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 Boundary element methods and integral formulation (BIE)

 Isogeometric setting (IGA-BEM) and multi-patch geometries

 Hierarchical matrix formulation

 Low rank approximation of admissible blocks

 Some numerical results

 Current developments.
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Boundary Element MethodsBoundary Element Methods

 Boundary Element Methods are numerical methods to solve PDEs and can be 

seen in some cases as a valid alternative to classical domain methods as Finite 

Element or Finite Difference methods.

 The differential problem is reformulated into Boundary Integral Equations which 

require suitable and efficient quadrature formulae for their solution
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Advantages:
Reduced dimension of the computational domain: easier computation on complex 

geometries  (no domain mesh generation!)

Simplicity to solve external problems: easier treatment of unbounded domains

Disadvantages:
Fundamental solution of the PDE problem is needed beforehand

Singular kernels (singular integrals)

Fully populated matrices
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3D Acoustic model problem3D Acoustic model problem

 We consider 3D acoustic problems described by the Helmholtz equation, with 
Neumann boundary conditions:

 

 For exterior problems, the acoustic domain Ω is infinite.         the unknown 
function u at infinity must satisfy the Sommerfeld radiation condition:

 any radiated or scattered acoustic wave has to converge towards zero when 
the radius tends to infinity.
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Acoustic parameters: 𝜔 angular frequency, 𝑐 speed of the wave

Frequency–domain: 𝜅 = 𝜔/𝑐 , wave number, 𝜆 = 2𝜋/𝜅, wave length



Boundary integral equationBoundary integral equation

 Setting null the external body forces (f=0), we consider a direct integral 
representation formula for u.

 

The integral representation formula is strictly connected to the definition of the 
fundamental solution  and its normal derivative. Setting 𝑟 = 𝒙 − 𝒚

 applying the trace operator we get the Conventional Boundary Integral Equation 
CBIE:

The radiation condition is included in the integral formulation
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Isogeometric analysisIsogeometric analysis

 Standard approach: CAD geometry is replaced by FEM geometry (mesh)

 The mesh is an approximate geometry: many problems (thin shell structures, 
boundary layer in fluids) are very sensitive to geometric imperfections

 Isoparametric approach:
the solution space for dependent variables is represented in terms of the same functions 
which represent the geometry”         [Cottrell, Hughes, Bazilevs; CMAME 2005]

 The goal was to develop an analysis framework based on functions capable of 
exactly representing geometry

 IDEA: exploit CAD techniques and representations

.
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IgA-BEMIgA-BEM

 Isogeometric Analysis has led a new interest also in possible applications in the 
BEM context (previously only considered in FEM)

The possibility of describing accurately both the geometry and the solution has 
been studied also in the BEM approach (IGA-BEM) 

The use of  IgA in the BEM context can radically improve the corresponding 
numerical schemes because of the additional smoothness of NURBS and B-
splines in comparison to C0-continuous piecewise polynomials

Representation of  3D objects only needs to be encompassed by their boundary 
surfaces based on Boundary representation (B-rep).

To approximate accurately the integrals coming from the IGA-BEM formulation 
we have constructed new appropriate quadrature schemes, tailored on B-
splines.
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[Politis, Ginnis, Kaklis et al, 2009],  [ Simpson, Scott, et al., 2012, 2014]

[Aimi, Calabrò, Falini, S., Sestini, CMAME 2020]
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IgA multi-patch boundary representationIgA multi-patch boundary representation
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The boundary Γ is a union of M patches
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16–patch quadratic NURBS6–patch quartic NURBS
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Discretization Discretization 
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Free knot  vector selection on each patch     inter-patch adaptivity
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The linear systemThe linear system

 Domain is parametrized with M patches:

                                                              A: M x M block matrix

The matrix entries are of type

The right hand side entries:

10

( )

( ) ( )

( ) ( )

( ) ( )
( )

[ , ]

( ), ( )

( ), ( )

( ) :

= →

= =

= =

 
= 

 

F

x F s s

y F t t

F F
t

2 3

1 2

1 2

1 2

01       

,s                     

,t          

geometry mapping

collocation poi

            

nt

integrati 

      

on p

            

oint

s

t

J
t t

surface area el  ement

( )( ) ˆ( ) : ( )( ) 
= 

−= j
j

x F x1

1

M

h jB =α β

M. Lucia Sampoli H-matrices for 3D IGABEM 

( , ) ( ) ( ) ( ) ( ) ( ) ( )

, ,
[ , ]

ˆ ˆ( , ( )) ( ) ( ) ( )


= +


k k k k k

ij j j

y

B J dt Bi d d is F t t t s
n

201

1

2

( )( ) ( ) ( ) ( ) ( )

[ , ]
( , ( )) ( ) ( )

=

=
M

k k k

ij N
k

u F J dtiβ s F t t t
201

1



IGA-BEM pipelineIGA-BEM pipeline

 Discretization of the surface Γ

Multi-patch parametric representation by tensor product splines (B-splines or NURBS)

patch topology conforming meshes (𝐶−1 or 𝐶0)

 Discretization of the BIE (N= #DoF)

Collocation method

 Construction and solution of the linear system

 regular, singular and near-singular quadrature based on the spline product formula and 

quasi-interpolation. Quadrature always developed on B-spline supports

 non-symmetric and fully-populated matrix

 Representation formula to evaluate quantities in the exterior domain

 cost reduced to a matrix/vector multiplication 

Limitations of standard IGA-BEM

to improve accuracy we have to use finer meshes        high costs in terms of 

memory and CPU time

 limited geometric complexity and frequency range (due to the size of the final   

linear system)
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Fast solvers for IGA-BEM Fast solvers for IGA-BEM 

 Need of an efficient approximate method to evaluate the matrix entries, that allows 

to define a fast solver

Hierarchical matrices, or -matrices, have been introduced in the BEM setting by 

Hackbusch as a technique to produce sparse-data representation of dense 

matrices, which carries improvements in terms of storage and computational cost 

with respect to the usual matrix operations    

           -matrices:

 representation of the BEM matrix with an -matrix structure

 reduction of the memory cost: low-rank approximation of large blocks

 optimization of the CPU times by using the -matrix/vector product 

 Pure algebraic approach

Alternative approach to Fast Multipole Method

For the Helmholtz problem a diagonal FFM has been developed 

Different formulations for low and high frequencies
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[Greengard & Rokhlin, J. Comp. Phys, 1987]

[Rokhlin, Appl. Comp. Harm, 1993]

[Hackbusch, Computing, 1993]



 -matrix representation of the system matrix

 Preliminary clustering of row and columns based on the geometry (physical distance):

 definition of two Binary Trees, 𝒯1
(ℓ)

 and 𝒯2
(ℓ)

 whose depth is determined by a parameter 

𝑛_𝑙𝑒𝑎𝑓

 rows  collocation points =reference points

 columns  basis support  basis referred points=reference points

𝒯𝑖
(ℓ)

 i=1,2

 initial box : bounding box of the patch reference points

 dyadic subdivision into balanced small boxes

 stop subdivision when a minimum number of points per box  is reached

 Remark: negligible cost

 In total we have to construct 2M cluster trees

 The interaction of any two of these cluster trees form a block cluster tree

Hierarchical clustering of DoFHierarchical clustering of DoF
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 Subdivision of the IgA-BEM matrix (Block Cluster Tree): definition of sub-

matrices, again Euclidean distance based

We have to define a criterion the determine whether a block has a suitable low-

rank approximation:
 The block should be as large as possible

 Computing explicitly the rank of the blocks is too expensive

 A block associated to the cluster indices (𝜎, 𝜏), with 𝜎 ∈ 𝒯1
(ℓ)

 and 𝜏 ∈ 𝒯2
(ℓ)

 is 

admissible if 𝑚𝑖𝑛 𝑑𝑖𝑎𝑚 𝑄𝜎 , 𝑑𝑖𝑎𝑚 𝑄𝜏 ≤ 𝜂 𝑑𝑖𝑠𝑡(𝑄𝜎 , 𝑄𝜏)

  3 kinds of blocks: leaves (full- or low-rank matrices) and non-leaves (H-matrices)

𝑑𝑖𝑎𝑚 𝑄𝜏

𝑑𝑖𝑎𝑚 𝑄𝜎

Cluster tree algorithm Cluster tree algorithm 
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Structure of the H-matrix representationStructure of the H-matrix representation

 The structure of the H-matrix representation of the BEM matrix depends only on 

the geometry and the admissibility condition

15M. Lucia Sampoli H-matrices for 3D IGABEM 

full-rank block

low-rank block



Low-rank representationLow-rank representation

 The reduction of the memory storage of the IgA-BEM is related to the possibility of 

writing a low-rank representation or degenerate expansion of the fundamental 

solution 𝒢𝜅 , i.e.

 where                 is the residuum and tends to zero for 𝑟 → ∞ 

For the Helmholtz kernel it can be proved that if the admissibility condition is 

satisfied, the residuum can be bounded from above.

 When 𝜅 𝑑𝑖𝑎𝑚 Γ  is small ⟶ 𝛾 ≅
1

𝑐2
. Existence of a a pre-asymptotic regime for 

which the low-rank representation is efficient
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[Bebendorf,  2008]
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Computation of low-rank representationComputation of low-rank representation

 Given an admissible block  𝔸𝜎,𝜏
(ℓ, ഥℓ)

∈ 𝐶𝑚×𝑛 we approximate it as the product of 

matrices of small rank

 with 𝕊𝑟 = 𝕌 𝕍𝐻 where 𝕌 and 𝕍 are both 𝑁 × 𝑟  matrices and the residuum ℝ𝑟 is 

such that

r ≪ 𝑁 we obtain a drastic reduction of the memory requirement for the storage of 

𝔸𝜎,𝜏
(ℓ, ഥℓ)

⟹  how to compute 𝕌 and 𝕍 ?

 The best low-rank approximation is given by the truncated SVD. Its computation is 

too expensive as it requires in input all the entries of the matrix. 

 Adaptive Cross Approximation (ACA) produces quasi-optimal low-rank 

approximations without requiring the assembly of the whole matrix

Every matrix of rank r is the sum of r matrices of rank 1

Greedy algorithm iteratively adding suitable 1-rank matrices to the current approximation

Requires only few entries of the matrix
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Ω =domain exterior to a sphere centered at the origin and with unit radius 

Acoustic pressure produced by a wave vector,  

    source at infinity

The incident wave hitting the rigid body produces a scattered 

     pressure
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𝜅 = 1
 𝑛𝑙𝑒𝑎𝑓= 25
 𝜂 = 3
𝜀𝐴𝐶𝐴 = 1.0𝑒 − 08
𝜀𝐺𝑀𝑅𝐸𝑆 = 1.0𝑒 − 08

𝜅 𝑑𝑖𝑎𝑚 Γ < 2𝜋

Low-freq.

An iterative solver (variant of GMRES) for -matrices is considered.

Rigid scattering on a sphere (low- freq)Rigid scattering on a sphere (low- freq)
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NDOF mem (%) Err

864 00.73 7.43e-05

2904 46.71 8.87e-06

10584 78.05 1.09e-06

40344 91.99 1.45e-07

157464 97.27 1.20e-08
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𝜅 = 3
 𝑛𝑙𝑒𝑎𝑓= 25
 𝜂 = 3
𝜀𝐴𝐶𝐴 = 1.0𝑒 − 08
𝜀𝐺𝑀𝑅𝐸𝑆 = 1.0𝑒 − 08

𝜅 𝑑𝑖𝑎𝑚 Γ > 2𝜋

High -freq.

Rigid scattering on a sphere (high- freq)Rigid scattering on a sphere (high- freq)
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NDOF mem (%) Err

864 -9.29 8.03e-04

2904 43.01 8.78e-05

10584 77.13 1.06e-05

40344 91.69 1.11e-06

157464 95.27 1.54e-07
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Very good accuracy for engineering applications



Reconstructed total field, Ndof=2904

 𝜅 = 1

 𝜅 = 3

Rigid scattering on a sphere Rigid scattering on a sphere 
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real part imaginary part



Helmholtz problem interior to a torus, Neumann conditions with exact solution

Multi-patch geometry, C-1  joints

𝜅 = 1

𝜅 = 3

Example 2: acoustic problem (interior)Example 2: acoustic problem (interior)

( ) sin sin sin ,
  

 
     

=      
     

x y z
x x

3 3 3 [Simpson et al. 2014]
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𝜀𝐺𝑀𝑅𝐸𝑆 = 1.0𝑒 − 08
𝜀𝐺𝑀𝑅𝐸𝑆 = 1.0𝑒 −

𝜅 = 1
𝜀𝐺𝑀𝑅𝐸𝑆 = 1.0𝑒 − 08

𝜅 = 3
𝜀𝐺𝑀𝑅𝐸𝑆 = 1.0𝑒 − 08

Example 2: acoustic problem (interior)Example 2: acoustic problem (interior)
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NDOF
mem () mem (β) Err

864 −25.84% −21.01% 1.16e − 03

2904 30.71% 32.81% 1.10e − 04

10584 71.12% 73.77% 1.28e − 05

40344 90.02% 91.19% 1.57e − 06

157464 96.81% 97.32% 1.97e − 07

NDOF
mem () mem (β) Err

864 −41.05% −37.03% 1.15e − 02

2904 21.63% 19.52% 9.91e − 04

10584 67.92% 69.06% 1.07e − 04

40344 89.11% 89.81% 1.29e − 05

157464 96.57% 97.11% 1.65e − 06



Conclusion Conclusion 

 An efficient and accurate numerical strategy to solve 3D Helmholtz problems using 

isogeometric BEMs on conformal multi-patch smooth geometries and spline 

discretization spaces by hierarchical matrices.

 It gives good results achieving optimal approximation order with a drastic 

reduction of the computational cost, in terms of both time and memory 

requirement.

 Future work:

 Helmholtz equation for different 𝜅  (special treatment of highly oscillating singular 

integrals coming from IgA-BEM)

 HPC implementation

Time-domain problems
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Thank you for your attention
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