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UNivAriate bInary leVel-dEpendent

(NAIVE*)
subdivision schemes

*(this is only an easy-to-remember abbreviation!)
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Univariate binary subdivision schemes: the functional case

Let P0 = {P0(i) ∈ R : i ∈ Z} be an initial sequence of points attached to
the integer grid. For k ≥ 0, the subdivision scheme computes the sequence

Pk+1 := SaPk

via the subdivision operator

Sa : ℓ(Z) → ℓ(Z), (SaPk) (i) =
∑
j∈Z

a(i − 2j) Pk(j), i ∈ Z,

where ℓ(Z) is the space of sequences indexed by Z.
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Univariate binary subdivision schemes: the functional case

Let P0 = {P0(i) ∈ R : i ∈ Z} be an initial sequence of points attached to
the integer grid. For k ≥ 0, the subdivision scheme computes the sequence

Pk+1 := SaPk

via the subdivision operator

Sa : ℓ(Z) → ℓ(Z), (SaPk) (i) =
∑
j∈Z

a(i − 2j) Pk(j), i ∈ Z,

where ℓ(Z) is the space of sequences indexed by Z.

☞ Binary subdivision: at each iteration the information is “doubled”

☞ a = {a(i) ∈ R : i ∈ Z} subdivision mask
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Univariate binary level-dependent (“NAIVE”) subdivision

Subdivision with a different set of coefficients at each level:

{Sak , k ≥ 0} ⇔


Input: P0

For k = 0, 1, · · ·
Pk+1 := Sak Pk level-dependent rules

Convergence (Definition)

The scheme {Sak , k ≥ 0} applied to the initial data P0 ∈ ℓ(Z) is called
convergent if there exists a function fP0 ∈ C (R), fP0 ̸= 0, such that

lim
k→∞

sup
i∈Z

| fP0(2
−k i)− Pk(i) | = 0.

☞ We assume the scheme to be non-singular, i.e., to generate the zero
function if and only if P0 is the zero sequence.

Regularity (Definition)

The scheme {Sak , k ≥ 0} is Cm−convergent if fP0 ∈ Cm(R).
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How to prove convergence and other useful properties?

We can make use of standard mathematical tools of signal processing:
the z-trasform or subdivision symbol associated with the subdivision mask.

Subdivision symbol (Definition)

The subdivision symbol of a subdivision mask a = {a(i), i ∈ Z} is the Lau-
rent polynomial

a(z) =
∑
i∈Z

a(i) z i , z ∈ C \ {0}.

The symbol a(z) fully identifies a “stationary” subdivision scheme.

In the level-dependent case, the sequence of symbols {ak(z), k ≥ 0}
associated with the sequence of masks {ak , k ≥ 0} identifies the
subdivision scheme.

Many of the properties of a subdivision scheme can be easily checked
using algebraic conditions on the subdivision symbols.
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Generation versus Reproduction of a function space V

Generation/Reproduction (Definition)

▶ A convergent subdivision scheme {Sak , k ≥ 0} generates V if for any
f ∈ V there exists P0 s.t. limk→∞ SakSak−1

. . . Sa0P0 = f .

▶ A convergent subdivision scheme {Sak , k ≥ 0} reproduces V (with
respect to t0) if for any f ∈ V and P0 = {f

(
t0(i)

)
, i ∈ Z} we have

limk→∞ SakSak−1
. . . Sa0P0 = f .

☞ The approximation order of a subdivision scheme is strictly related to
its reproduction properties.
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Exponential-Polynomial generation versus reproduction

Exponential-polynomials (Definition)

Let n ∈ N and let Γ = {(θ1, ξ1), . . . , (θn, ξn)} with θi ∈ R ∪ iR, θi ̸= θj if
i ̸= j , and ξi ∈ N, i = 1, · · · , n. The function space

EPΓ = span{ x ri eθix , ri = 0, · · · , ξi − 1, i = 1, · · · , n }

is a very general space of exponential polynomials.

For each i = 1, · · · , n, ξi denotes the multiplicity of θi ∈ R ∪ iR.

☞ Generation and reproduction of EPΓ for any subdivision scheme
{Sak , k ≥ 0} can be easily checked by using simple algebraic conditions on
the subdivision symbols

ak(z) =
∑
i∈Z

ak(i) z
i , z ∈ C \ {0}, k ≥ 0.
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Algebraic conditions for exponential-polynomial gen./rep.

Theorem [C. Conti and L. R. 2011]

Let n ∈ N, Γ = {(θ1, ξ1), · · · , (θn, ξn)}, zℓ,k = e
−θℓ
2k+1 , ℓ = 1, · · · , n, k ≥ 0.

A non-singular, convergent subdivision scheme {Sak , k ≥ 0}

▶ generates EPΓ iff
d r ak(−zℓ,k)

dz r
= 0, r = 0, ..., ξℓ − 1 (∗)

▶ reproduces EPΓ with respect to tk = { i+τ
2k

, i ∈ Z} iff, besides (∗),
ak(zℓ,k) = 2 (zℓ,k)

τ and

d r ak(zℓ,k)

dz r
= 2 (zℓ,k)

τ−r
r−1∏
q=0

(τ − q), r = 1, ..., ξℓ − 1.

C. Conti, L. R., Algebraic conditions on non-stationary subdivision symbols for exponential
polynomial reproduction, J. Comput. Appl. Math., 236(4), 543-556, (2011)
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The EPΓ space with integer powers of exponentials

Let n ∈ N, t ∈ [0, π/n) ∪ iR+ and Γ = {(θ1, ξ1), · · · , (θ2n+1, ξ2n+1)} with

θ1 = 0, θ2ℓ = i ℓt, θ2ℓ+1 = −i ℓt, ℓ = 1, ..., n
ξ1 = 2, ξ2ℓ = 1, ξ2ℓ+1 = 1, ℓ = 1, ..., n.

Then
EP2n+2

Γ = span
{
1, x , {e iℓtx , e−iℓtx}nℓ=1

}
and, in particular,

EP2n+2
Γ =


span

{
1, x , {cos(ℓσx), sin(ℓσx)}nℓ=1

}
if t = σ, σ ∈ (0, π/n)

span
{
1, x , x2, . . . , x2n+1

}
if t = 0

span
{
1, x , {cosh(ℓσx), sinh(ℓσx)}nℓ=1

}
if t = iσ, σ ∈ R+

Goal:
express the symbols of the minimum support approximating scheme gener-
ating EP2n+2

Γ and the minimum support interpolating scheme reproducing
EP2n+2

Γ in closed form.
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State of the art

The exponential B-spline scheme generating EP2n+2
Γ is known to be defined

by the k-level symbol

s2n+2,k(z) =
(1 + z)2

2z
z−n

n∏
j=1

z2 + λj(vk)z + 1

λj(vk) + 2

with

vk = cos
( t

2k+1

)
and λj(vk) = det





2vk 1 0 0 · · · 0
2 2vk 1 0 · · · 0

0 1 2vk 1 · · ·
...

0 0 1 2vk
. . . 0

...
...

...
. . .

. . . 1
0 0 0 · · · 1 2vk


j×j


☞ The larger n the higher the computational complexity!

L. R., From approximating subdivision schemes for exponential splines to high-performance
interpolating algorithms, J. Comput. Appl. Math., 224, 383-396, (2009)
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From the B-spline scheme generating EP2n+2
Γ to the

interpolating one reproducing EP2n+2
Γ

Input: s2n+2,k(z), k-level symbol of the approximating scheme

generating EP2n+2
Γ

• Construct the (2n + 1)× (2n + 1) matrix Hk, leading principal

submatrix of a Hurwitz type matrix associated to s2n+2,k(z)

• Determine (Hk)
−1

• Set ck := (Hk)
−1(n + 1, :)

• Construct the interpolatory symbol m2n+2,k(z) := s2n+2,k(z) ck(z)

Output: m2n+2,k(z), k-level symbol of the interpolating scheme

reproducing EP2n+2
Γ

C. Conti, L. Gemignani, L. R., From approximating to interpolatory non-stationary
subdivision schemes with the same generation properties, Adv. Comput. Math., 35,
217-241, (2011)

Chebyshev polynomials and level-dependent subdivision schemes Lucia Romani 14
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Example (n = 3)

s8,k(z) =
(1 + z)2

2z
z−n

3∏
j=1

z2 + λj(vk)z + 1

λj(vk) + 2

with

vk = cos
( t

2k+1

)
and

λ1(vk) = 2vk

λ2(vk) = det

([
2vk 1
2 2vk

])
= 4v2k − 2

λ3(vk) = det

2vk 1 0
2 2vk 1
0 1 2vk

 = 8v3k − 6vk

Chebyshev polynomials and level-dependent subdivision schemes Lucia Romani 15
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Shortly: s8,k(z) = z−4

(
s0(vk) + s1(vk) z + s2(vk) z

2 + · · · s8(vk)z8
)

Hk =



s1(vk) s3(vk) s5(vk) s7(vk) 0 0 0
s0(vk) s2(vk) s4(vk) s6(vk) s8(vk) 0 0

0 s1(vk) s3(vk) s5(vk) s7(vk) 0 0
0 s0(vk) s2(vk) s4(vk) s6(vk) s8(vk) 0
0 0 s1(vk) s3(vk) s5(vk) s7(vk) 0
0 0 s0(vk) s2(vk) s4(vk) s6(vk) s8(vk)
0 0 0 s1(vk) s3(vk) s5(vk) s7(vk)


7×7

This matrix must be inverted in order to determine ck := (Hk)
−1(4, :) and

construct the interpolatory symbol

m8,k(z) = s8,k(z) ck(z)

reproducing EP8
Γ = span

{
1, x , e itx , e−itx , e2itx , e−2itx , e3itx , e−3itx

}
.

Chebyshev polynomials and level-dependent subdivision schemes Lucia Romani 16
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Towards a closed form expression of m2n+2,k(z)

Chebyshev polynomials and level-dependent subdivision schemes Lucia Romani 17
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Chebyshev polynomials of the first kind

vk = cos
( t

2k+1

)
The degree-j Chebyshev polynomial in vk is

Tj(vk) = cos
(
j arccos(vk)

)
= cos

(
jt

2k+1

)
Examples:

T0(vk) = 1

T1(vk) = vk

T2(vk) = 2v2k − 1

T3(vk) = 4v3k − 3vk

Chebyshev polynomials and level-dependent subdivision schemes Lucia Romani 18
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The exponential B-spline scheme generating EP2n+2
Γ

Proposition 1 [L. R. and A. Viscardi]

s2n+2,k(z) = 2
n∏

j=0

aj ,k(z)

with aj ,k(z) = 1 +
(1− z)2

2
(
Tj

(
vk
)
+ 1

)
z
, j = 0, . . . , n

☞ Key observation: λj(vk) = 2Tj(vk)

Proposition 2

The subdivision scheme with symbols {s2n+2,k(z), k ≥ 0} is convergent,
generates EP2n+2

Γ and has the same regularity as the stationary polynomial
B-spline scheme with symbol

(1 + z)2n+2

22n+1 zn+1
.

Chebyshev polynomials and level-dependent subdivision schemes Lucia Romani 19
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The interpolating scheme reproducing EP2n+2
Γ

Theorem 1 [L. R. and A. Viscardi]

m2n+2,k(z) = 2a0,k(z) + 2
(
2a0,k(z)− 1

) n∑
i=1

ci (vk)
i−1∏
j=0

(
aj ,k(−z) aj ,k(z)

)

with aj ,k(z) = 1 +
(1− z)2

2
(
Tj

(
vk
)
+ 1

)
z
, j = 0, . . . , n − 1

and

ci (vk) =
2i

Ti (vk) + 1

i−1∏
ℓ=0

(
Tℓ(vk)− Tℓ+1(vk)

) (
Tℓ(vk) + 1

)
(
Ti (vk)− Ti+1(vk)

)
−

(
Tℓ(vk)− Tℓ+1(vk)

)
Chebyshev polynomials and level-dependent subdivision schemes Lucia Romani 20
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The closed form derived in Theorem 1 includes the following special cases:
• n = 1

C. Beccari, G. Casciola, L. R., A non-stationary uniform tension controlled interpolating
4-point scheme reproducing conics, CAGD, 24(1), 1-9, (2007)

• n = 2

L. R., From approximating subdivision schemes for exponential splines to high-performance
interpolating algorithms, JCAM, 224, 383-396, (2009)

• n = 3

C. Conti, L. R., Affine combination of B-spline subdivision masks and its non-stationary
counterparts, BIT, 50, 269-299, (2010)

Proposition 3

The subdivision scheme with symbols {m2n+2,k(z), k ≥ 0} is interpolatory,
convergent, reproduces EP2n+2

Γ and has the same regularity as the Dubuc-
Deslauriers stationary scheme with symbol

(1 + z)2n+2

22n+1 zn+1

n∑
s=0

(
n + s

s

)
(−1)s

(1− z)2s

4szs
.
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Benefits of the closed form of m2n+2,k(z)

The computational cost for computing m2n+2,k(z) is remarkably
reduced.

We can increase n as desired, in order to enlarge the reproduced space
and increase the approximation order of the scheme.

C. Conti, L. R., J. Yoon, Approximation order and approximate sum rules in
subdivision, J. Approx. Theory, 207, 380-401, (2016)

We can exactly represent Lissajous curves and star-shaped curves with
an arbitrary number of convexities, at the desired precision.

In the following we will see application examples of {m2n+2,k(z), k ≥ 0}
with 4 ≤ n ≤ 10.
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Lissajous curves (n = 4)
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Figure: Lissajous curves obtained after 6 subdivision
steps of the interpolatory scheme {m10,k(z), k ≥ 0}
using t = σ = 2π

N−1
and starting from the given polygons.

x(u) = cos(ν2u)

y(u) = cos

(
ν1u − τπ

ν2

)
u ∈ [0, 2π]

☞ n = max{ν1, ν2}
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Lissajous curves (n = 5)
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Figure: Lissajous curves obtained after 6 subdivision
steps of the interpolatory scheme {m12,k(z), k ≥ 0}
using t = σ = 2π

N−1
and starting from the given polygons.

x(u) = cos(ν2u)

y(u) = cos

(
ν1u − τπ

ν2

)
u ∈ [0, 2π]

☞ n = max{ν1, ν2}
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Star-shaped curves

Figure: Examples of real objects with 6-pointed star-shaped profiles.
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Figure: Planar star-shaped curves obtained after
6 subdivision steps of the interpolatory schemes
{m2n+2,k(z), k ≥ 0} with t = σ = 2π

N−1 ,
starting from the given polygons.

x(u) =
(
3 + sin(νu)

)
cos(u)

y(u) =
(
3 + sin(νu)

)
sin(u)

u ∈ [0, 2π]

with ν = 3, 4, 5, 6

☞ n = ν + 1
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x(u) =
(
3 + sin(νu)

)
cos(u)

y(u) =
(
3 + sin(νu)

)
sin(u)

z(u) = −1

4

(
3 + sin(νu)

)2
u ∈ [0, 2π]

with ν = 3, 4, 5

☞ n = 2ν

Figure: Spatial star-shaped curves obtained after 6 subdivision steps of the
interpolatory schemes {m2n+2,k(z), k ≥ 0} with t = σ = 2π

N−1 ,
starting from the given polygons.
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Conclusions

Summary of the main contributions of our work:

having discovered a link between level-dependent subdivision schemes
and Chebyshev polynomials;

having found a closed form expression for the subdivision symbols of
exponential B-splines generating integer powers of exponentials;

having found a closed form expression for the subdivision symbols of
the interpolating schemes that reproduce integer powers of
exponentials and are asymptotically similar to Dubuc-Deslauriers
stationary schemes.
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Announcement

SMART 2025 
4th international conference on 

Subdivision, Geometric and Algebraic Methods, 
Isogeometric Analysis and Refinability in ITaly 

 

Santa Trada di Cannitello (Reggio Calabria), Sep 28 – Oct 2, 2025 
 
 

 

SAVE THE DATE !!! 
Confirmed invited speakers: Keenan Crane, Annie Cuyt, Stefano De Marchi, Carlotta Giannelli,  

                                   Marjeta Knez, Deepesh Toshniwal, Jungho Yoon          www.smart2025.unirc.it 
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