A link between Chebyshev polynomials and level-dependent subdivision schemes

Lucia Romani

Department of Mathematics, University of Bologna, Italy

Joint work with: Alberto Viscardi, University of Turin, Italy

SIGMA 2024 Workshop

CIRM, Marseille, October 29th, 2024

Goal ●			Practical implications
Goa	I		
Goal			
	Subdivision schemes We create a link between the fill theoretical gaps and in related to level-depend	two topics which is enprove computationa ent subdivision scher	ev polynomials exploited to l issues mes.

New results

Practical implications

Goal and Outline of the talk

Chebyshev polynomials

We create a link between the two topics which is exploited to fill theoretical gaps and improve computational issues related to level-dependent subdivision schemes.

Outline

- Preliminaries and state-of-the-art
- 2 New theoretical results
- Practical implications

Chebyshev polynomials and level-dependent subdivision schemes

Univariate binary level-dependent subdivision schemes

UNivAriate bInary leVel-dEpendent (NAIVE*) subdivision schemes

*(this is only an easy-to-remember abbreviation!)

Univariate binary subdivision schemes: the functional case

Let $\mathbf{P}_0 = \{P_0(i) \in \mathbb{R} : i \in \mathbb{Z}\}$ be an initial sequence of points attached to the integer grid. For $k \ge 0$, the subdivision scheme computes the sequence

$$\mathbf{P}_{k+1} := S_{\mathbf{a}} \mathbf{P}_k$$

via the subdivision operator

$$S_{\mathbf{a}}: \ell(\mathbb{Z}) o \ell(\mathbb{Z}), \qquad (S_{\mathbf{a}} \mathbf{P}_k)(i) = \sum_{j \in \mathbb{Z}} a(i - 2j) P_k(j), \quad i \in \mathbb{Z},$$

where $\ell(\mathbb{Z})$ is the space of sequences indexed by \mathbb{Z} .

Univariate binary subdivision schemes: the functional case

Let $\mathbf{P}_0 = \{P_0(i) \in \mathbb{R} : i \in \mathbb{Z}\}$ be an initial sequence of points attached to the integer grid. For $k \ge 0$, the subdivision scheme computes the sequence

$$\mathsf{P}_{k+1} := S_{\mathsf{a}} \mathsf{P}_k$$

via the subdivision operator

$$S_{\mathbf{a}}: \ell(\mathbb{Z}) o \ell(\mathbb{Z}), \qquad (S_{\mathbf{a}} \mathbf{P}_k)(i) = \sum_{j \in \mathbb{Z}} a(i-2j) P_k(j), \quad i \in \mathbb{Z},$$

where $\ell(\mathbb{Z})$ is the space of sequences indexed by \mathbb{Z} .

Binary subdivision: at each iteration the information is "doubled"

w
$$|\mathbf{a} = \{a(i) \in \mathbb{R} : i \in \mathbb{Z}\}|$$
 subdivision mask

New results

Practical implications

Univariate binary level-dependent ("NAIVE") subdivision

Subdivision with a different set of coefficients at each level:

$$\{S_{\mathbf{a}_k}, \ k \ge 0\} \quad \Leftrightarrow \quad \begin{cases} \text{Input: } \mathbf{P}_0 \\ \text{For } k = 0, 1, \cdots \\ \mathbf{P}_{k+1} := S_{\mathbf{a}_k} \mathbf{P}_k \quad \text{level-dependent rules} \end{cases}$$

Univariate binary level-dependent ("NAIVE") subdivision

Subdivision with a different set of coefficients at each level:

 $\{S_{\mathbf{a}_k}, \ k \ge 0\} \quad \Leftrightarrow \quad \begin{cases} \text{Input: } \mathbf{P}_0 \\ \text{For } k = 0, 1, \cdots \\ \mathbf{P}_{k+1} := S_{\mathbf{a}_k} \mathbf{P}_k \quad \text{level-dependent rules} \end{cases}$

Convergence (Definition)

The scheme $\{S_{\mathbf{a}_k}, k \ge 0\}$ applied to the initial data $\mathbf{P}_0 \in \ell(\mathbb{Z})$ is called *convergent* if there exists a function $f_{\mathbf{P}_0} \in C(\mathbb{R})$, $f_{\mathbf{P}_0} \neq 0$, such that

$$\lim_{k\to\infty}\sup_{i\in\mathbb{Z}}\mid f_{\mathbf{P}_0}(2^{-k}i)-\mathbf{P}_k(i)\mid=0.$$

Univariate binary level-dependent ("NAIVE") subdivision

Subdivision with a different set of coefficients at each level:

 $\{S_{\mathbf{a}_k}, \ k \ge 0\} \quad \Leftrightarrow \quad \begin{cases} \text{Input: } \mathbf{P}_0 \\ \text{For } \ k = 0, 1, \cdots \\ \mathbf{P}_{k+1} := S_{\mathbf{a}_k} \mathbf{P}_k \quad \text{level-dependent rules} \end{cases}$

Convergence (Definition)

The scheme $\{S_{\mathbf{a}_k}, k \ge 0\}$ applied to the initial data $\mathbf{P}_0 \in \ell(\mathbb{Z})$ is called *convergent* if there exists a function $f_{\mathbf{P}_0} \in C(\mathbb{R})$, $f_{\mathbf{P}_0} \neq 0$, such that

$$\lim_{k\to\infty}\sup_{i\in\mathbb{Z}}\mid f_{\mathbf{P}_0}(2^{-k}i)-\mathbf{P}_k(i)\mid=0.$$

We assume the scheme to be non-singular, i.e., to generate the zero function if and only if P_0 is the zero sequence.

Univariate binary level-dependent ("NAIVE") subdivision

Subdivision with a different set of coefficients at each level:

 $\{S_{\mathbf{a}_k}, \ k \ge 0\} \quad \Leftrightarrow \quad \begin{cases} \text{Input: } \mathbf{P}_0 \\ \text{For } \ k = 0, 1, \cdots \\ \mathbf{P}_{k+1} := S_{\mathbf{a}_k} \mathbf{P}_k \quad \text{level-dependent rules} \end{cases}$

Convergence (Definition)

The scheme $\{S_{\mathbf{a}_k}, k \ge 0\}$ applied to the initial data $\mathbf{P}_0 \in \ell(\mathbb{Z})$ is called *convergent* if there exists a function $f_{\mathbf{P}_0} \in C(\mathbb{R})$, $f_{\mathbf{P}_0} \neq 0$, such that

$$\lim_{k\to\infty}\sup_{i\in\mathbb{Z}}\mid f_{\mathbf{P}_0}(2^{-k}i)-\mathbf{P}_k(i)\mid=0.$$

Regularity (Definition)

The scheme $\{S_{\mathbf{a}_k}, k \ge 0\}$ is C^m -convergent if $f_{\mathbf{P}_0} \in C^m(\mathbb{R})$.

Chebyshev polynomials and level-dependent subdivision schemes

We can make use of standard mathematical tools of signal processing: the *z*-trasform or subdivision symbol associated with the subdivision mask.

Subdivision symbol (Definition)

The subdivision symbol of a subdivision mask $\mathbf{a} = \{a(i), i \in \mathbb{Z}\}$ is the Laurent polynomial

$$a(z) = \sum_{i \in \mathbb{Z}} a(i) z^i, \qquad z \in \mathbb{C} \setminus \{0\}.$$

We can make use of standard mathematical tools of signal processing: the *z*-trasform or subdivision symbol associated with the subdivision mask.

Subdivision symbol (Definition)

The subdivision symbol of a subdivision mask $\mathbf{a} = \{a(i), i \in \mathbb{Z}\}$ is the Laurent polynomial

$$a(z) = \sum_{i \in \mathbb{Z}} a(i) z^i, \qquad z \in \mathbb{C} \setminus \{0\}.$$

• The symbol a(z) fully identifies a "stationary" subdivision scheme.

We can make use of standard mathematical tools of signal processing: the *z*-trasform or subdivision symbol associated with the subdivision mask.

Subdivision symbol (Definition)

The subdivision symbol of a subdivision mask $\mathbf{a} = \{a(i), i \in \mathbb{Z}\}$ is the Laurent polynomial

$$a(z) = \sum_{i \in \mathbb{Z}} a(i) z^i, \qquad z \in \mathbb{C} \setminus \{0\}.$$

• The symbol a(z) fully identifies a "stationary" subdivision scheme.

• In the level-dependent case, the sequence of symbols $\{a_k(z), k \ge 0\}$ associated with the sequence of masks $\{a_k, k \ge 0\}$ identifies the subdivision scheme.

We can make use of standard mathematical tools of signal processing: the *z*-trasform or subdivision symbol associated with the subdivision mask.

Subdivision symbol (Definition)

The subdivision symbol of a subdivision mask $\mathbf{a} = \{a(i), i \in \mathbb{Z}\}$ is the Laurent polynomial

$$a(z) = \sum_{i \in \mathbb{Z}} a(i) z^i, \qquad z \in \mathbb{C} \setminus \{0\}.$$

- The symbol a(z) fully identifies a "stationary" subdivision scheme.
- In the level-dependent case, the sequence of symbols $\{a_k(z), k \ge 0\}$ associated with the sequence of masks $\{a_k, k \ge 0\}$ identifies the subdivision scheme.
- Many of the properties of a subdivision scheme can be easily checked using algebraic conditions on the subdivision symbols.

Generation versus Reproduction of a function space \mathcal{V}

Generation/Reproduction (Definition)

▶ A convergent subdivision scheme $\{S_{\mathbf{a}_k}, k \ge 0\}$ generates \mathcal{V} if for any $f \in \mathcal{V}$ there exists \mathbf{P}_0 s.t. $\lim_{k\to\infty} S_{\mathbf{a}_k} S_{\mathbf{a}_{k-1}} \dots S_{\mathbf{a}_0} \mathbf{P}_0 = f$.

Generation versus Reproduction of a function space \mathcal{V}

Generation/Reproduction (Definition)

- A convergent subdivision scheme {S_{a_k}, k ≥ 0} generates V if for any f ∈ V there exists P₀ s.t. lim_{k→∞} S_{a_k}S_{a_{k-1}...S_{a₀}P₀ = f.}
- ▶ A convergent subdivision scheme $\{S_{\mathbf{a}_k}, k \ge 0\}$ reproduces \mathcal{V} (with respect to \mathbf{t}_0) if for any $f \in \mathcal{V}$ and $\mathbf{P}_0 = \{f(t_0(i)), i \in \mathbb{Z}\}$ we have $\lim_{k\to\infty} S_{\mathbf{a}_k} S_{\mathbf{a}_{k-1}} \dots S_{\mathbf{a}_0} \mathbf{P}_0 = f$.

Generation versus Reproduction of a function space \mathcal{V}

Generation/Reproduction (Definition)

- A convergent subdivision scheme {S_{a_k}, k ≥ 0} generates V if for any f ∈ V there exists P₀ s.t. lim_{k→∞} S_{a_k}S_{a_{k-1}...S_{a₀}P₀ = f.}
- ▶ A convergent subdivision scheme $\{S_{\mathbf{a}_k}, k \ge 0\}$ reproduces \mathcal{V} (with respect to \mathbf{t}_0) if for any $f \in \mathcal{V}$ and $\mathbf{P}_0 = \{f(t_0(i)), i \in \mathbb{Z}\}$ we have $\lim_{k\to\infty} S_{\mathbf{a}_k} S_{\mathbf{a}_{k-1}} \dots S_{\mathbf{a}_0} \mathbf{P}_0 = f$.

The approximation order of a subdivision scheme is strictly related to its reproduction properties. Exponential-Polynomial generation versus reproduction

Exponential-polynomials (Definition)

Let $n \in \mathbb{N}$ and let $\Gamma = \{(\theta_1, \xi_1), \dots, (\theta_n, \xi_n)\}$ with $\theta_i \in \mathbb{R} \cup i\mathbb{R}, \ \theta_i \neq \theta_j$ if $i \neq j$, and $\xi_i \in \mathbb{N}, \ i = 1, \dots, n$. The function space

$$EP_{\Gamma}= ext{span}\{\;x^{r_i}\;e^{ heta_ix},\;r_i=0,\cdots,\xi_i-1,\;i=1,\cdots,n\;\}$$

is a very general space of exponential polynomials.

For each $i = 1, \dots, n$, ξ_i denotes the multiplicity of $\theta_i \in \mathbb{R} \cup i\mathbb{R}$.

Exponential-Polynomial generation versus reproduction

Exponential-polynomials (Definition)

Let $n \in \mathbb{N}$ and let $\Gamma = \{(\theta_1, \xi_1), \dots, (\theta_n, \xi_n)\}$ with $\theta_i \in \mathbb{R} \cup i\mathbb{R}, \ \theta_i \neq \theta_j$ if $i \neq j$, and $\xi_i \in \mathbb{N}, \ i = 1, \dots, n$. The function space

$$EP_{\Gamma}= ext{span}\{\;x^{r_i}\;e^{ heta_ix},\;r_i=0,\cdots,\xi_i-1,\;i=1,\cdots,n\;\}$$

is a very general space of exponential polynomials.

For each $i = 1, \dots, n$, ξ_i denotes the multiplicity of $\theta_i \in \mathbb{R} \cup i\mathbb{R}$.

^{ISF} Generation and reproduction of EP_{Γ} for any subdivision scheme $\{S_{\mathbf{a}_k}, k \ge 0\}$ can be easily checked by using simple algebraic conditions on the subdivision symbols

$$a_k(z) = \sum_{i \in \mathbb{Z}} a_k(i) z^i, \qquad z \in \mathbb{C} \setminus \{0\}, \qquad k \ge 0.$$

Algebraic conditions for exponential-polynomial gen./rep.

Theorem [C. Conti and L. R. 2011]

Let $n \in \mathbb{N}$, $\Gamma = \{(\theta_1, \xi_1), \cdots, (\theta_n, \xi_n)\}, z_{\ell,k} = e^{\frac{-\theta_\ell}{2^{k+1}}}, \ell = 1, \cdots, n, k \ge 0.$ A non-singular, convergent subdivision scheme $\{S_{\mathbf{a}_k}, k \ge 0\}$ \blacktriangleright generates EP_{Γ} iff $\frac{d^r a_k(-z_{\ell,k})}{dz^r} = 0, r = 0, ..., \xi_{\ell} - 1$ (*) \triangleright reproduces EP_{Γ} with respect to $\mathbf{t}_k = \{\frac{i+\tau}{2^k}, i \in \mathbb{Z}\}$ iff, besides (*), $a_k(z_{\ell,k}) = 2(z_{\ell,k})^{\tau}$ and $\frac{d^r a_k(z_{\ell,k})}{dz^r} = 2(z_{\ell,k})^{\tau-r} \prod_{q=0}^{r-1} (\tau-q), r = 1, ..., \xi_{\ell} - 1.$

C. Conti, L. R., Algebraic conditions on non-stationary subdivision symbols for exponential polynomial reproduction, *J. Comput. Appl. Math.*, 236(4), 543-556, (2011)

The EP_{Γ} space with integer powers of exponentials

Let $n \in \mathbb{N}$, $t \in [0, \pi/n) \cup i\mathbb{R}^+$ and $\Gamma = \{(\theta_1, \xi_1), \cdots, (\theta_{2n+1}, \xi_{2n+1})\}$ with

$$\begin{array}{ll} \theta_1 = 0, & \theta_{2\ell} = \mathrm{i}\,\ell t, & \theta_{2\ell+1} = -\mathrm{i}\,\ell t, & \ell = 1, ..., n \\ \xi_1 = 2, & \xi_{2\ell} = 1, & \xi_{2\ell+1} = 1, & \ell = 1, ..., n. \end{array}$$

Then

$$EP_{\Gamma}^{2n+2} = \operatorname{span}\left\{ 1, x, \left\{ e^{i\ell tx}, e^{-i\ell tx} \right\}_{\ell=1}^{n} \right\}$$

and, in particular,

$$EP_{\Gamma}^{2n+2} = \begin{cases} \operatorname{span} \{ 1, x, \{ \cos(\ell\sigma x), \sin(\ell\sigma x) \}_{\ell=1}^{n} \} & \text{if } t = \sigma, \ \sigma \in (0, \pi/n) \\ \operatorname{span} \{ 1, x, x^{2}, \dots, x^{2n+1} \} & \text{if } t = 0 \\ \operatorname{span} \{ 1, x, \{ \cosh(\ell\sigma x), \sinh(\ell\sigma x) \}_{\ell=1}^{n} \} & \text{if } t = i\sigma, \ \sigma \in \mathbb{R}^{+} \end{cases}$$

The EP_{Γ} space with integer powers of exponentials

Let $n \in \mathbb{N}$, $t \in [0, \pi/n) \cup i\mathbb{R}^+$ and $\Gamma = \{(\theta_1, \xi_1), \cdots, (\theta_{2n+1}, \xi_{2n+1})\}$ with

$$\begin{array}{ll} \theta_1 = 0, & \theta_{2\ell} = \mathrm{i}\,\ell t, & \theta_{2\ell+1} = -\mathrm{i}\,\ell t, & \ell = 1, ..., n \\ \xi_1 = 2, & \xi_{2\ell} = 1, & \xi_{2\ell+1} = 1, & \ell = 1, ..., n. \end{array}$$

Then

$$EP_{\Gamma}^{2n+2} = \operatorname{span}\left\{ 1, x, \{e^{i\ell tx}, e^{-i\ell tx}\}_{\ell=1}^{n} \right\}$$

and, in particular,

$$EP_{\Gamma}^{2n+2} = \begin{cases} \operatorname{span} \{ 1, x, \{ \cos(\ell\sigma x), \sin(\ell\sigma x) \}_{\ell=1}^{n} \} & \text{if } t = \sigma, \ \sigma \in (0, \pi/n) \\ \operatorname{span} \{ 1, x, x^{2}, \dots, x^{2n+1} \} & \text{if } t = 0 \\ \operatorname{span} \{ 1, x, \{ \cosh(\ell\sigma x), \sinh(\ell\sigma x) \}_{\ell=1}^{n} \} & \text{if } t = \mathrm{i}\sigma, \ \sigma \in \mathbb{R}^{+} \end{cases}$$

Goal:

express the symbols of the minimum support approximating scheme generating EP_{Γ}^{2n+2} and the minimum support interpolating scheme reproducing EP_{Γ}^{2n+2} in closed form.

Preliminaries & state-of-the-art		
0000000000000	00000	00000000

State of the art

The exponential B-spline scheme generating EP_{Γ}^{2n+2} is known to be defined by the *k*-level symbol

$$s_{2n+2,k}(z) = \frac{(1+z)^2}{2z} z^{-n} \prod_{j=1}^n \frac{z^2 + \lambda_j(v_k)z + 1}{\lambda_j(v_k) + 2}$$

/ -

with

$$v_{k} = \cos\left(\frac{t}{2^{k+1}}\right) \text{ and } \lambda_{j}(v_{k}) = \det\left(\begin{bmatrix}2v_{k} & 1 & 0 & 0 & \cdots & 0\\2 & 2v_{k} & 1 & 0 & \cdots & 0\\0 & 1 & 2v_{k} & 1 & \cdots & \vdots\\0 & 0 & 1 & 2v_{k} & \ddots & 0\\\vdots & \vdots & \vdots & \ddots & \ddots & 1\\0 & 0 & 0 & \cdots & 1 & 2v_{k}\end{bmatrix}_{j \times j}\right)$$

The larger *n* the higher the computational complexity!

L. R., From approximating subdivision schemes for exponential splines to high-performance interpolating algorithms, *J. Comput. Appl. Math.*, 224, 383-396, (2009)

From the B-spline scheme generating EP_{Γ}^{2n+2} to the interpolating one reproducing EP_{Γ}^{2n+2}

Input: $s_{2n+2,k}(z)$, k-level symbol of the approximating scheme generating EP_{Γ}^{2n+2}

• Construct the $(2n+1) \times (2n+1)$ matrix \mathbf{H}_k , leading principal submatrix of a Hurwitz type matrix associated to $s_{2n+2,k}(z)$

- Determine $(\mathbf{H}_k)^{-1}$
- Set $c_k := (H_k)^{-1}(n+1, :)$
- Construct the interpolatory symbol $m_{2n+2,k}(z) := s_{2n+2,k}(z) c_k(z)$

Output: $m_{2n+2,k}(z)$, k-level symbol of the interpolating scheme reproducing EP_{Γ}^{2n+2}

C. Conti, L. Gemignani, L. R., From approximating to interpolatory non-stationary subdivision schemes with the same generation properties, *Adv. Comput. Math.*, 35, 217-241, (2011)

Preliminaries & state-of-the-art	
0000000000000	

Example (n = 3)

$$s_{8,k}(z) = \frac{(1+z)^2}{2z} \ z^{-n} \prod_{j=1}^3 \ \frac{z^2 + \lambda_j(v_k)z + 1}{\lambda_j(v_k) + 2}$$

with

$$v_k = \cos\left(rac{t}{2^{k+1}}
ight)$$

 and

$$\begin{split} \lambda_1(v_k) &= 2v_k \\ \lambda_2(v_k) &= \det\left(\begin{bmatrix} 2v_k & 1 \\ 2 & 2v_k \end{bmatrix}\right) = 4v_k^2 - 2 \\ \lambda_3(v_k) &= \det\left(\begin{bmatrix} 2v_k & 1 & 0 \\ 2 & 2v_k & 1 \\ 0 & 1 & 2v_k \end{bmatrix}\right) = 8v_k^3 - 6v_k \end{split}$$

Goal

/

`

Shortly

rtly:
$$s_{8,k}(z) = z^{-4} \left(s_0(v_k) + s_1(v_k) z + s_2(v_k) z^2 + \cdots s_8(v_k) z^8 \right)$$

$$\mathbf{H}_{k} = \begin{bmatrix} s_{1}(v_{k}) & s_{3}(v_{k}) & s_{5}(v_{k}) & s_{7}(v_{k}) & 0 & 0 & 0\\ s_{0}(v_{k}) & s_{2}(v_{k}) & s_{4}(v_{k}) & s_{6}(v_{k}) & s_{8}(v_{k}) & 0 & 0\\ 0 & s_{1}(v_{k}) & s_{3}(v_{k}) & s_{5}(v_{k}) & s_{7}(v_{k}) & 0 & 0\\ 0 & s_{0}(v_{k}) & s_{2}(v_{k}) & s_{4}(v_{k}) & s_{6}(v_{k}) & s_{8}(v_{k}) & 0\\ 0 & 0 & s_{1}(v_{k}) & s_{3}(v_{k}) & s_{5}(v_{k}) & s_{7}(v_{k}) & 0\\ 0 & 0 & s_{0}(v_{k}) & s_{2}(v_{k}) & s_{4}(v_{k}) & s_{6}(v_{k}) & s_{8}(v_{k})\\ 0 & 0 & 0 & s_{1}(v_{k}) & s_{3}(v_{k}) & s_{5}(v_{k}) & s_{7}(v_{k}) \end{bmatrix}_{7\times7}$$

This matrix must be inverted in order to determine $\mathbf{c}_k := (\mathbf{H}_k)^{-1}(4, :)$ and construct the interpolatory symbol

$$m_{8,k}(z) = s_{8,k}(z) c_k(z)$$

 $\label{eq:epsilon} \text{reproducing} \quad \textit{EP}^8_{\Gamma} = \text{span} \left\{ \ 1, x, e^{\text{i}tx}, e^{-\text{i}tx}, e^{2\text{i}tx}, e^{-2\text{i}tx}, e^{3\text{i}tx}, e^{-3\text{i}tx} \ \right\}.$

	New results ●0000	Practical implications

Towards a closed form expression of $m_{2n+2,k}(z)$

Goal		New results	
0	000000000000	0000	00000000

Chebyshev polynomials of the first kind

$$v_k = \cos\left(rac{t}{2^{k+1}}
ight)$$

The degree-*j* Chebyshev polynomial in v_k is

$$T_j(v_k) = \cos\left(j \, \arccos(v_k)
ight) = \cos\left(rac{jt}{2^{k+1}}
ight)$$

Examples:

$$T_0(v_k) = 1$$

$$T_1(v_k) = v_k$$

$$T_2(v_k) = 2v_k^2 - 1$$

$$T_3(v_k) = 4v_k^3 - 3v_k$$

The exponential B-spline scheme generating EP_{Γ}^{2n+2}

Proposition 1 [L. R. and A. Viscardi]

$$s_{2n+2,k}(z) = 2\prod_{j=0}^{n} a_{j,k}(z)$$

with
$$a_{j,k}(z) = 1 + \frac{(1-z)^2}{2(T_j(v_k) + 1)z}, \quad j = 0, \dots, n$$

reference Key observation: $\lambda_j(v_k) = 2T_j(v_k)$

Proposition 2

The subdivision scheme with symbols $\{s_{2n+2,k}(z), k \ge 0\}$ is convergent, generates EP_{Γ}^{2n+2} and has the same regularity as the stationary polynomial B-spline scheme with symbol

$$\frac{(1+z)^{2n+2}}{2^{2n+1}z^{n+1}}$$

The interpolating scheme reproducing EP_{Γ}^{2n+2}

Theorem 1 [L. R. and A. Viscardi]

$$m_{2n+2,k}(z) = 2a_{0,k}(z) + 2(2a_{0,k}(z) - 1) \sum_{i=1}^{n} c_i(v_k) \prod_{j=0}^{i-1} \left(a_{j,k}(-z) a_{j,k}(z) \right)$$

with

$$a_{j,k}(z) = 1 + rac{(1-z)^2}{2(T_j(v_k)+1)z}, \quad j = 0, \dots, n-1$$

and

$$c_i(v_k) = rac{2^i}{T_i(v_k)+1} \prod_{\ell=0}^{i-1} rac{\left(T_\ell(v_k)-T_{\ell+1}(v_k)
ight)\left(T_\ell(v_k)+1
ight)}{\left(T_i(v_k)-T_{i+1}(v_k)
ight)-\left(T_\ell(v_k)-T_{\ell+1}(v_k)
ight)}$$

The closed form derived in Theorem 1 includes the following special cases:

- *n* = 1
 - C. Beccari, G. Casciola, L. R., A non-stationary uniform tension controlled interpolating 4-point scheme reproducing conics, *CAGD*, 24(1), 1-9, (2007)
- *n* = 2
 - L. R., From approximating subdivision schemes for exponential splines to high-performance interpolating algorithms, *JCAM*, 224, 383-396, (2009)
- *n* = 3
- C. Conti, L. R., Affine combination of B-spline subdivision masks and its non-stationary counterparts, *BIT*, 50, 269-299, (2010)

Proposition 3

The subdivision scheme with symbols $\{m_{2n+2,k}(z), k \ge 0\}$ is interpolatory, convergent, reproduces EP_{Γ}^{2n+2} and has the same regularity as the Dubuc-Deslauriers stationary scheme with symbol

$$\frac{(1+z)^{2n+2}}{2^{2n+1} z^{n+1}} \sum_{s=0}^{n} \binom{n+s}{s} (-1)^{s} \frac{(1-z)^{2s}}{4^{s} z^{s}}$$

Chebyshev polynomials and level-dependent subdivision schemes

Practical implications •••••••

Benefits of the closed form of $m_{2n+2,k}(z)$

- The computational cost for computing $m_{2n+2,k}(z)$ is remarkably reduced.
- We can increase *n* as desired, in order to enlarge the reproduced space and increase the approximation order of the scheme.
 - C. Conti, L. R., J. Yoon, Approximation order and approximate sum rules in subdivision, J. Approx. Theory, 207, 380-401, (2016)
- We can exactly represent Lissajous curves and star-shaped curves with an arbitrary number of convexities, at the desired precision.

In the following we will see application examples of $\{m_{2n+2,k}(z), k \ge 0\}$ with $4 \le n \le 10$.

Goal

New results

Practical implications

Lissajous curves (n = 4)

$$\begin{aligned} x(u) &= \cos(\nu_2 u) \\ y(u) &= \cos\left(\nu_1 u - \frac{\tau \pi}{\nu_2}\right) \\ u &\in [0, 2\pi] \end{aligned}$$

$$\square n = \max\{\nu_1, \nu_2\}$$

Figure: Lissajous curves obtained after 6 subdivision steps of the interpolatory scheme $\{m_{10,k}(z), k \ge 0\}$ using $t = \sigma = \frac{2\pi}{N-1}$ and starting from the given polygons.

New results

Practical implications

Lissajous curves (n = 5)

$$\begin{aligned} x(u) &= \cos(\nu_2 u) \\ y(u) &= \cos\left(\nu_1 u - \frac{\tau \pi}{\nu_2}\right) \\ u &\in [0, 2\pi] \end{aligned}$$

 $\square n = \max\{\nu_1, \nu_2\}$

Figure: Lissajous curves obtained after 6 subdivision steps of the interpolatory scheme $\{m_{12,k}(z), k \ge 0\}$ using $t = \sigma = \frac{2\pi}{N-1}$ and starting from the given polygons.

New results 00000 Practical implications

Star-shaped curves

Figure: Examples of real objects with 6-pointed star-shaped profiles.

Chebyshev polynomials and level-dependent subdivision schemes

		Preliminaries & state-of-the-art	: New results 00000	Practical implications 0000000000
	$ \begin{array}{rcl} x(u) &= \\ y(u) &= \\ z(u) &= \\ u \in [0, 2] \end{array} $	$(3 + \sin(\nu u)) \cos(u)$ $(3 + \sin(\nu u)) \sin(u)$ $-\frac{1}{4} (3 + \sin(\nu u))^2$ $2\pi]$)) with ν = ☞ n =	= 3, 4, 5 = 2 <i>v</i>
0 -2 -4 -4	ν=3, N	=19	ν =4, N=25	$\nu = 5, N = 31$

Figure: Spatial star-shaped curves obtained after 6 subdivision steps of the interpolatory schemes $\{m_{2n+2,k}(z), k \ge 0\}$ with $t = \sigma = \frac{2\pi}{N-1}$, starting from the given polygons.

Summary of the main contributions of our work:

- having discovered a link between level-dependent subdivision schemes and Chebyshev polynomials;
- having found a closed form expression for the subdivision symbols of exponential B-splines generating integer powers of exponentials;
- having found a closed form expression for the subdivision symbols of the interpolating schemes that reproduce integer powers of exponentials and are asymptotically similar to Dubuc-Deslauriers stationary schemes.

New results

Practical implications

Announcement

SMART 2025

4th international conference on Subdivision, Geometric and Algebraic Methods, Isogeometric Analysis and Refinability in ITaly

Santa Trada di Cannitello (Reggio Calabria), Sep 28 – Oct 2, 2025

Confirmed invited speakers: Keenan Crane, Annie Cuyt, Stefano De Marchi, Carlotta Giannelli,

Marjeta Knez, Deepesh Toshniwal, Jungho Yoon

www.smart2025.unirc.it