i, uj(t)Bi(x)
and using a Galerkin method leads to the semi-discrete problem

Mii(t) + Ku(t) = (1) for t € [0, T],
u(0) = up,
U(O) = Vo,
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Motivating problem

Mi(t) + Ku(t) = f(t) for t € [0, T],
( ) uo,
U(O) = Vo,

Explicit methods are very popular in engineering practice to solve
this system of ODEs.
Challenges:
» This involves computing M~! which can be computationally
very costly.
P> The largest stable time-step depends inversely on the largest
eigenvalue \,(K, M) which can become quite large.
Standard solutions:
» Mass lumping: Replace M by some approximation M that is
easy to invert (classical choice: diagonal row-sum).
> Mass scaling: Ensure that the largest eigenvalue \,(K, M) is
“small” (typical choice: ad-hoc modification of the diagonal
row-sum).
Reduirement: Smallest eigcenvalues must not change! 3/28



Overview

Minimizing A,(K, M)

Mass lumping in Isogeometric Analysis

Minimizing A,(K, M)
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Spline spaces

Knot vector =:
0=&6 <& < <én <éng1 =1,

Ij = [fj?§j+1)a J = 07"'7N_ 25 IN = [fN—lvl]

h:= i+1— &
o (§s1 - &)
Spline space of degree p and smoothness k:

Spz={se C¥[0,1] :s|, €P,, j=0,1,...,N—1}
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Spline spaces

Knot vector =:
0=&6 <& < <én <éng1 =1,

i=18,&+1), J=0,..., N =2, Iy :=[{n-1,1]
h.= Ogsngaml(im - &)
Spline space of degree p and smoothness k:
Spz={se C¥[0,1] :s|, €P,, j=0,1,...,N—1}
Maximal smoothness:

Sp= =St

Norm:
|l |I: L2-norm
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Isogeometric Analysis

Y

» Mapped (tensor-product) splines.

» In general the domain is divided into several patches, each
described by a geometric mapping F;.
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Isogeometric Analysis

Y

» Mapped (tensor-product) splines.

» In general the domain is divided into several patches, each
described by a geometric mapping F;.

Due to the (local) tensor-product structure, we will first consider
1D.
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Eigenvalue problem

The eigenvalues \;(K, M) approximate the eigenvalues \;(—A)
and (for a conforming method) the best we could hope for is

An(K, M) = Ap(=A).
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Eigenvalue problem

The eigenvalues \;(K, M) approximate the eigenvalues \;(—A)
and (for a conforming method) the best we could hope for is

An(K, M) = Ap(=A).

Define
> wji=Aj(=A)Y?
> whj = \(K, M)1/2
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» p — k branches
» only a single branch approximates the true spectrum
» maximal smoothness (k = p — 1) no spurious branches

See [Cottrell et al. 2006], [Hughes et al. 2008], [Garoni et al. 2019]...
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Outliers

....however there is a problem for large j.
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Figure: Relative error (%) in the case k = p — 1 and n = 200.
J

See [Cottrell et al. 2006], [Hughes et al. 2008], [Hughes et al. 2014],
[Gallistl et al. 2017] [Chan and Evans 2018] etc.
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Kolmogorov n-widths
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Kolmogorov n-widths

» For a class of functions A C L2 and an n-dimensional
subspace X, C L2, let

E(A,X,) =sup|lu— Myul,
ueA

where I, is the L? projection onto X,,.
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Kolmogorov n-widths

» For a class of functions A C L2 and an n-dimensional
subspace X, C L2, let

E(A,X,) =sup|lu— Myul,
ueA

where I, is the L? projection onto X,,.

» The Kolmogorov n-width of A is

dn(A) = inf E(A,X,).

» The subspace X,, is called an optimal subspace for A if

dn(A) = E(A,X,).
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Kolmogorov n-width

If AT = {ue H"(0,1) : [[ul)] <1},
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Kolmogorov n-width

If A" = {ue H"(0,1) : [|ul?]| <1}, then for all u € H"
lu = Mpul| < Clla],

where C = E(A",X,,) is the smallest possible constant for the
space X,,.

If X, is optimal then C = d,(A"), the least possible constant over
all n-dimensional subspaces.

Note that the constant C = d,(A") can also be achieved for other
projections than [, (for example for Ritz projections).
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Optimal spaces

» Kolmogorov (1936) showed that the first n eigenfunctions of
(=1)"A" (with the proper B.C.) span an optimal space for A".
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Optimal spaces

» Kolmogorov (1936) showed that the first n eigenfunctions of

(=1)"A" (with the proper B.C.) span an optimal space for A".

» For a special non-uniform = there exist optimal spline spaces
of degrees p=r —1,2r —1,3r — 1,.... [Melkman and
Micchelli 1978, Floater and S. 2017]

» For uniform = we have [Bressan, Floater and S. 2020]:
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Optimal spaces

» Kolmogorov (1936) showed that the first n eigenfunctions of
(—1)"A" (with the proper B.C.) span an optimal space for A".

» For a special non-uniform = there exist optimal spline spaces
of degrees p=r —1,2r —1,3r — 1,.... [Melkman and
Micchelli 1978, Floater and S. 2017]

» For uniform = we have [Bressan, Floater and S. 2020]:

s, _ (i)
hA) =)

nm

1 r
n

» The above limit is not 1 for C° (FEM/SEM) or C~! (DG)
[Bressan and S. 2019].
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Example: Other boundary conditions
Define

Ab={ue H : |u| <1, ul0)=u™(1)=0, 0<a<r, aeven}
Al ={ueH : |[u]| <1, u0)=u®(1)=0, 0<a<r, aodd}.
Then 1 1

1) dn(A1) = ()"

dn(Ap) =
n( 0) m_[_)
and the classical optimal spaces are

)

=<

Tho = span{sin(mx),sin(27x), ..., sin(nmx)},
Th1 = span{l, cos(mx), cos(2mx), ..., cos((n — 1)7x)}.
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Example: Other boundary conditions
Define
Ab={ue H : |u| <1, ul0)=u™(1)=0, 0<a<r, aeven}
Al ={ueH : |[u]| <1, u0)=u®(1)=0, 0<a<r, aodd}.

Then
1 1

1) dn(A7) = ()"

and the classical optimal spaces are

dn(Aa) =

)

=<

Tho = span{sin(mx),sin(27x), ..., sin(nmx)},
Th1 = span{l, cos(mx), cos(2mx), ..., cos((n — 1)7x)}.

The optimal spline spaces are [Floater and S. 2019]

Spno i =1{5 €Spr : sL(0) =s(¥(1) =
Spn1i={s €Spr : sL(0) =s(*(1) =

1428



Even derivatives
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Figure: Basis functions for S, o of degree p=0,1,2,3 for n = 4.
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Odd derivatives

1 1.0
0.8] 0.8
0.6 0.6,
0.4 0.4
0.2] 0.2
%% 0.2 0.4 0.6 0.8 10 °8s 0.2 0.4 0.6 0.8 1.0
1.0 1.0

0| 08|
/ \
0.6 0.6,
0.4 0.4]
02| / 02)
/ \
/ \L

00 / o, ~

0.0 0.2 0.4 0.6 0.8 10 00 0.2 0.4 0.6 0.8 1.0

Figure: Basis functions for S, 1 of degree p=0,1,2,3 for n = 5.
Similar to the ‘reduced spline spaces’ in [Takacs and Takacs 2016] 1628



Optimal spline spaces solve the outlier problem
Solve Ku; = w%JMuj in Sp 0, then we have shown that
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Wj S Whj S ",
1— (-2
Wn+1
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Optimal spline spaces solve the outlier problem
Solve Ku; = wgd-l\/luj in Sp 0, then we have shown that

Wi

Wj S Whj S ",
1— (-2
Wn+1

Main ingredients of the proof:
» Sp.n,0 is optimal for Aj.
» The Ritz projection onto Sj 50 also achieves the n-width.

» Use the min-max formulation of the eigenvalues as in [Strang
and Fix 1973].

Explicit estimates for ||uj — up || and [|0(uj — up )| now follows
from the theory in [Strang and Fix 1973].

The argument also covers the tensor-product case and the
biharmonic/polyharmonic case [Manni, S., Speleers 2023].
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Eigenvalue problem in higher dimensions
Consider the eigenvalue problem

a(uj,v) = wf(uj, v) Vv € HY(Q), (1)
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» Let n:=dim S;,E with uniform =.
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Spline

||Uj - P:)(Uj||/_2 p,k,1

< CppeCGeo
llujll 22

wj.

18/28



Eigenvalue problem in higher dimensions
Consider the eigenvalue problem

a(uj,v) = wf(uj, v) Vv € HY(Q), (1)
> Let n:=dim S;,E with uniform =.

Theorem (Voet, S. and Buffa)

Forall0 < k<p—1andanyj=1,...,n we have

Spline

||Uj - P:)(Uj||/_2 p,k,1

il 2

< CppeCGeo Wj.

Theorem (Voet, S. and Buffa)

Forall0 < k<p-—1andanyj=1,...,n such that u; is smooth
we have

. _ pk,,. p+1
HUJ Pp uJHL2 <C C CSp/ine 1 p+1
. = CPoECeeoChlpi | Wi

HL’jHL2 18/28



Spline approximation constant
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Figure: Numerical values of CEP""e for r = p+ 1 and different choices of

p>1land —1 < k < p—1, see [S., Manni, Speleers 2020].
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Mass lumping: Going beyond the diagonal row-sum

» For tensor-product FEM, the spectral element method obtains
diagonal lumped matrices with high order of convergence
[Komatitsch and Vilotte 1998].
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Mass lumping: Going beyond the diagonal row-sum

» For tensor-product FEM, the spectral element method obtains
diagonal lumped matrices with high order of convergence
[Komatitsch and Vilotte 1998].

» In IGA, using B-splines with together with their dual basis is
proposed in [Anitescu et al. 2019], however it has many
drawbacks.

» In [Voet, S. and Buffa 2023] we use different block-wise
lumping strategies to obtain several lumped mass matrices.
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Mass lumping in 1D
Let
M = D; + R;

» D;: all super and sub-diagonals with distance from the
diagonal smaller than /.
» R;: remainder.

Our lumped mass matrices:

P,':D,'—I-E(R,'), i:].,...,n

» [: diagonal row-sum.

> Py = L(M).
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Mass lumping in 1D
Let
M = D; + R;

» D;: all super and sub-diagonals with distance from the
diagonal smaller than /.

» R;: remainder.

Our lumped mass matrices:

P,':D,'—I-E(R,'), i:].,...,n

» [: diagonal row-sum.
> Py = L(M).

We have shown that

MK, P < oo S MK, Po) = M(K M), YVk=1,2,...,n.



Example: Laplacian in 1D

. Lumped mass preconditioners
10 T T

10°

10°

Eigenvalues

0 0.2 0.4 0.6 0.8 1
Normalized eigenvalue number

Figure: Comparison of A(K, M) and A(K, P;) for
i=1,23and p=3 22/28



Mass lumping in higher dimensions: Strategy 1

B D, R2

Ps Dy ‘C(RZ)

Figure: Example: Block tridiagonal matrix P, constructed from a block
septadiagonal matrix B

Pi: Lumps all super and sub blocks with block-distance > i from
the block-diagonal. 23 /28



Mass scaling

We propose a classical deflation technique going back to [Hotelling
1943].

Figure: Truncation of the largest eigenvalues
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Mass scaling

We propose a classical deflation technique going back to [Hotelling
1943].

Figure: Truncation of the largest eigenvalues

It requires computing the last r eigenvalues \;(K, P;),
j=n—r+1,...n and their corresponding eigenfunctions. Using
Lanczos method has essentially the same computational cost as

time-stepping forward.
24/28



Example: Laplacian on trimmed domain

Rotation: 83.4 degrees
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Figure: Shifted and rotated square
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Example: Laplacian on trimmed domain for p =3

Block lumped mass matrices

1010

Eigenvalues
[
1S)
N

[y
o
N

100 ¢ E

0 0.2 0.4 0.6 0.8 1
Normalized eigenvalue number
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Example: Laplacian on trimmed domain for p =3

Block lumped mass matrices

1010

Eigenvalues

10° ¢ 3

1072
0 0.2 0.4 0.6 0.8 1

Normalized eigenvalue number

It was observed in [Leidinger 2020] that the diagonal row-sum lumping
strategy does not need to be mass scaled when trimming. However, there
are outliers among the lowest eigenvalues. 26/28



Conclusion

> We have related the outlier problem in Isogeometric Analysis
to the n-width problem and explained why smooth splines
provide a good approximation of a large part of the spectrum
of a differential operator.
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Conclusion

> We have related the outlier problem in Isogeometric Analysis
to the n-width problem and explained why smooth splines
provide a good approximation of a large part of the spectrum
of a differential operator.

» \We have generalized the classical diagonal row-sum mass
lumping strategy for use in Isogeometric Analysis.
» Due to the relatively small amount of outlier-frequencies when

using maximally smooth splines we have seen that a classical
deflation technique works very well in this case.
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Thank you for your attention!
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