LEARNING APPROACHES FOR SOLVING MONOTONE INCLUSION PROBLEMS IN IMAGING

Audrey $\operatorname{Repetti}^{\dagger\star}$

Joint work(s) with Younes BELKOUCHI[‡], Jean-Christophe PESQUET[‡], Hugues TALBOT[‡], Matthieu TERRIS[•], Yves WIAUX[†]

> [†] Heriot-Watt University – * Maxwell Institute (Edinburgh, UK) [‡] CentraleSupélec – * INRIA Saclay (France)

SIGMA workshop 2024, CIRM, Luminy, France – 31st October 2024

◆□▶ ◆□▶ ★□▶ ★□▶ ★□▶ ★□▶

Introduction ●0000	MMOs 000	PnP with FNE NNs	PnP with Monotone NNs	Conclusion 00
A. Repetti <i>et al.</i>		* Learning Monotone Operators for Co	mputational Imaging \star	1/38

Motivation

- * Forward model: $y = \mathcal{D}(\Phi \overline{x})$
 - $\overline{x} \in \mathbb{R}^N$: original image
 - $\Phi \colon \mathbb{R}^N \to \mathbb{R}^M$: linear measurement operator
 - $\mathcal{D} \colon \mathbb{R}^M \to \mathbb{R}^M$: degradation model (e.g., additive Gaussian noise)

OBJECTIVE: Find an estimate \widehat{x} of \overline{x} from y

* EXAMPLE: Image restoration (e.g., deblurring)

Observation

Estimate

Introduction	MMOs	PnP with FNE NNs	PnP with Monotone NNs	Conclusion
●0000	000		00000000000000	00
A. REPETTI et al.		\star Learning Monotone Operators for Co	mputational Imaging \star	1/38

Motivation

- * Forward model: $y = \mathcal{D}(\Phi \overline{x})$
 - $\overline{x} \in \mathbb{R}^N$: original image
 - $\Phi \colon \mathbb{R}^N \to \mathbb{R}^M$: linear measurement operator
 - $\mathcal{D} \colon \mathbb{R}^M \to \mathbb{R}^M$: degradation model (e.g., additive Gaussian noise)

OBJECTIVE: Find an estimate \widehat{x} of \overline{x} from y

* EXAMPLE: Medical imaging (CT)

Estimate

Introduction	MMOs	PnP with FNE NNs	PnP with Monotone NNs	Conclusion
•0000	000		00000000000000	00
A. Repetti <i>et al.</i>		\star Learning Monotone Operators for Com	mputational Imaging \star	1/38

Motivation

- * Forward model: $y = \mathcal{D}(\Phi \overline{x})$
 - $\overline{x} \in \mathbb{R}^N$: original image
 - $\Phi \colon \mathbb{R}^N \to \mathbb{R}^M$: linear measurement operator
 - $\mathcal{D} \colon \mathbb{R}^M \to \mathbb{R}^M$: degradation model (e.g., additive Gaussian noise)

OBJECTIVE: Find an estimate \widehat{x} of \overline{x} from y

* **EXAMPLE**: Radio-interferometric imaging in astronomy

Introduction	MMOs	PnP with FNE NNs	PnP with Monotone NNs	Conclusion
0000	000		00000000000000	00
A. REPETTI et al.		* Learning Monotone Operators for Co	mputational Imaging \star	2/38

Minimization problem

- * VARIATIONAL APPROACH: Find $\hat{x} \in \operatorname{Argmin}_{x \in C} h_y(x) + \lambda g(x)$
 - h_y data fidelity term
 - $\lambda > 0$ and g regularization term (e.g., TV or ℓ_1 in a wavelet domain)
 - $C \subset \mathbb{R}^N$ feasibility set

EXAMPLES:

$$\star$$
 Gaussian noise: $h_y(x) = rac{1}{2} \| \Phi x - y \|^2$

* Poisson noise:
$$h_y(x) = \sum_{m=1}^{M} ([\Phi x]_m - \mathsf{z}_m \log([\Phi x]_m))$$

* Energy-bounded noise:
$$h_y(x) = \iota_{\mathcal{B}_2(y,\epsilon)}(\Phi x) = \begin{cases} 0 & \text{if } \Phi x \in \mathcal{B}_2(y,\epsilon) \\ +\infty & \text{otherwise.} \end{cases}$$

Introduction 0000	MMOs 000	PnP with FNE NNs	PnP with Monotone NNs	Conclusion 00
A. REPETTI et al.		\star Learning Monotone Operators for Ce	omputational Imaging \star	2/38

Minimization problem

- * VARIATIONAL APPROACH: Find $\hat{x} \in \underset{x \in C}{\operatorname{Argmin}} h_y(x) + \lambda g(x)$
 - h_y data fidelity term
 - $\lambda > 0$ and g regularization term (e.g., TV or ℓ_1 in a wavelet domain)
 - $C \subset \mathbb{R}^N$ feasibility set

EXAMPLES OF REGULARISATION TERMS

* Admissibility constraints:
$$g(x) = \sum_{l=1}^{L} \iota_{C_l}(x)$$

 \star ℓ_1 norm (analysis approach) $g(x) = \sum_{l=1}^{L} |[\Psi x]_l| = ||\Psi x||_1$

Signal x

Frame decomposition operator

Frame coefficients

Introduction	MMOs 000	PnP with FNE NNs	PnP with Monotone NNs	Conclusion 00
A. Repetti et al.	* Li	EARNING MONOTONE OPERATORS FO	r Computational Imaging *	3/38
Iterative opt	imisation (p	roximal) methods	;	
OBJECTIVE: Fin	$d \ \widehat{x} \in \operatorname*{Argmin}_{x \in \mathbb{R}^N} h$	$(x)+g(x)$ with $h\in \Gamma_0(x)$	(\mathbb{R}^N) and $g\in \Gamma_0(\mathbb{R}^N)$	
\rightsquigarrow Can be solved	using proximal a	algorithms		
Proximity o	operator of g at $x \in$	\mathbb{R}^N defined as $\mathrm{prox}_g(x)$	$= \underset{y \in \mathbb{R}^N}{\operatorname{Argmin}} g(y) + \frac{1}{2} \ y - x\ ^2$	
OBJECTIVE: Ge	enerate a sequenc	e $(x_k)_{k\in\mathbb{N}}$ converging to	\widehat{x} with $(\forall k \in \mathbb{N})$ $x_{k+1} = T(x_{k+1})$	(z_k)

EXAMPLES: Recursive operator $T: \mathbb{R}^N \to \mathbb{R}^N$ reminiscent from algorithms such as forward-backward, Douglas-Rachford, forward-backward-forward (Tseng), ADMM, Primal-dual (Chambolle-Pock, Condat-Vũ), etc.

Introduction 00000	MMOs 000	PnP with FNE NNs	PnP with Monotone NNs	Conclusion 00
A. REPETTI <i>et al.</i>		\star Learning Monotone Operators for C	omputational Imaging *	4/38

Plug-and-play methods

IN A NUTSHELL: Replace some operator(s) in the iterations with a learned version

EXAMPLE: We want to minimize $\frac{1}{2} ||\Phi x - y||^2 + g(x)$ FB iterations: $(\forall k \in \mathbb{N}) \quad x_{k+1} = \operatorname{prox}_{\gamma g} \left(x_k - \gamma \Phi^*(\Phi x_k - y) \right)$

• Approximated model: Replace Φ and Φ^* (unknown) by learned approximations $\widetilde{\Phi}$ and $\widetilde{\Phi}^*$:

$$(\forall k \in \mathbb{N}) \quad x_{k+1} = \operatorname{prox}_{\gamma g} \left(x_k - \gamma \widetilde{\Phi}^* (\widetilde{\Phi} x_k - y) \right)$$

 More powerful regularizer/denoiser: Replace prox_{γg} by hand-crafted (e.g., BM3D) or learned (e.g., neural network) regularizer/denoiser J: ℝ^N → ℝ^N:

$$(\forall k \in \mathbb{N}) \quad x_{k+1} = J\left(x_k - \gamma \Phi^*(\Phi x_k - y)\right)$$

Introduction	MMOs	PnP with FNE NNs	PnP with Monotone NNs	Conclusion
000●0	000		00000000000000	00
A. Repetti et al.		* Learning Monotone Operators for Co	mputational Imaging *	4/38

Plug-and-play methods

IN A NUTSHELL: Replace some operator(s) in the iterations with a learned version

- Approximated model: $(\forall k \in \mathbb{N})$ $x_{k+1} = \operatorname{prox}_{\gamma g} \left(x_k \gamma \widetilde{\Phi}^* (\widetilde{\Phi} x_k y) \right)$ More powerful regularizer/denoiser: $(\forall k \in \mathbb{N})$ $x_{k+1} = J \left(x_k \gamma \Phi^* (\Phi x_k y) \right)$

How to build reliable PnP methods?

PNP ITERATIONS: Can we use any scheme?

NN ARCHITECTURES: Can we use any denoising NN?

Theoretical understanding?

ASYMPTOTIC CONVERGENCE: Does $(x_k)_{k \in \mathbb{N}}$ still converge?

CHARACTERISATION OF THE LIMIT POINT: If $(x_k)_{k \in \mathbb{N}}$ converges to \hat{x} , what is \hat{x} ?

See, e.g., [Hasannasab et al., 2020], [Terris et al., 2020], [Cohen et al., 2021], [Pesquet et al., 2021], [Hurault et al., 2021], [De Bortorli et al., 2021], ...

A. Repetti et al. * Learning Monotone Operators for Computational Imaging * 5/38	Introduction 0000●	MMOs 000	PnP with FNE NNs	PnP with Monotone NNs	Conclusion 00
	A. REPETTI et al.	*	Learning Monotone Operators for Co	omputational Imaging \star	5/38

Objectives and outline

- Adopt a **variational/monotone inclusion formulation** instead of *traditional* variational formulation
 - ~ Use Maximally Monotone Operator (MMO) theory
- Learn monotone operators and resolvent of MMOs to generalize gradients and proximity operators, respectively
 - \rightsquigarrow Use a regularization during training to penalize the Lipschitz constant of the network
- Use these approaches to design **convergent** plug-and-play algorithms
 - \rightsquigarrow Learn denoiser to replace *resolvent operator* (\approx proximity operator)
 - \rightsquigarrow Learn forward model to replace *monotone operator* (pprox gradient operator)

Introduction 00000	MMOs ●○○	PnP with FNE NNs	PnP with Monotone NNs	Conclusion 00
A. REPETTI et al.	* I	EARNING MONOTONE OPERATORS FOR C	computational Imaging \star	6/38

MMO theory

Introduction 00000	MMOs ○●○	PnP with FNE NNs	PnP with Monotone NNs	Conclusion 00
A. REPETTI et al.	* I	\star Learning Monotone Operators for Computational Imaging \star		7/38
Maximally I	Monotone O	perators (MMOs)		

Let $A\colon \mathcal{H}\to 2^{\mathcal{H}}$ be a multivariate operator

• A is monotone if, for every $(x_1, x_2) \in \mathcal{H}^2$, $u_1 \in Ax_1$ and $u_2 \in Ax_2$,

 $\langle x_1 - x_2 \mid u_1 - u_2 \rangle \ge 0$

• A is maximally monotone if and only if, for every $(x_1, u_1) \in \mathcal{H}^2$, $u_1 \in Ax_1 \quad \Leftrightarrow \quad (\forall x_2 \in \mathcal{H})(\forall u_2 \in Ax_2)\langle x_1 - x_2 \mid u_1 - u_2 \rangle \ge 0$

i.e., if there is no monotone operator that properly contains it

• The resolvent of A is $J_A = (\mathrm{Id} + A)^{-1}$

PARTICULAR CASE: Let $g \in \Gamma_0(\mathbb{R}^N)$.

- ∂g is an MMO
- $\operatorname{prox}_g = J_{\partial g}$

Introduction 00000	MMOs oo●	PnP with FNE NNs	PnP with Monotone NNs	Conclusion 00
A. Repetti et al.		\star Learning Monotone Operators for Co	mputational Imaging \star	8/38

Monotone inclusion problem

VARIATIONAL INCLUSION PROBLEM: Let $h \in \Gamma_0(\mathbb{R}^N)$ and $g \in \Gamma_0(\mathbb{R}^N)$ $0 \in \partial h(\hat{x}) + \partial g(\hat{x}) \Rightarrow \hat{x} \in \underset{x \in \mathbb{R}^N}{\operatorname{Argmin}} h(x) + g(x)$

Introduction 00000	MMOs oo●	PnP with FNE NNs	PnP with Monotone NNs	Conclusion 00
A. REPETTI et al.	*	LEARNING MONOTONE OPERATORS FOR CO	omputational Imaging \star	8/38

Monotone inclusion problem

VARIATIONAL INCLUSION PROBLEM: Let $h \in \Gamma_0(\mathbb{R}^N)$ and $g \in \Gamma_0(\mathbb{R}^N)$

$$0 \in \partial h(\widehat{x}) + \partial g(\widehat{x}) \Rightarrow \widehat{x} \in \underset{x \in \mathbb{R}^{N}}{\operatorname{Argmin}} h(x) + g(x)$$

MONOTONE INCLUSION PROBLEM:

 $0 \in \partial h(\widehat{x}) + \partial g(\widehat{x})$ is a particular case of $0 \in \partial h(\widehat{x}) + A(\widehat{x})$, where A is an MMO

IDEA: Learn A instead of g

- \star More flexible as ∂g is a particular case of MMOs
- * Most of proximal algorithms are derived from MMO theory (e.g., FB, primal-dual Condat-Vũ, Douglas-Rachford, etc.)

EXAMPLE: FB algorithm: $(\forall k \in \mathbb{N}) x_{k+1} = J_{\gamma_k A} (x_k - \gamma_k \nabla h(x_k))$

Introduction	MMOs	PnP with FNE NNs	PnP with Monotone NNs	Conclusion
00000	000	•000000000000000000000000000000000000		00
A. REPETTI et al.	\star Learning Monotone Operators for Computational Imaging \star			9/38

Learning firmly nonexpansive NNs

• J.-C. Pesquet, A.R., M. Terris, and Y. Wiaux. Learning maximally monotone operators for image recovery, *SIAM Journal on Imaging Sciences*, 14(3):1206-1237, August 2021.

Introduction 00000	MMOs 000	PnP with FNE NNs	PnP with Monotone NNs	Conclusion 00
A. REPETTI et al.	*	\star Learning Monotone Operators for Computational Imaging \star		

PnP for monotone inclusion problems: Learning a resolvent

- * Same principle as PnP from proximal algorithms:
 - 1 Choose any algorithm whose proof is based on MMO theory
 - **2** Replace the resolvent operator J_A by a learned denoiser \overline{J}

Introduction 00000	MMOs 000	PnP with FNE NNs ○●○○○○○○○○○○○	PnP with Monotone NNs	Conclusion 00
A. REPETTI et al.	* Learnin	IG MONOTONE OPERATORS FOR	Computational Imaging \star	10/38
PnP for monot	one inclusior	ı problems: Lea	arning a resolvent	
 ★ Same principle ● Choose ar ❷ Replace th 	as PnP from prox ny algorithm whose ne resolvent opera	imal algorithms: e proof is based on N tor J_A by a learned d	1MO theory lenoiser \widetilde{J}	

Let $(x_k)_{k\in\mathbb{N}}$ be a sequence generated by a PnP algorithm. • If \widetilde{J} is firmly nonexpansive, then $(x_k)_{k\in\mathbb{N}}$ converges to \widehat{x} .

- J is μ -Lipschitz , with $\mu > 0$, if $(\forall (x_1, x_2) \in \mathcal{H}^2) \quad \|J(x_1) J(x_2)\| \leqslant \mu \|x_1 x_2\|$
- If J is 1-Lipschitz, then it is nonexpansive
- J is firmly nonexpansive if $(\forall (x_1, x_2) \in \mathcal{H}^2) \quad \|J(x_1) J(x_2)\|^2 \leqslant \langle x_1 x_2 \mid J(x_1) J(x_2) \rangle$

Introduction 00000	MMOs 000	PnP with FNE NNs ○●○○○○○○○○○○	PnP with Monotone NNs	Conclusion 00	
A. Repetti et al.	* L1	EARNING MONOTONE OPERATORS FOR O	Computational Imaging \star	10/38	
PnP for mon	otone inclus	sion problems: Lea	rning a resolvent		
★ Same princip	le as PnP from	proximal algorithms:			
1 Choose any algorithm whose proof is based on MMO theory 2 Replace the resolvent operator J_A by a learned denoiser \tilde{J}					
Let $(x_k)_{k\in\mathbb{N}}$ be a	sequence gener	ated by a PnP algorithm.			
• If \widetilde{J} is firmly n	onexpansive, the	In $(x_k)_{k\in\mathbb{N}}$ converges to	$\widehat{x}.$		
• For $\widetilde{J} = \frac{\operatorname{Id} + Q}{2}$,	with Q nonexpa	ansive, $\exists A \text{ MMO s.t. } 0 \in$	$\partial h(\widehat{x}) + A(\widehat{x})$.		

Let $A: \mathcal{H} \to 2^{\mathcal{H}}$. The following are equivalent

- A is an MMO.
- J_A is firmly nonexpansive

•
$$J_A \colon \mathcal{H} \to \mathcal{H} \colon x \mapsto \frac{x+Q(x)}{2}$$
, for $Q \colon \mathcal{H} \to \mathcal{H}$ nonexpansive.

Then $A = 2(\operatorname{Id} + Q)^{-1} - \operatorname{Id}$

Introduction 00000	MMOs 000	PnP with FNE NNs oo●oooooooooo	PnP with Monotone NNs	Conclusion 00
A. REPETTI et al.	\star Learning Monotone Operators for Computational Imaging \star			11/38

Learn MMOs?

Use NNs to approximate the resolvent of an MMO

 $\rightsquigarrow~$ Choose $\widetilde{J}=\frac{\operatorname{Id}+Q}{2}$, where Q is nonexpansive

- ✓ Convergence of PnP (any iteration scheme whose convergence proof is based on MMOs)
- Characterization of the limit point as a solution to a monotone inclusion problem
- ✓ Approximation theorem ensuring (stationary) MMOs can be approximated by feedforward NNs
- \checkmark Training method to ensure NN Q to be nonexpansive

Introduction 00000	MMOs 000	PnP with FNE NNs	PnP with Monotone NNs	Conclusion 00
A. REPETTI et al.		\star Learning Monotone Operators for Comp	utational Imaging \star	12/38

* NETWORK: $\widetilde{J}_{\theta} \colon \mathbb{R}^N \to \mathbb{R}^N$ with learnable parameters $\theta \in \mathbb{R}^P$ (e.g., convolutional kernels)

* TRAINING SET: Pairs of groundtruth/observations $(\overline{x}_{\ell}, y_{\ell})_{1 \leq \ell \leq L}$, with $(\overline{x}_{\ell}, y_{\ell}) \in (\mathbb{R}^N)^2$

Example of denoising network: $(\forall \ell \in \{1, \dots, L\})$ $y_{\ell} = \overline{x}_{\ell} + \sigma w_{\ell}$

where $\sigma>0$ and w_ℓ realization of standard normal i.i.d. random variable

* TRAINING MINIMIZATION PROBLEM:

$$\underset{\theta \in \mathbb{R}^P}{\operatorname{minimize}} \quad \sum_{\ell=1}^{L} \|\widetilde{J}_{\theta}(y_{\ell}) - \overline{x}_{\ell}\|^2 \quad \text{s.t.} \quad Q_{\theta} = 2\widetilde{J}_{\theta} - \operatorname{Id} \quad \text{is nonexpansive}$$

Introduction	MMOs	PnP with FNE NNs	PnP with Monotone NNs	Conclusion
00000	000		00000000000000	00
A. Repetti et al.		\star Learning Monotone Operators for Co	DMPUTATIONAL IMAGING \star	12/38

- * NETWORK: $\widetilde{J}_{\theta} \colon \mathbb{R}^N \to \mathbb{R}^N$ with learnable parameters $\theta \in \mathbb{R}^P$ (e.g., convolutional kernels)
- * TRAINING SET: Pairs of groundtruth/observations $(\overline{x}_{\ell}, y_{\ell})_{1 \leq \ell \leq L}$, with $(\overline{x}_{\ell}, y_{\ell}) \in (\mathbb{R}^N)^2$

Example of denoising network: $(\forall \ell \in \{1, \dots, L\})$ $y_{\ell} = \overline{x}_{\ell} + \sigma w_{\ell}$

where $\sigma > 0$ and w_ℓ realization of standard normal i.i.d. random variable

* TRAINING MINIMIZATION PROBLEM:

$$\underset{\theta \in \mathbb{R}^{P}}{\text{minimize}} \quad \sum_{\ell=1}^{L} \|\widetilde{J}_{\theta}(y_{\ell}) - \overline{x}_{\ell}\|^{2} \quad \text{s.t.} \quad (\forall x \in \mathbb{R}^{N}) \|\nabla Q_{\theta}(x)\| \leqslant 1$$

Introduction	MMOs	PnP with FNE NNs	PnP with Monotone NNs	Conclusion
00000	000		00000000000000	00
A. Repetti et al.		\star Learning Monotone Operators for Com	Mputational Imaging \star	12/38

- * NETWORK: $\widetilde{J}_{\theta} \colon \mathbb{R}^N \to \mathbb{R}^N$ with learnable parameters $\theta \in \mathbb{R}^P$ (e.g., convolutional kernels)
- * TRAINING SET: Pairs of groundtruth/observations $(\overline{x}_{\ell}, y_{\ell})_{1 \leqslant \ell \leqslant L}$, with $(\overline{x}_{\ell}, y_{\ell}) \in (\mathbb{R}^N)^2$

Example of denoising network: $(\forall \ell \in \{1, \dots, L\})$ $y_{\ell} = \overline{x}_{\ell} + \sigma w_{\ell}$

where $\sigma>0$ and w_ℓ realization of standard normal i.i.d. random variable

* TRAINING MINIMIZATION PROBLEM:

$$\underset{\theta \in \mathbb{R}^{P}}{\operatorname{minimize}} \quad \sum_{\ell=1}^{L} \|\widetilde{J}_{\theta}(y_{\ell}) - \overline{x}_{\ell}\|^{2} \quad \text{s.t.} \quad (\forall x \in \mathbb{R}^{N}) \| \boldsymbol{\nabla} Q_{\theta}(x) \| \leqslant 1$$

In practice one cannot enforce
$$\|\nabla Q_{\theta}(x)\| \leq 1$$
 for all $x \in \mathcal{H}$.

Introduction 00000	MMOs 000	PnP with FNE NNs	PnP with Monotone NNs	Conclusion 00
A. Repetti et al.		\star Learning Monotone Operators for Comp	utational Imaging \star	12/38

- * NETWORK: $\widetilde{J}_{\theta} \colon \mathbb{R}^N \to \mathbb{R}^N$ with learnable parameters $\theta \in \mathbb{R}^P$ (e.g., convolutional kernels)
- * TRAINING SET: Pairs of groundtruth/observations $(\overline{x}_{\ell}, y_{\ell})_{1 \leq \ell \leq L}$, with $(\overline{x}_{\ell}, y_{\ell}) \in (\mathbb{R}^N)^2$

Example of denoising network: $(\forall \ell \in \{1, \dots, L\})$ $y_{\ell} = \overline{x}_{\ell} + \sigma w_{\ell}$

where $\sigma>0$ and w_ℓ realization of standard normal i.i.d. random variable

* TRAINING MINIMIZATION PROBLEM:

$$\underset{\theta \in \mathbb{R}^{P}}{\operatorname{minimize}} \quad \sum_{\ell=1}^{L} \|\widetilde{J}_{\theta}(y_{\ell}) - \overline{x}_{\ell}\|^{2} + \lambda \max\left\{ \|\nabla Q_{\theta}(\widetilde{x}_{\ell})\|^{2}, 1 - \varepsilon \right\}$$

where $\lambda > 0$, $\varepsilon > 0$, and $(\forall \ell \in \{1, \ldots, L\})$ $\widetilde{x}_{\ell} = \varrho_{\ell} \overline{x}_{\ell} + (1 - \varrho_{\ell}) \widetilde{J}_{\theta}(y_{\ell})$, with ϱ_{ℓ} realization of a r.v. with uniform distribution on [0, 1]

- * $\|\nabla Q_{\theta}(\widetilde{x}_{\ell})\|^2$ computed using Jacobian-vector product in Pytorch and auto-differentiation, within power iterations
- $\star\,$ Can be solved using, e.g., SGD or Adam...

Introduction 00000	MMOs 000	PnP with FNE NNs	PnP with Monotone NNs	Conclusion 00
A. REPETTI et al.	* I	Learning Monotone Operators for Co	mputational Imaging \star	13/38
Jacobian regu	larisation:	Training results		
• Choose $\widetilde{J}_{\theta} = \frac{1}{2}$	$\frac{d+Q_{ heta}}{2}$ to be a	denoising DnCNN		

- ImageNet test set converted to grayscale images in $\left[0,255\right]$
- Choose $\lambda > 0$ to ensure Q_{θ} to be 1-Lipschitz

ILLUSTRATION: Fix $\sigma=3$ and vary λ

λ	0	5×10^{-7}	1×10^{-6}	5×10^{-6}	1×10^{-5}	4×10^{-5}	1.6×10^{-4}	3.2×10^{-4}
$\max_{x} \ \boldsymbol{\nabla} Q_{\theta}(x) \ ^2$	31.36	1.65	1.349	1.028	0.9799	0.9449	0.9440	0.9401

 $\succ \ \lambda \geqslant 10^{-5} \Rightarrow \max_x \| \nabla Q_\theta(x) \|^2 \leqslant 1 \Rightarrow \widetilde{J}_\theta \text{ firmly nonexpansive}$

Introduction 00000	MMOs 000	PnP with FNE NNs 0000●00000000	PnP with Monotone NNs	Conclusion 00
A. REPETTI et al.	13/38			
Jacobian reg	ularisation:	Training results		
• Choose $\widetilde{J}_{ heta}$ =	$=\frac{\mathrm{Id}+Q_{\theta}}{2}$ to be a	denoising DnCNN		

- ImageNet test set converted to grayscale images in $\left[0, 255\right]$
- Choose $\lambda > 0$ to ensure Q_{θ} to be 1-Lipschitz

ILLUSTRATION: Vary $\sigma \in \{5, 10, 30\}$, choose $\lambda > 0$ such that $\max_x \|\nabla Q_\theta(x)\|^2 \leq 1$

σ	λ	$\max_{x} \left\ \nabla Q_{\theta}(x) \right\ $	PSNR (dB)
5	1 e - 03	0.9926	36.65
10	5 e - 03	0.9905	32.12
20	$1\mathrm{e}-02$	0.9598	28.40

Introduction 00000	MMOs 000	PnP with FNE NNs	PnP with Monotone NNs	Conclusion 00
A. REPETTI et al.	* Learning Monotone Operators for Computational Imaging *			
	Case of the Drime	I dual DaD algorithm for mo	notono inclusion avablama	
	Case of the Prima with	i firmly nonexpansive denois	notone inclusion problems ing network	
	Application to Co	mputational Optical Imaging	g with a Photonic lantern	

• C. S. Garcia, M. Larcheveque, S. O'Sullivan, M. Van Waerebeke, R. R. Thomson, A.R., and J.-C. Pesquet. A primal-dual data-driven method for computational optical imaging with a photonic lantern, *PNAS Nexus*, 3(4):164, April 2024

Introduction 00000	MMOs 000	PnP with FNE NNs	PnP with Monotone NNs	Conclusion 00
A. REPETTI et al.	* 1	Learning Monotone Operators for C	omputational Imaging \star	15/38
Monotone i	nclusion pro	blem: Morozov forn	nulation	
• VARIATIO	NAL MINIMIZATI	ON PROBLEM: Find $\widehat{x} \in \mathbf{A}$	$\operatorname{rgmin}_{x \in \mathbb{R}^N} \ \iota_{\mathcal{B}_2(y,\varepsilon)}(\Phi x) + g(x)$	
 Can be rew 	ritten as a VARI	ATIONAL INCLUSION PROE	LEM:	
	Find \widehat{x}	$\in \mathbb{R}^N$ such that $0 \in \Phi^* N_\mathcal{B}$	$\partial_{2(y,\varepsilon)}(\Phi\widehat{x}) + \frac{\partial g(\widehat{x})}{\partial g(\widehat{x})}$	
where N_S (denotes the norm	al cone of some set S defin	led as	
	$N_S(x) =$	$\begin{cases} \{u \in \mathcal{H} \mid (\forall y \in S) \langle u \mid y \in S \rangle \\ \emptyset, \end{cases}$	$ -x\rangle \leqslant 0\}, ext{if } x \in S,$ otherwise.	

Introduction 00000	MMOs 000	PnP with FNE NNs	PnP with Monotone NNs	Conclusion 00
A. Repetti et al.	* L	EARNING MONOTONE OPERATORS FOR	Computational Imaging *	15/38
Monotone ir	clusion prob	olem: Morozov form	mulation	
• VARIATION	VAL MINIMIZATIO	DN PROBLEM: Find $\widehat{x} \in A$	$\underset{x \in \mathbb{R}^{N}}{\operatorname{Argmin}} \iota_{\mathcal{B}_{2}(y,\varepsilon)}(\Phi x) \ + \ \underline{g(x)}$	
• Can be rewr	ritten as a VARIA	ATIONAL INCLUSION PRO	BLEM:	
	Find $\widehat{x} \in$	\mathbb{R}^N such that $0\in \Phi^*N_N$	$_{\mathcal{B}_2(y,arepsilon)}(\Phi\widehat{x}) + \frac{\partial g(\widehat{x})}{\partial g(\widehat{x})}$	
where N_S d	enotes the norma	al cone of some set S defi	ned as	
	$N_S(x) = \langle$	$\begin{cases} \{u \in \mathcal{H} \mid (\forall y \in S) \langle u \mid y \\ \varnothing, \end{cases}$	$ -x\rangle\leqslant 0\}, \text{if } x\in S,$ otherwise.	
• Particular ca	ase of MONOTON	NE INCLUSION PROBLEM:		
Fi	nd $\widehat{x} \in \mathbb{R}^N$ such	that $0\in \Phi^*N_{\mathcal{B}_2(y,arepsilon)}(\Phi\widehat{x})$	$+ \frac{A(\widehat{x})}{2}$, where A is an MMC)

IDEA: • Use primal-dual algorithm [Chambolle, Pock, 2011][Condat, 2013][Vũ, 2013]

• Approximate the resolvent J_A of A by a FNE NN \widetilde{J}_{θ}

Introduction 00000	MMOs 000	PnP with FNE NNs	PnP with Monotone NNs	Conclusion 00
A. REPETTI et al.		\star Learning Monotone Operators for Comput	ational Imaging \star	16/38

Proposed primal-dual PnP method

Let
$$(x_0, v_0) \in \mathbb{R}^N \times \mathbb{R}^M$$
 and $(\tau, \sigma) \in]0, +\infty[^2$
for $k = 0, 1, \dots$ do
 $x_{k+1} = \tilde{J}_{\theta} (x_k - \tau \Phi^* u_k)$
 $\tilde{u}_k = u_k + \sigma \Phi(2x_{k+1} - x_k)$
 $u_{k+1} = \tilde{u}_k - \sigma \operatorname{prox}_{\sigma^{-1}h} (\sigma^{-1} \tilde{u}_k)$
end for

CONVERGENCE:

Assume that $\tau \sigma \|\Phi\|^2 < 1$, and that $\widetilde{J_{\theta}} = \frac{\mathrm{Id} + Q_{\theta}}{2}$, where Q_{θ} is a 1-Lipschitz NN. Let \widetilde{A} be the MMO equal to $\widetilde{J_{\theta}}^{-1} - \mathrm{Id}$.

Assume that there exists at least a solution \widehat{x} to the inclusion $0 \in \Phi^* N_{\mathcal{B}_2(y,\varepsilon)}(\Phi \widehat{x}) + \tau^{-1} \widetilde{A}(\widehat{x})$

Then $(x_k)_{k \in \mathbb{N}}$ converges to a such a solution.

Introduction 00000	MMOs 000	PnP with FNE NNs	PnP with Monotone NNs	Conclusion 00
A. REPETTI et al.		* Learning Monotone Operators for Compu	tational Imaging \star	17/38

Application to computational optical imaging with a photonic lantern

OBJECTIVE:

- Optical fibres used for imaging in-vivo biological processes, e.g., microendoscopy
- Fibre must be stable to movements (e.g., bending)
- Produce accurate imaging (with high spatial resolution)
- Highly compressed observed data

Experimental setup used to acquire the data during the photonic lantern imaging experiments

Introduction 00000	MMOs 000	PnP with FNE NNs	PnP with Monotone NNs	Conclusion 00		
A. REPETTI et al.	*	LEARNING MONOTONE OPERATORS FOR COL	mputational Imaging \star	18/38		
Imaging inver	se probler	ຖ [Choudhury <i>et al.</i> , 2020]				
INVERSE PROBLEM	$a: z = \Phi \overline{x} + $	w				
$\star \ \overline{x} \in \mathbb{R}^N$ is the	original unknov	wn image ($N = 377 \times 377$)				
* $\Phi \in \mathbb{R}^{M \times N}$ is the measurement matrix • Each row of Φ contains a pattern generated by the fiber • $11 \times 11 = 121$ patterns can be generated $\rightsquigarrow M/N \approx 0.085\%$ + 9 possible rotations of 40° (= 1089 patterns) $\rightsquigarrow M/N \approx 0.77\%$						
$\star~w$ is a realization $\star~w$	on of a random	n noise assumed to have bounde	:d energy			
$OBJECTIVE: \ Find$	an estimate \hat{a}	\widehat{c} of \overline{x} from z	Orientation 1 Orientation 2	Orientation 3		
		Examples of patt	TERNS:			

Introduction 00000	MMOs 000	PnP wi	th FNE NNs 00000€00	PnP with Monotone NNs		Conclusion 00
A. REPETTI et al.		* Learning Monote	ONE OPERATORS FOR O	Computational Imagin	NG *	19/38
Experimenta	l COIL d	ata results:	cross 121	patterns		
Gr	ound truth	$\varepsilon = 2$ (20.84, 0.331)	$\varepsilon = 2.5$ (24.37, 0.366)	$\varepsilon = 3$ $(25.16, 0.470)$	$\varepsilon = 3.5$ (25.69, 0.402)	
SARA-COIL	ARA-COIL		(22 45 0 410)			
	T					

Introduction 00000	MMOs 000	PnP v 0000	vith FNE NNs 0000000●0	PnP with Monotone NNs		Conclusion 00
A. REPETTI et al.		* Learning Monor	TONE OPERATORS FOR	Computational Imagi	NG *	20/38
Experiment	al COIL d	ata results	: cross 108	9 patterns		
G	Fround truth	$\varepsilon = 6$	$\varepsilon = 17$		$\varepsilon = 9$	
SARA-COIL	(17.90, 0.409)		(27.23, 0.470)	(28.68, 0.504)		

Introduction MMOs 00000 000	PnP wi	ith FNE NNs	PnP with Monotone NNs		Conclusion 00
A. REPETTI <i>et al.</i>	* Learning Monot	ONE OPERATORS FOR (Computational Imagin	NG *	21/38
Experimental COIL	data results:	dots 1089) patterns		
Ground truth	$\varepsilon = 12$	$\varepsilon = 13$	$\varepsilon = 14$	$\varepsilon = 15$	
SARA-COIL					

Introduction	MMOs	PnP with FNE NNs	PnP with Monotone NNs	Conclusion
00000	000		●0000000000000000	00
A. REPETTI et al.	\star Learning Monotone Operators for Computational Imaging \star			22/38

Learning monotone operators

• Younes Belkouchi, J.-C. Pesquet, A.R., and H. Talbot. Learning true monotone operators, Arxiv preprint arXiv:2404.00390, 2024.

Introduction 00000	MMOs 000	PnP with FNE NNs	PnP with Monotone NNs ○●○○○○○○○○○○○○	Conclusion 00
A. REPETTI et al.	\star Learning Monotone Operators for Computational Imaging \star			23/38

PnP for monotone inclusion problems: Learning a monotone operator

- * Same principle as PnP from proximal algorithms:
 - **1** Choose any algorithm whose proof is based on MMO theory
 - 2 Replace the monotone (continuous) operator A by a learned approximation \widetilde{A}
| Introduction
00000 | MMOs
000 | PnP with FNE NNs | PnP with Monotone NNs
00000000000000 | Conclusion
00 |
|-----------------------|-------------|-----------------------------------|---|------------------|
| A. REPETTI et al. | * | Learning Monotone Operators for C | omputational Imaging \star | 23/38 |
| | | | | |

PnP for monotone inclusion problems: Learning a monotone operator

- * Same principle as PnP from proximal algorithms:
 - Choose any algorithm whose proof is based on MMO theory
 - **2** Replace the monotone (continuous) operator A by a learned approximation \widetilde{A}

- ✓ Convergence of PnP (any iteration scheme whose convergence proof is based on MMOs)
- Characterization of the limit point as a solution to a monotone inclusion problem
- ✓ Training method to ensure NN \widetilde{A} to be monotone

Introduction 00000	MMOs 000	PnP with FNE NNs	PnP with Monotone NNs 00000000000000000000000000000000000	Conclusion 00
A. REPETTI et al.	* 1	LEARNING MONOTONE OPERATORS FOR C	Computational Imaging \star	24/38

Link between monotone operators and Jacobian properties

Let $A : \mathbb{R}^N \to \mathbb{R}^N$ be Fréchet differentiable, and $\beta \ge 0$ Then we have: $A \text{ is } \beta\text{-strongly monotone} \Leftrightarrow (\forall x \in \mathbb{R}^N) \nabla^s A(x) \succcurlyeq \beta \text{Id} \Leftrightarrow (\forall x \in \mathbb{R}^N) \nabla^s R_A(x) \succcurlyeq (2\beta - 1) \text{Id}$

- A is β -strongly monotone, with $\beta \ge 0$, if $(\forall (x_1, u_2) \in \operatorname{Graph} A)(\forall (x_2, u_2) \in \operatorname{Graph} A)$ $\langle u_1 - u_2 \mid x_1 - x_2 \rangle \ge \beta \|x_1 - x_2\|^2$
- If $\beta = 0$, then A is monotone
- The reflected operator of A if given by $R_A = 2A \text{Id}$

• The symmetric part of the Jacobian of A if given by $\nabla^s A = \frac{\nabla A + (\nabla A)^\top}{2}$

Introduction 00000	MMOs 000	PnP with FNE NNs	PnP with Monotone NNs	Conclusion 00
A. REPETTI et al.	* I	LEARNING MONOTONE OPERATORS FOR O	Computational Imaging \star	24/38

Link between monotone operators and Jacobian properties

Let $A : \mathbb{R}^N \to \mathbb{R}^N$ be Fréchet differentiable, and $\beta \ge 0$ Then we have: $A \text{ is } \beta\text{-strongly monotone} \Leftrightarrow (\forall x \in \mathbb{R}^N) \quad \nabla^s A(x) \succcurlyeq \beta \text{ Id } \Leftrightarrow (\forall x \in \mathbb{R}^N) \quad \nabla^s R_A(x) \succcurlyeq (2\beta - 1) \text{ Id }$

Particular case: A is monotone iff for every $x \in \mathbb{R}^N$

•
$$\lambda_{\min} \Big(\nabla^s A(x) \Big) \ge 0$$
 with $\nabla^s A = \frac{\nabla A + (\nabla A)^\top}{2}$

•
$$\lambda_{\min} \left(\nabla^s R_A(x) \right) \ge -1$$
 with $R_A = 2A - \text{Id}$

Introduction 00000	MMOs 000	PnP with FNE NNs	PnP with Monotone NNs	Conclusion 00
A. REPETTI et al.	* L	EARNING MONOTONE OPERATORS FOR C	omputational Imaging \star	25/38

* NETWORK: $\widetilde{A}_{\theta} : \mathbb{R}^{N} \to \mathbb{R}^{N}$ with learnable parameters $\theta \in \mathbb{R}^{P}$ (e.g., convolutional kernels) * TRAINING SET: Pairs of groundtruth/observations $(\overline{x}_{\ell}, y_{\ell})_{1 \leq \ell \leq L}$, with $(\overline{x}_{\ell}, y_{\ell}) \in (\mathbb{R}^{N})^{2}$ * TRAINING MINIMIZATION PROBLEM:

$$\min_{\theta \in \mathbb{R}^P} \ \sum_{\ell=1}^L \|\widetilde{A}_\theta(y_\ell) - \overline{x}_\ell\|^2 \quad \text{s.t.} \quad \widetilde{A}_\theta \ \text{ is monotone}$$

Introduction	MMOs	PnP with FNE NNs	PnP with Monotone NNs	Conclusion
00000	000		000●0000000000	00
A. REPETTI et al.	* Lea	RNING MONOTONE OPERATORS FOR CO	omputational Imaging \star	25/38

* NETWORK: $\widetilde{A}_{\theta} : \mathbb{R}^{N} \to \mathbb{R}^{N}$ with learnable parameters $\theta \in \mathbb{R}^{P}$ (e.g., convolutional kernels) * TRAINING SET: Pairs of groundtruth/observations $(\overline{x}_{\ell}, y_{\ell})_{1 \leq \ell \leq L}$, with $(\overline{x}_{\ell}, y_{\ell}) \in (\mathbb{R}^{N})^{2}$ * TRAINING MINIMIZATION PROBLEM:

$$\underset{\theta \in \mathbb{R}^P}{\text{minimize}} \quad \sum_{\ell=1}^{L} \|\widetilde{A}_{\theta}(y_{\ell}) - \overline{x}_{\ell}\|^2 \quad \text{s.t.} \quad (\forall x \in \mathbb{R}^N) \ \lambda_{\min} \left(\nabla^s R_{\widetilde{A}_{\theta}}(x) \right) \geqslant -1$$

Introduction	MMOs	PnP with FNE NNs	PnP with Monotone NNs	Conclusion
00000	000		000●0000000000	00
A. REPETTI et al.	×	LEARNING MONOTONE OPERATORS FOR CO	Mputational Imaging \star	25/38

* NETWORK: $\widetilde{A}_{\theta} \colon \mathbb{R}^{N} \to \mathbb{R}^{N}$ with learnable parameters $\theta \in \mathbb{R}^{P}$ (e.g., convolutional kernels) * TRAINING SET: Pairs of groundtruth/observations $(\overline{x}_{\ell}, y_{\ell})_{1 \leq \ell \leq L}$, with $(\overline{x}_{\ell}, y_{\ell}) \in (\mathbb{R}^{N})^{2}$

 \star Training minimization problem:

$$\min_{\theta \in \mathbb{R}^P} \sum_{\ell=1}^{L} \|\widetilde{A}_{\theta}(y_{\ell}) - \overline{x}_{\ell}\|^2 \quad \text{s.t.} \quad (\forall x \in \mathbb{R}^N) \ \lambda_{\min} \left(\nabla^s R_{\widetilde{A}_{\theta}}(x) \right) \ge -1$$

In practice one cannot enforce $\lambda_{\min} \left(\nabla^s R_{\widetilde{A}_{\theta}}(x) \right) \ge -1$ for all $x \in \mathbb{R}^N$ How to compute $\lambda_{\min} \left(\nabla^s R_{\widetilde{A}_{\theta}}(x) \right)$?

Introduction	MMOs	PnP with FNE NNs	PnP with Monotone NNs	Conclusion
00000	000		000●0000000000	00
A. REPETTI et al.	* Lea	RNING MONOTONE OPERATORS FOR CO	omputational Imaging \star	25/38

* NETWORK: $\widetilde{A}_{\theta} \colon \mathbb{R}^{N} \to \mathbb{R}^{N}$ with learnable parameters $\theta \in \mathbb{R}^{P}$ (e.g., convolutional kernels) * TRAINING SET: Pairs of groundtruth/observations $(\overline{x}_{\ell}, y_{\ell})_{1 \leq \ell \leq L}$, with $(\overline{x}_{\ell}, y_{\ell}) \in (\mathbb{R}^{N})^{2}$

* TRAINING MINIMIZATION PROBLEM:

$$\begin{split} & \underset{\theta \in \mathbb{R}^P}{\text{minimize}} \quad \sum_{\ell=1}^{L} \|\widetilde{A}_{\theta}(y_{\ell}) - \overline{x}_{\ell}\|^2 - \zeta \min\left\{1 + \lambda_{\min}\left(\boldsymbol{\nabla}^s R_{\widetilde{A}_{\theta}}(\overline{x}_{\ell})\right), \varepsilon\right\} \\ & \text{where } \zeta > 0, \, \varepsilon > 0 \end{split}$$

$$\star \quad \lambda_{\min} \big(\boldsymbol{\nabla}^s R_{\widetilde{A}_{\theta}}(\overline{x}_{\ell}) \big) = \varrho(\overline{x}_{\ell}) - \overline{\lambda}_{\max} \Big(\varrho(\overline{x}_{\ell}) \mathrm{Id} - \boldsymbol{\nabla}^s R_A(\overline{x}_{\ell}) \Big) \quad \text{with } \varrho(x) \geqslant \overline{\lambda}_{\max} \big(\boldsymbol{\nabla}^s R_A(\overline{x}_{\ell}) \big)$$

- Use Jacobian-vector product in Pytorch and auto-differentiation, combined with two power iterations
- $\star\,$ Can be solved using, e.g., SGD or Adam...

Introduction 00000	MMOs 000	PnP with FNE NNs	PnP with Monotone NNs	Conclusion 00
A. REPETTI et al.		* Learning Monotone Operators for Comp	PUTATIONAL IMAGING \star	26/38

Case of the Forward-Backward-Forward PnP algorithm for monotone inclusion problems

Application to learning non-linear model approximations

Introduction 00000	MMOs 000	PnP with FNE NNs	PnP with Monotone NNs	Conclusion 00
A. REPETTI et al.	*	Learning Monotone Operators for Co	Smputational Imaging \star	27/38

Monotone inclusion problem

MONOTONE INCLUSION PROBLEM: We want to

Find
$$\widehat{x} \in \mathbb{R}^N$$
 such that $0 \in A(\widehat{x}) + \partial h(\widehat{x}) + N_C(\widehat{x})$

where

- C is a closed convex set of \mathbb{R}^N
- $h: \mathbb{R}^N \to \mathbb{R}$ proper lsc convex and continuously differentiable on $C \subset \operatorname{int}(\operatorname{dom} h)$
- A monotone continuous operator defined on C

Introduction 00000	MMOs 000	PnP with FNE NNs	PnP with Monotone NNs	Conclusion 00
A. REPETTI et al.		* Learning Monotone Operators for Com	mputational Imaging \star	27/38

Monotone inclusion problem

MONOTONE INCLUSION PROBLEM: We want to

Find
$$\widehat{x} \in \mathbb{R}^N$$
 such that $0 \in A(\widehat{x}) + \partial h(\widehat{x}) + N_C(\widehat{x})$

where

- C is a closed convex set of \mathbb{R}^N
- $h \colon \mathbb{R}^N \to \mathbb{R}$ proper lsc convex and continuously differentiable on $C \subset \operatorname{int}(\operatorname{dom} h)$
- A monotone continuous operator defined on C
- IDEA: Approximate operator A by a monotone continuous NN $\widetilde{A}_{ heta}$
 - Use a PnP version of the forward-backward-forward iterations [Tseng, 2000] combined with an Armijo's rule (to avoid cocoercive assumption on \tilde{A}_{θ})

NOTE: Most standard NNs are continuous, especially those that use non-expansive activation functions ~ So we "only" need to take care of the *monotony* property during training

Introduction 00000	MMOs 000	PnP with FNE NNs	PnP with Monotone NNs	Conclusion 00
A. Repetti et al.	* Lea	RNING MONOTONE OPERATORS FOR C	omputational Imaging \star	28/38

Proposed FBF PnP method

Let
$$x_0 \in C$$
 and $(\gamma_k)_{k \in \mathbb{N}}$ be a sequence in $]0, +\infty[$
for $k = 0, 1, ...$ do
 $a_k = \widetilde{A}_{\theta}(x_k) + \nabla h(x_k)$
 $z_k = \operatorname{proj}_C(x_k - \gamma_k a_k)$
 $x_{k+1} = \operatorname{proj}_C(z_k - \gamma_k(\widetilde{A}_{\theta}(z_k) + \nabla h(z_k) - a_k)))$
end for

 $\begin{array}{l} \text{Armijo-Goldstein rule:} \ \text{Let} \ \sigma \in \]0, +\infty[\ \text{and} \ (\beta, \theta) \in \]0, 1[^2, \ \text{and} \ \text{define} \ (\gamma_k = \sigma \beta^{i_k})_{k \in \mathbb{N}} \ \text{where} \\ (\forall k \in \mathbb{N}) \quad i_k = \inf \left\{ i \in \mathbb{N} \ \left| \ \gamma = \sigma \beta^i, \quad \gamma \| \widetilde{A}_{\theta}(z_k) + \nabla h(z_k) - \widetilde{A}_{\theta}(x_k) - \nabla h(x_k) \| \leqslant \theta \| z_k - x_k \| \right\}. \end{array} \right.$

CONVERGENCE: Let \widetilde{A}_{θ} be a monotone continuous NN. Assume that there exists at least a solution \widehat{x} to the inclusion $0 \in \widetilde{A}_{\theta}(\widehat{x}) + \partial h(\widehat{x}) + N_C(\widehat{x})$ Then $(x_k)_{k \in \mathbb{N}}$ converges to a such a solution $\widehat{x} \in \operatorname{dom} \widetilde{A}_{\theta}$.

Introduction 00000	MMOs 000	PnP with FNE NNs	PnP with Monotone NNs	Conclusion 00
A. Repetti et al.		\star Learning Monotone Operators for Co	mputational Imaging \star	29/38

Learning non-linear model approximations: Application to semi-blind non-linear imaging

Non-linear inverse problem: $y = F(\overline{x}) + w$

• $\overline{x} \in \mathbb{R}^N$ original unknown image and $w \in \mathbb{R}^M$ realisation of an additive i.i.d. white Gaussian random variable with zero-mean and standard deviation $\sigma \ge 0$

•
$$F: \mathbb{R}^N \to \mathbb{R}^N: x \mapsto \frac{1}{J} \sum_{j=1}^J S_{\delta}(L_j x)$$

- $S_{\delta} \colon \mathbb{R}^N \to \mathbb{R}^N \colon x = (x_i)_{1 \leq i \leq n} \mapsto (\psi_{\delta}(x_i))_{1 \leq i \leq n}$ is the Hyperbolic tangent saturation function defined as $\psi_{\delta} \colon \mathbb{R} \to \mathbb{R} \colon x \mapsto \frac{\tanh(\delta(2x-1))+1}{2}$, with $\delta > 0$
- $L_j \in \mathbb{R}^{N \times N}$ are convolution operators, with motion kernels of size 9×9 (J = 1 or J = 5)

Introduction	MMOs	PnP with FNE NNs	PnP with Monotone NNs	Conclusion
00000	000		00000000000000	00
A. Repetti et al.	\star Learning Monotone Operators for Computational Imaging \star			30/38

Remark on the considered non-linear model

NON-LINEAR INVERSE PROBLEM: $y = F(\overline{x}) + w$ with $F \colon \mathbb{R}^N \to \mathbb{R}^N \colon x \mapsto \frac{1}{J} \sum_{j=1}^J S_{\delta}(L_j x)$

- There is no guarantee that F is monotone!
- In practice F is difficult to handle, so approximations are considered:

• Affine approximation
$$F^{\text{aff}}(x) = \frac{\delta}{J} \sum_{j=1}^{J} L_j x + \frac{1-\delta}{2}$$
 (not necessarily monotone)
• Linear approximation $F^{\text{lin}}(x) = \frac{\delta}{J} \sum_{j=1}^{J} L_j x$ (not necessarily monotone)

 \leadsto Often $\delta=1$ as unknown

 \rightsquigarrow Both approximations necessitate to know $(L_j)_{1\leqslant j\leqslant J}$

Introduction 00000	MMOs 000	PnP with FNE NNs	PnP with Monotone NNs	Conclusion 00
A. Repetti et al.	\star Learning Monotone Operators for Computational Imaging \star			30/38

Remark on the considered non-linear model

NON-LINEAR INVERSE PROBLEM: $y = F(\overline{x}) + w$ with $F \colon \mathbb{R}^N \to \mathbb{R}^N \colon x \mapsto \frac{1}{J} \sum_{j=1}^J S_{\delta}(L_j x)$

- There is no guarantee that F is monotone!
- In practice F is difficult to handle, so approximations are considered:

• Affine approximation
$$F^{\text{aff}}(x) = \frac{\delta}{J} \sum_{j=1}^{J} L_j x + \frac{1-\delta}{2}$$
 (not necessarily monotone)
• Linear approximation $F^{\text{lin}}(x) = \frac{\delta}{J} \sum_{j=1}^{J} L_j x$ (not necessarily monotone)

- If δ and/or $(L_j)_{1\leqslant j\leqslant J}$ are unknown, one can learn approximations:
 - Linear approximation F_{θ}^{lin} of F (not necessarily monotone)
 - Monotone approximation F_{θ}^{mon} of F (NN with monotone constraint)
 - Non-monotone approximation F_{θ}^{nom} of F (NN without monotone constraint)

Introduction 00000	MMOs 000	PnP with FNE NNs	PnP with Monotone NNs	Conclusion 00
A. Repetti et al.	\star Learning Monotone Operators for Computational Imaging \star			

Simulation setting and compared methods

We consider two monotone inclusion problems.

DIRECT REGULARISED APPROACH: find $\hat{x} \in \mathbb{R}^N$ such that $0 \in F_{\theta}(\hat{x}) - y + \varrho \nabla r(\hat{x}) + N_C(\hat{x})$ with $\varrho > 0$, and $r \colon \mathbb{R}^N \to \mathbb{R}$ is a smoothed TV regularisation

 \rightsquigarrow Use FBF-PnP algorithm with $h(x) = -\langle y \mid x \rangle$ and $\widetilde{A}_{\theta} = F_{\theta} + \varrho \nabla r$

REMARK: F_{θ} should be monotone to ensure convergence of the FBF-PnP iterations

REMARK 2: F_{θ} could be either F_{θ}^{lin} , F_{θ}^{mon} , or F_{θ}^{nom}

Introduction 00000	MMOs 000	PnP with FNE NNs	PnP with Monotone NNs	Conclusion 00
A. Repetti et al.	\star Learning Monotone Operators for Computational Imaging \star			31/38

Simulation setting and compared methods

We consider two monotone inclusion problems.

DIRECT REGULARISED APPROACH: find $\hat{x} \in \mathbb{R}^N$ such that $0 \in F_{\theta}(\hat{x}) - y + \rho \nabla r(\hat{x}) + N_C(\hat{x})$ with $\rho > 0$, and $r \colon \mathbb{R}^N \to \mathbb{R}$ is a smoothed TV regularisation

 \rightsquigarrow Use FBF-PnP algorithm with $h(x) = -\langle y \mid x \rangle$ and $\widetilde{A}_{\theta} = F_{\theta} + \varrho \nabla r$

REMARK: F_{θ} should be monotone to ensure convergence of the FBF-PnP iterations

LEAST-SQUARES REGULARIZED APPROACH:

find $\widehat{x} \in \mathbb{R}^N$ such that $0 \in F_{\theta}^{{\ln}^\top} F_{\theta}(\widehat{x}) - F_{\theta}^{{\ln}^\top} y + \varrho \nabla r(\widehat{x}) + N_C(\widehat{x})$

with $\rho > 0$, and $r \colon \mathbb{R}^N \to \mathbb{R}$ is a smoothed TV regularisation

 $\rightsquigarrow \text{Use FBF-PnP algorithm with } h(x) = - \left\langle F_{\theta}^{\text{lin}\,\top} y \mid x \right\rangle \text{ and } \widetilde{A}_{\theta} = F_{\theta}^{\text{lin}\,\top} F_{\theta} + \varrho \nabla r$

REMARK: $F_{\theta}^{\mathsf{lin}^{\top}}F_{\theta}$ should be monotone to ensure convergence of the FBF-PnP iterations

Introduction 00000	MM ooc	Os	PnP with I 0000000	ENE NNs	PnP with Monotone NNs	Conclusion 00
A. REPETTI et al.		* Learning	MONOTONE	Operators for Compu	TATIONAL IMAGING \star	32/38
Training res	ults: ⁻	Testing the	learn	ed approxim	nations (BSD68	3)
	Filters	Noise	Model	$MAE(y, F_{\theta}(\overline{x})) \\ (\times 10^{-2})$	$\frac{\min \lambda_{\min} \left(\boldsymbol{\nabla}^{s} F_{\boldsymbol{\theta}}(\overline{x}) \right)}{\left(\times 10^{-2} \right)}$	
			$\delta =$	= 1 for S_{δ}		
			F_{θ}^{mon}	$1.5658~(\pm~0.58)$	1.67	
	$\sigma_{ m t}$	$\sigma = 0$	F_{θ}^{nom}	$0.2932~(\pm~0.11)$	-29.99	
		$\sigma_{\rm train} = 0$	$\widetilde{F}_{\theta}^{\mathrm{mon}}$	$0.6822~(\pm~0.25)$	0.69^{*}	
			F_{θ}^{lin}	$2.1474 (\pm 1.38)$	-24.69	
	m = 1		$F_{\theta}^{\mathrm{mon}}$	$1.1575 (\pm 0.42)$	1.10	
		0.01	$F_{\theta}^{\mathrm{nom}}$	$0.3020 \ (\pm \ 0.11)$	-27.72	
		$\sigma_{\rm train} = 0.01$	$\widetilde{F}_{o}^{\mathrm{mon}}$	$0.5351 (\pm 0.19)$	1.13^{*}	

	$\sigma_{\rm train} = 0.01$	$\widetilde{F}_{\theta}^{\mathrm{mon}}$	$0.5351~(\pm~0.19)$	1.13^{*}
		$F_{ heta}^{\mathrm{lin}}$	$2.1607~(\pm~1.37)$	-25.87
		$F_{\theta}^{\mathrm{mon}}$	$0.5272~(\pm~0.20)$	1.18
	$\sigma = 0$	F_{θ}^{nom}	$0.2795~(\pm~0.10)$	-22.06
	$\sigma_{ m train} = 0$	$\widetilde{F}_{\theta}^{\mathrm{mon}}$	$0.6108~(\pm~0.22)$	1.80^{*}
$K = 5$ $\sigma_{\rm trained}$		F_{θ}^{lin}	$2.1473~(\pm~1.38)$	-13.86
		$F_{\theta}^{\rm mon}$	$0.9414 \ (\pm \ 0.34)$	1.80
	$\sigma = -0.01$	F_{θ}^{nom}	$0.2714~(\pm~0.09)$	-25.48
	$\sigma_{\rm train} = 0.01$	$\widetilde{F}_{\theta}^{\text{mon}}$	$0.6591~(\pm~0.25)$	1.64^{*}
		F_{θ}^{lin}	$2.1594~(\pm~1.37)$	-16.55

Introduction 00000	MMOs 000	PnP with FNE NNs	PnP with Monotone NNs 000000000●00000	Conclusion 00
A. Repetti et al.	* L	EARNING MONOTONE OPERATORS	for Computational Imaging \star	32/38
Training resu	lts: Testing	the learned app	proximations (BSD68)	
-	Filters Noise	Model MAE(y	$\begin{array}{cc} \overline{F_{\theta}(\overline{x}))} & \min \lambda_{\min} \left(\boldsymbol{\nabla}^{s} F_{\theta}(\overline{x}) \right) \\ 0^{-2} & (\times 10^{-2}) \end{array}$	
-	δ			
-		$F_{ heta}^{ m mon}$ 1.2816 ((± 0.53) 1.91	
	$\sigma_{ m train} = 0$ $K = 1$	$F_{\theta}^{nom} = 0.2376$ ((± 0.09) -18.73	
		$\widetilde{F}_{\rho}^{\mathrm{mon}}$ 0.4311 ((± 0.14) 0.37*	
		$F_{ heta}^{\mathrm{lin}}$ 8.2009 ((± 2.70) -42.79	

		- H		0.01
K = 1		F_{θ}^{lin}	$8.2009 (\pm 2.70)$	-42.79
$\mathbf{n} = \mathbf{r}$		$F_{\theta}^{\rm mon}$	$1.1689~(\pm~0.45)$	1.65
	$\sigma_{\rm e} = -0.01$	F_{θ}^{nom}	$0.2275~(\pm~0.08)$	-23.35
	$\sigma_{\rm train} = 0.01$	$\widetilde{F}_{\theta}^{\mathrm{mon}}$	$0.4679~(\pm~0.17)$	0.54^{*}
		F_{θ}^{lin}	$8.1993~(\pm~2.69)$	-43.18
	0	$F_{\theta}^{\mathrm{mon}}$	$0.7720~(\pm~0.30)$	1.52
		F_{θ}^{nom}	$0.1435~(\pm~0.05)$	-17.38
	$\sigma_{\rm train} = 0$	$\widetilde{F}_{\theta}^{\text{mon}}$	$0.4327~(\pm~0.14)$	0.40^{*}
K = 5		F_{θ}^{lin}	$8.1920~(\pm~2.70)$	-39.61
M = 0		$F_{\theta}^{\rm mon}$	$0.6867~(\pm~0.25)$	0.66
	$\sigma = -0.01$	F_{θ}^{nom}	$0.1788~(\pm~0.06)$	-19.04
	$\sigma_{\rm train} = 0.01$	$\widetilde{F}_{\theta}^{\text{mon}}$	$0.4809~(\pm~0.15)$	0.33^{*}
		F_{θ}^{lin}	$8.1969~(\pm~2.70)$	-35.39

A. REPETTI *et al.*

MMOs 000

* LEARNING MONOTONE OPERATORS FOR COMPUTATIONAL IMAGING *

Training results: Illustrations of learned approximations ($\delta = 1$)

PnP with ENE NNs

$$\begin{split} y &= F(\overline{x}) - \mathsf{PSNR} = 21.17\\ (\lambda_{\min}, \lambda_{\max}) &= (-80.52, 81.37) \end{split}$$

$$\begin{split} y_{F^{\text{lin}}} &= F^{\text{lin}}(\overline{x}) - \mathsf{MAE} = 0.037\\ (\lambda_{\min}, \lambda_{\max}) &= (-0.09, 1.00) \end{split}$$

PnP with Monotone NNs

$$\begin{split} y_{F_{\theta}^{\text{lin}}} &= F_{\theta}^{\text{lin}}(\overline{x}) - \mathsf{MAE} = 0.037\\ (\lambda_{\min}, \lambda_{\max}) = (-0.14, 0.99) \end{split}$$

$$\begin{split} y_{\widetilde{F}_{\theta}^{\mathrm{mon}}} &= F_{\theta}(\overline{x}) - \mathsf{MAE} = 0.006 \\ (\lambda_{\min}, \lambda_{\max}) &= (0.00, 0.92) \end{split}$$

A. REPETTI *et al.*

MMOs 000

* LEARNING MONOTONE OPERATORS FOR COMPUTATIONAL IMAGING *

Training results: Illustrations of learned approximations ($\delta = 0.6$)

PnP with ENE NNs

$$\begin{split} y &= F(\overline{x}) - \mathsf{PSNR} = 17.33 \\ (\lambda_{\min}, \lambda_{\max}) &= (-156.86, 157.59) \end{split}$$

PnP with Monotone NNs

$$\begin{split} y_{F_{\theta}^{\text{lin}}} &= F_{\theta}^{\text{lin}}(\overline{x}) - \mathsf{MAE} = 0.111 \\ (\lambda_{\min}, \lambda_{\max}) = (-0.35, 1.00) \end{split}$$

$$\begin{split} y_{F_{\theta}^{\mathrm{mon}}} &= F_{\theta}^{\mathrm{mon}}(\overline{x}) - \mathsf{MAE} = 0.009 \quad y_{\widetilde{F}_{\theta}^{\mathrm{mon}}} = F_{\theta}(\overline{x}) - \mathsf{MAE} = 0.004 \\ (\lambda_{\min}, \lambda_{\max}) &= (0.03, 0.61) \qquad (\lambda_{\min}, \lambda_{\max}) = (0.00, 0.56) \end{split}$$

Introduction 00000	MMOs 000	MMOs 000		Pn	P with Monotone NNs	Conclusion 00
A. REPETTI et al.		* Learning	Monotone Operato	ors for Computation.	al Imaging *	34/38
Simulation results: Restoration with $\sigma = 0.01$ (BSD68)						
	Problem	Operator	$\sigma_{ m trai}$ PSNR	n = 0	$\sigma_{ m train}$ =	= 0.01 SSIM
$(K,\delta) = (1,1)$	Direct	$F_{\theta}^{\mathrm{mon}}$	$24.56(\pm 3.96)$	$0.80(\pm 0.11)$	$24.58(\pm 4.26)$	$0.80(\pm 0.11)$
	Least-squares	$\widetilde{F}_{\theta}^{\mathrm{mon}}$	$26.32(\pm 4.14)$	$0.85(\pm 0.04)$	$28.31(\pm 3.66)$	$0.89(\pm 0.04)$
	Least-squares	$\widetilde{F}^{\rm lin}_{\theta}$	$25.59(\pm 3.14)$	$0.87(\pm 0.07)$	$25.59(\pm 3.11)$	$0.87(\pm 0.07)$
$(K,\delta) = (5,1)$	Direct	$F_{\theta}^{\mathrm{mon}}$	$27.46(\pm 4.31)$	$0.87(\pm 0.08)$	$26.96(\pm 4.13)$	$0.86(\pm 0.08)$
	Least-squares	$\widetilde{F}_{\theta}^{\mathrm{mon}}$	$28.31(\pm 4.32)$	$0.89(\pm 0.06)$	$28.33(\pm 4.33)$	$0.89(\pm 0.06)$
	Least-squares	$\widetilde{F}^{\mathrm{lin}}_{ heta}$	$25.21(\pm 3.29)$	$0.86(\pm 0.08)$	$25.23(\pm 3.32)$	$0.86(\pm 0.08)$
$(K,\delta) = (1,0.6)$	Direct	$F_{\theta}^{\mathrm{mon}}$	$25.17(\pm 3.99)$	$0.81(\pm 0.10)$	$25.14(\pm 3.99)$	$0.81(\pm 0.10)$
	Least-squares	$\widetilde{F}_{ heta}^{\mathrm{mon}}$	$25.33(\pm 3.61)$	$0.81(\pm 0.07)$	$26.09(\pm 4.02)$	$0.83(\pm 0.07)$
	Least-squares	$\widetilde{F}^{\mathrm{lin}}_{ heta}$	$18.77(\pm 2.71)$	$0.77(\pm 0.12)$	$18.77(\pm 2.71)$	$0.77(\pm 0.12)$
$(K, \delta) = (5, 0.6)$	Direct	$F_{\theta}^{\mathrm{mon}}$	$26.43(\pm 4.23)$	$0.84(\pm 0.09)$	$26.63(\pm 4.32)$	$0.84(\pm 0.09)$
	Least-squares	$\widetilde{F}_{\theta}^{\mathrm{mon}}$	$24.75(\pm 4.33)$	$0.77(\pm 0.13)$	$24.73(\pm 4.32)$	$0.77(\pm 0.13)$
	Least-squares	$\widetilde{F}_{\theta}^{\mathrm{lin}}$	$18.40(\pm 2.74)$	$0.72(\pm 0.14)$	$18.40(\pm 2.74)$	$0.72(\pm 0.14)$

Introduction 00000	MMOs 000	PnP with FNE NNs	PnP with Monotone NNs ○○○○○○○○○○○●○	Conclusion 00
A. REPETTI et al.		* Learning Monotone Operators for	Computational Imaging \star	35/38
Simulation	results: Re	storation with $\sigma=0$	0.01 , $K=5$, $\delta=1$ (vis	sual)

 \overline{x}

 $\widehat{x}_{\widetilde{F}^{\mathrm{lin}}_{A}}$ – (24.67, 0.93) $\sigma_{\rm train} = 0$

 $\widehat{x}_{\widetilde{F}_{\theta}^{\mathrm{lin}}}$ – (24.69, 0.93) $\sigma_{\rm train} = 0.01$

 $\widehat{x}_{\widetilde{F}_{\theta}^{\mathrm{lin}}} - (22.77, 0.75)$ $\sigma_{\rm train}=0$

 $\widehat{x}_{\widetilde{F}_{\theta}^{\mathrm{lin}}} - (22.79, 0.75)$ $\sigma_{\rm train} = 0.01$

Introduction	MMOs	PnP with FNE NNs	PnP with Monotone NNs
00000	000		00000000000●0
A. Repetti et al.	* I	LEARNING MONOTONE OPERATORS FOR CO	omputational Imaging \star

Simulation results: Restoration with $\sigma = 0.01$, K = 5, $\delta = 1$ (visual)

 \overline{x}

Conclusion 35/38

 $\widehat{x}_{F_{\theta}^{\mathrm{mon}}} - (31.59, 0.93)$ $\sigma_{\rm train} = 0$

 $\widehat{x}_{F_{a}^{\mathrm{mon}}}$ - (30.98, 0.93) $\sigma_{\rm train} = 0.01$

 $\widehat{x}_{F_o^{\text{mon}}} - (24.95, 0.80)$ $\sigma_{\rm train} = 0$

 $\widehat{x}_{F_o^{\text{mon}}} - (24.67, 0.80)$ $\sigma_{\rm train} = 0.01$

Introduction 00000	MMOs 000	PnP with FNE NNs	PnP with Monotone NNs 00000000000000000000000000000000000	Conclusion 00	
A. REPETTI et al.	\star Learning Monotone Operators for Computational Imaging \star				

Simulation results: Restoration with $\sigma = 0.01$, K = 5, $\delta = 1$ (visual)

 \overline{x}

 $\sigma_{\rm train} = 0.01$

 $\sigma_{\rm train} = 0.01$

 \overline{x}

 $\sigma_{\text{train}} = 0$

 $\sigma_{\rm train} = 0$

Introduction 00000	MMOs 000	PnP with FNE NNs	PnP with Monotone NNs 0000000000000●	Conclusion 00
A. Repetti et al.		* Learning Monotone Operators for	pr Computational Imaging *	36/38
Simulation	results:	Restoration with $\sigma =$	0.01, $K = 5$, $\delta = 0.6$ (vis	ual)

 \overline{x}

 $\sigma_{\rm train} = 0$

 $\sigma_{\rm train}=0$

 $\sigma_{\rm train} = 0.01$

 $\sigma_{\rm train} = 0.01$

Introduction	MMOs	PnP with FNE NNs	PnP with Monotone NNs	Conclusior
00000	000		000000000000●	00
A. REPETTI et al.	* I	LEARNING MONOTONE OPERATORS FOR C	Computational Imaging \star	36/38

Simulation results: Restoration with $\sigma = 0.01$, K = 5, $\delta = 0.6$ (visual)

 \overline{x}

 \overline{x}

Introduction	MMOs	PnP with FNE NNs	PnP with Monotone NNs	Conclusion
00000	000		0000000000000●	00
A. REPETTI et al.	* I	Learning Monotone Operators for C	Computational Imaging *	36/38

Simulation results: Restoration with $\sigma = 0.01$, K = 5, $\delta = 0.6$ (visual)

 \overline{x}

 $\widehat{x}_{\widetilde{F}_{\theta}^{\mathrm{mon}}} - (28.91, 0.89) \\ \sigma_{\mathrm{train}} = 0$

 $\widehat{x}_{\widetilde{F}_{\theta}^{\mathrm{mon}}} - (28.87, 0.89)$ $\sigma_{\rm train} = 0.01$

 $\widehat{x}_{\widetilde{F}_{\theta}^{\text{mon}}} - (22.55, 0.7) \\ \sigma_{\text{train}} = 0$

 \overline{x}

 $\widehat{x}_{\widetilde{F}_{a}^{\mathrm{mon}}}$ - (22.54, 0.7) $\sigma_{\rm train} = 0.01$

Introduction 00000	MMOs 000	PnP with FNE NNs	PnP with Monotone NNs	Conclusion ●○
A. REPETTI et al.	* 1	Learning Monotone Operators for C	Computational Imaging \star	37/38

Conclusion

- * Plug-and-play algorithms with FNE NNs and monotone NNs
 - Use any proximal algorithm whose proof holds for MMOs
 - Ensures convergence of the iterates
 - Characterisation of the limit point as solution to monotone inclusion problem
- * Training methods for learning FNE NNs and monotone NNs
 - Use Jacobian-vector product in Pytorch and auto-differentiation
 - Combine with power iterations to compute eigenvalues
- * Use monotone learning method to learn optimal maps?
- * Other algorithms?

Introduction 00000	MMOs 000	PnP with FNE NNs	PnP with Monotone NNs	Conclusion O
A. REPETTI <i>et al.</i>		\star Learning Monotone Operators for Co	mputational Imaging *	38/38

Thank you for your attention

- J.-C. Pesquet, A. Repetti, M. Terris, and Y. Wiaux. Learning maximally monotone operators for image recovery, SIAM Journal on Imaging Sciences, 14(3):1206-1237, August 2021.
- C. S. Garcia, M. Larcheveque, S. O'Sullivan, M. Van Waerebeke, R. R. Thomson, A. Repetti, and J.-C. Pesquet. A primal-dual data-driven method for computational optical imaging with a photonic lantern, *PNAS Nexus*, 3(4):164, April 2024.

Younes Belkouchi, J.-C. Pesquet, A. Repetti, and H. Talbot. Learning true monotone operators, Arxiv preprint arXiv:2404.00390, 2024.

Learning FNE NNs − remarks ●000000	FB-PnP-MMO results	COIL-sim	Learning monotone NNs – remarks 000
A. Repetti <i>et al.</i>	* Learning Monotone Operator	s for Computational Imaging \star	1/16

Approximating the resolvent of an MMO

Learning FNE NNs – remarks 0●00000	FB-PnP-MMO results	COIL-sim 00	Learning monotone NNs – remarks
A. REPETTI <i>et al.</i>	\star Learning Monotone Operators for C	omputational Imaging \star	2/16

Feedforward neural networks

Let $(\mathcal{H}_m)_{0 \leqslant m \leqslant M}$ be real Hilbert spaces such that $\mathcal{H}_0 = \mathcal{H}_M = \mathcal{H}$.

A feedforward NN having M layer and both input and ouput in \mathcal{H} can be seen as a composition of operators:

$$Q = T_M \cdots T_1$$

where $(\forall m \in \{1, \dots, M\})$ $T_m \colon \mathcal{H}_{m-1} \to \mathcal{H}_m \colon x \mapsto R_m(W_m x + b_m).$

For each layer $m \in \{1, \ldots, M\}$:

- $R_m \colon \mathcal{H}_m \to \mathcal{H}_m$ is a nonlinear activation operator
- $W_m: \mathcal{H}_{m-1} \to \mathcal{H}_m$ is a bounded linear operator corresponding to the weights of the network
- $b_m \in \mathcal{H}_m$ is a bias parameter vector

Learning FNE NNs – remarks	FB-PnP-MMO results	COIL-sim	Learning monotone NNs – remarks
0●00000		00	000
A. REPETTI <i>et al.</i>	\star Learning Monotone Operators for C	omputational Imaging \star	2/16

Feedforward neural networks

Let $(\mathcal{H}_m)_{0 \leqslant m \leqslant M}$ be real Hilbert spaces such that $\mathcal{H}_0 = \mathcal{H}_M = \mathcal{H}$.

A feedforward NN having M layer and both input and ouput in \mathcal{H} can be seen as a composition of operators:

$$Q = T_M \cdots T_1$$

where $(\forall m \in \{1, \ldots, M\})$ $T_m \colon \mathcal{H}_{m-1} \to \mathcal{H}_m \colon x \mapsto R_m(W_m x + b_m).$

NOTATION: $\mathcal{N}_{\mathcal{F}}(\mathbb{R}^N)$ denotes the class of **nonexpansive feedforward NNs**

- with inputs and outputs in \mathbb{R}^N
- built from a given dictionary ${\mathcal F}$ of activation operators
- ${\cal F}$ contains the identity operator, and the sorting operator performed on blocks of size 2

In other words, a network in $\mathcal{N}_{\mathcal{F}}(\mathbb{R}^N)$ can be linear, or it can be built using max-pooling with blocksize 2 and any other kind of activation function provided that the resulting structure is 1-Lipschitz.

Learning FNE NNs – remarks	FB-PnP-MMO results	COIL-sim	Learning monotone NNs – remarks
00●0000	0000	00	000
A. REPETTI <i>et al.</i>	* Learning Monotone Operators for C	omputational Imaging \star	3/16

Stationary MMOs

Let
$$(\mathcal{H}_k)_{1 \leqslant k \leqslant K}$$
 be real Hilbert spaces.
An operator A defined on the product space space $\mathcal{H} = \mathcal{H}_1 \times \cdots \times \mathcal{H}_K$ is a stationary MMO if its resolvent $J_A \colon \mathcal{H} \to \mathcal{H}$ satisfies
 $(\forall k \in \{1, \dots, K\}) \ (\exists \Pi_k \in \mathcal{B}(\mathcal{H}, \mathcal{H}_k) \ (\exists \Omega_k \in \mathcal{S}_+(\mathcal{H}) \text{ such that}$
 $(\forall (x, y) \in \mathcal{H}^2) \quad \|\Pi_k (2J_A(x) - x - 2J_A(y) + y)\|^2 \leqslant \langle x - y \mid \Omega_k(x - y) \rangle$
with
 $\sum_{k=1}^K \Pi_k^* \Pi_k = \text{Id} \text{ and } \|\sum_{k=1}^K \Omega_k\| \leqslant 1$

REMARK: If A is a stationary MMO, then it is an MMO

 $\mathcal{B}(\mathcal{H}, \mathcal{H}_k)$ denotes bounded linear operators from \mathcal{H} to \mathcal{H}_k $\mathcal{S}_+(\mathcal{H})$ denotes self-adjoint nonnegative operators from \mathcal{H} to \mathcal{H}

Learning FNE NNs – remarks	FB-PnP-MMO results	COIL-sim	Learning monotone NNs – remarks
000●000		00	000
A. Repetti et al.	\star Learning Monotone Operators for C	omputational Imaging \star	4/16

Stationary MMOs: Examples

- $\star \ A = U^*BU$ is a stationary MMO where
 - $U \colon \mathcal{H} \to \mathcal{H}$ is a unitary linear operator

•
$$(\forall x = (x^{(k)})_{1 \leq k \leq K} \in \mathcal{H})$$
 $B(x) = B_1(x^{(1)}) \times \ldots \times B_K(x^{(K)}),$
with $(\forall k \in \{1, \ldots, K\}) B_k \colon \mathcal{H}_k \to \mathcal{H}_k$ an MMO

 $\star \ \partial(g \circ U)$ is a stationary MMO where

•
$$(\forall x = (x^{(k)})_{1 \leqslant k \leqslant K} \in \mathcal{H})$$
 $g(x) = \sum_{k=1}^{K} \varphi_k(x^{(k)})$, with $(\forall k \in \{1, \dots, K\}) \varphi_k \in \Gamma_0(\mathbb{R})$

- $U \in \mathbb{R}^{K \times K}$ orthogonal
- $\star\,$ If A is a stationary MMO, then A^{-1} as well
| Learning FNE NNs – remarks | FB-PnP-MMO results | COIL-sim | Learning monotone NNs – remarks |
|----------------------------|---|----------|---------------------------------|
| 0000●00 | | 00 | 000 |
| A. REPETTI et al. | \star Learning Monotone Operators for (| 5/16 | |

Approximate MMO's resolvents with NNs

Let $\mathcal{H} = \mathbb{R}^N$ and $A: \mathcal{H} \to 2^{\mathcal{H}}$ be a stationary MMO. For every compact set $S \subset \mathcal{H}$ and every $\epsilon \in]0, +\infty[$, there exists a NN $Q_{\epsilon} \in \mathcal{N}_{\mathcal{F}}(\mathcal{H})$ such that $A_{\epsilon} = 2(\mathrm{Id} + Q_{\epsilon})^{-1} - \mathrm{Id}$ satisfies: * For every $x \in S$, $||J_A(x) - J_{A_{\epsilon}}(x)|| \leq \epsilon$

* Let $x \in \mathcal{H}$ and let $y \in A(x)$ be such that $x + y \in S$. Then

 $(\exists x_{\epsilon} \in \mathcal{H})(\exists y_{\epsilon} \in A_{\epsilon}(x_{\epsilon})) \quad \|x - x_{\epsilon}\| \leqslant \epsilon \text{ and } \|y - y_{\epsilon}\| \leqslant \epsilon$

Learning FNE NNs – remarks	FB-PnP-MMO results	COIL-sim	Learning monotone NNs – remarks
0000●00		00	000
A. REPETTI et al.	\star Learning Monotone Operators for C	5/16	

Approximate MMO's resolvents with NNs

Let $\mathcal{H} = \mathbb{R}^N$ and $A: \mathcal{H} \to 2^{\mathcal{H}}$ be a stationary MMO. For every compact set $S \subset \mathcal{H}$ and every $\epsilon \in]0, +\infty[$, there exists a NN $Q_{\epsilon} \in \mathcal{N}_{\mathcal{F}}(\mathcal{H})$ such that $A_{\epsilon} = 2(\mathrm{Id} + Q_{\epsilon})^{-1} - \mathrm{Id}$ satisfies: \star For every $x \in S$, $||J_A(x) - J_{A_{\epsilon}}(x)|| \leq \epsilon$ \star Let $x \in \mathcal{H}$ and let $y \in A(x)$ be such that $x + y \in S$. Then $(\exists x_{\epsilon} \in \mathcal{H})(\exists y_{\epsilon} \in A_{\epsilon}(x_{\epsilon})) \quad ||x - x_{\epsilon}|| \leq \epsilon$ and $||y - y_{\epsilon}|| \leq \epsilon$

Remark:

- $\star\,$ Same results hold if A is a convex combination of stationary MMOs
- * Due to the firmly nonexpansive condition on the NN, the results are *less accurate than standard universal approximations* [Hornik *et al.*, 1989][Leshno *et al.*, 1993]

e.g., guaranteeing arbitrary close approximation to any continuous function with a network having only one hidden layer

Learning FNE NNs – remarks 00000●0	FB-PnP-MMO results	COIL-sim	Learning monotone NNs – remarks 000	
A. Repetti et al.	* Learning Monotone Operator	\star Learning Monotone Operators for Computational Imaging \star		

Taining procedure

Learning FNE NNs – remarks	FB-PnP-MMO results	COIL-sim	Learning monotone NNs – remarks
000000●	0000		000
A. REPETTI et al.	\star Learning Monotone Operators for C	omputational Imaging \star	7/16

Training procedure

Let $D \in \mathbb{N}^*$ be the batch size, and $K \in \mathbb{N}^*$ be the number of training iterations For $k = 1, \dots, K$ for $d = 1, \dots, D$ Select randomly $\ell \in \{1, \dots, L\}$ Drawn randomly $w_d \sim \mathcal{N}(0, 1)$ and $\varrho_d \sim \mathcal{U}([0, 1])$ $y_d = \overline{x}_\ell + \sigma w_d$ $\widetilde{x}_d = \varrho_d \overline{x}_\ell + (1 - \varrho_d) \widetilde{J}_{\theta_k}(y_d)$ $g_d = \nabla_{\theta} \Phi_d(\theta_k)$ $\theta_{k+1} = \operatorname{Adam}(\frac{1}{D} \sum_{d=1}^D g_d, \theta_k)$

Remarks:

- * Use of power method to compute $\|\nabla Q_{\theta}(x)\|$, for a given image $x \in \mathcal{H}$
 - Necessitate to apply $\nabla Q_{\theta}(x)$ and $\nabla Q_{\theta}(x)^{\top}$ (use automatic differentiation)
 - Due to memory limitations, all our experiments will be performed with 5 iterations of the power method.

Learning FNE NNs – remarks	FB-PnP-MMO results	COIL-sim	Learning monotone NNs – remarks
000000●	0000	00	000
A. REPETTI et al.	* Learning Monotone Operators for C	omputational Imaging \star	7/16

Training procedure

Let $D \in \mathbb{N}^*$ be the batch size, and $K \in \mathbb{N}^*$ be the number of training iterations For $k = 1, \dots, K$ for $d = 1, \dots, D$ $\begin{bmatrix} \text{for } d = 1, \dots, D \\ \text{Jester randomly } \ell \in \{1, \dots, L\} \\ \text{Drawn randomly } w_d \sim \mathcal{N}(0, 1) \text{ and } \varrho_d \sim \mathcal{U}([0, 1]) \\ y_d = \overline{x}_{\ell} + \sigma w_d \\ \widetilde{x}_d = \varrho_d \overline{x}_{\ell} + (1 - \varrho_d) \widetilde{J}_{\theta_k}(y_d) \\ g_d = \nabla_{\theta} \Phi_d(\theta_k) \\ \theta_{k+1} = \text{Adam}(\frac{1}{D} \sum_{d=1}^{D} g_d, \theta_k) \end{bmatrix}$

Remarks:

- * GANs (see e.g., [Gulrajani *et al.*, 2017]): Use similar regularization to constrain the gradient norm of the discriminator
- * [Hoffman et al., 2019]: Loss regularized with the Froebenius norm of the Jacobian
- * RealSN [Ryu *et al.*, 2019]: Compute the Lipschitz constant of each convolutional layer (with 1 iteration of power method)

Learning FNE NNs – remarks	FB-PnP-MMO results	COIL-sim	Learning monotone NNs – remarks	
0000000	●000	00	000	
A. Repetti <i>et al.</i>	\star Learning Monotone Operators for C	8/16		

Image deblurring using forward-backward PnP algorithm

Learning FNE NNs – remarks	FB-PnP-MMO results	COIL-sim	Learning monotone NNs – remarks	
0000000	0●00	00	000	
A. REPETTI et al.	\star Learning Monotone Operators for C	9/16		

Inverse problem

INVERSE PROBLEM: $z = H\overline{x} + e$

- $\star \ \overline{x} \in \mathbb{R}^N$ original unknown image
- $\star H \in \mathbb{R}^{N \times N}$ blur operator
- $\star \ e \in \mathbb{R}^N$ realization of Gaussian random noise $\mathcal{N}(0,\nu)$
- $\star \ z \in \mathbb{R}^N$ observations

BLUR KERNELS:

DATASETS:

- Training dataset: 50000 test images from the ImageNet dataset (randomly split in 98% for training and 2% for validation)
- Grayscale test dataset: BSD68 dataset (and a subsample of 10 images referred as BSD10)
- Colour test dataset: BSD500 test set

Learning FNE NNs – remarks	FB-PnP-MMO results	COIL-sim	Learning monotone NNs – remarks	
0000000	00●0	00	000	
A. REPETTI et al.	\star Learning Monotone Operators for C	10/16		

Comparison with other PnP methods: Grayscale images

SETTING:

- Deblurring problem: \overline{x} from BSD10 test set, $\nu = 10^{-2}$, blur 1-8
- Training: $\lambda = 10^{-5}$, $\sigma = 9 \times 10^{-3}$
- PnP-FB algorithm: $\gamma = 1.99$

COMPARISON WITH:

- \star PnP-FB with different denoiser operators:
 - RealSN
 - BM3D
 - DnCNN
- \star FB with proximity operators of:
 - ℓ_1 -norm composed with a sparsifying operator consisting in the concatenation of the first eight Daubechies wavelet bases
 - total variation (TV) norm

Learning FNE NNs – remarks	FB-PnP-MMO results	COIL-sim	Learning monotone NNs – remarks
0000000	00●0	00	000
A. REPETTI et al.	\star Learning Monotone Operators for (10/16	

Comparison with other PnP methods: Grayscale images

• Evaluate $c_k = ||x_k - x_{k-1}|| / ||x_0||$, for $(x_k)_{k \in \mathbb{N}}$ generated from PnP-FB

denoiser				ke	rnel				convergence
denoisei	(a)	(b)	(c)	(d)	(e)	(f)	(g)	(h)	convergence
Observation	23.36	22.93	23.43	19.49	23.84	19.85	20.75	20.67	
RealSN	26.24	26.25	26.34	25.89	25.08	25.84	24.81	23.92	\checkmark
$prox_{\mu_{\ell_1} \ \Psi^\dagger \cdot \ _1}$	29.44	29.20	29.31	28.87	30.90	30.81	29.40	29.06	\checkmark
$\operatorname{prox}_{\mu_{TV} \parallel \cdot \parallel_{TV}}$	29.70	29.35	29.43	29.15	30.67	30.62	29.61	29.23	\checkmark
DnCNN	29.82	29.24	29.26	28.88	30.84	30.95	29.54	29.17	×
BM3D	30.05	29.53	29.93	29.10	31.08	30.78	29.56	29.41	×
Proposed	30.86	30.33	30.31	30.14	31.72	31.69	30.42	30.09	\checkmark

Learning FNE NNs – remarks	FB-PnP-MMO results	COIL-sim	Learning monotone NNs – remarks
0000000	00●0	00	000
A. REPETTI et al.	\star Learning Monotone Operators for (10/16	

Comparison with other PnP methods: Grayscale images

• Evaluate $c_k = ||x_k - x_{k-1}|| / ||x_0||$, for $(x_k)_{k \in \mathbb{N}}$ generated from PnP-FB

denoiser				ke	rnel				convergence
denoisei	(a)	(b)	(c)	(d)	(e)	(f)	(g)	(h)	convergence
Observation	23.36	22.93	23.43	19.49	23.84	19.85	20.75	20.67	
RealSN	26.24	26.25	26.34	25.89	25.08	25.84	24.81	23.92	\checkmark
$prox_{\mu_{\ell_1} \ \Psi^\dagger \cdot \ _1}$	29.44	29.20	29.31	28.87	30.90	30.81	29.40	29.06	\checkmark
$\operatorname{prox}_{\mu_{TV} \parallel \cdot \parallel_{TV}}$	29.70	29.35	29.43	29.15	30.67	30.62	29.61	29.23	\checkmark
DnCNN	29.82	29.24	29.26	28.88	30.84	30.95	29.54	29.17	×
BM3D	30.05	29.53	29.93	29.10	31.08	30.78	29.56	29.41	×
Proposed	30.86	30.33	30.31	30.14	31.72	31.69	30.42	30.09	\checkmark

Learning FNE NNs – remarks	FB-PnP-MMO results	COIL-sim	Learning monotone NNs – remarks
0000000	000●	00	000
A. REPETTI et al.	\star Learning Monotone Operators for C	omputational Imaging \star	11/16

Comparison with other PnP methods: Color images

SETTING: (same as in [Bertocchi et al., 2020])

• Deblurring problem: \overline{x} from BSD500 test set, with

G. A blur 9,
$$\nu = 8 \times 10^{-3}$$

M. A blur 8,
$$\nu = 10^{-2}$$

M. B blur 3,
$$u = 10^{-2}$$

S blur 10,
$$\nu = 10^{-2}$$

- Training: $\lambda = 10^{-5}$, $\sigma = 7 \times 10^{-3}$ for G. A, and $\sigma = 9 \times 10^{-3}$ for M. A, M.B and S
- PnP-FB algorithm: $\gamma = 1.99$

COMPARISON WITH:

- * Variational method from [Bertocchi et al., 2020]
- * PnP-PDHG [Meinhardt et al., 2017]
- ⋆ PnP-FB with BM3D
- \star PnP-FB with DnCNN

Learning FNE NNs – remarks	FB-PnP-MMO results	COIL-sim	Learning monotone NNs – remarks
0000000	000●	00	000
A. REPETTI et al.	\star Learning Monotone Operators for C	omputational Imaging \star	11/16

Comparison with other PnP methods: Color images

Learning FNE NNs – remarks 0000000	FB-PnP-MMO re 000●	esults C	OIL-sim	Learning monotone NNs – remarks 000
A. REPETTI et al.	★ Learning Mong	TONE OPERATORS FOR COM	putational Imaging \star	11/16
Comparison with	other PnP me	thods: Color	images	
	Motion A	Gaussian A	Square	
		Observed		

(18.32, 0.653)

(25.14, 0.771)

(25.45, 0.464)

Learning FNE NNs – remarks 0000000	FB-PnP-MMO re 000●	esults CO	OIL-sim o	Learning monotone NNs – remarks 000
A. Repetti et al.	★ Learning Mono	TONE OPERATORS FOR COMP	putational Imaging \star	11/16
Comparison with	other PnP me	thods: Color	images	
	Motion A	Gaussian A	Square	
		VAR		

(27.05, 0.772)

(30.05, 0.897)

(27.43, 0.675)

Learning FNE NNs – remarks 0000000	FB-PnP-MMO n 000●	esults C	OIL-sim	Learning monotone NNs – remarks 000
A. REPETTI et al.	★ Learning Mong	TONE OPERATORS FOR COM	putational Imaging \star	11/16
Comparison with	other PnP me	thods: Color	images	
	Motion A	Gaussian A	Square	
		BM3D		

(29.73, 0.834)

(29.32, 0.891)

(26.97, 0.611)

Learning FNE NNs – remarks 0000000	FB-PnP-MMO n 000●	esults (COIL-sim	Learning monotone NNs – remarks 000
A. Repetti et al.	★ Learning Mono	TONE OPERATORS FOR COM	putational Imaging \star	11/16
Comparison with	other PnP me	thods: Color	images	
	Motion A	Gaussian A	Square	
		DnCNN		

(21.39, 0.888)

(30.96, 0.911)

(27.53, 0.669)

Learning FNE NNs – remarks 0000000	FB-PnP-MMO re 000●	sults C	COIL-sim	Learning monotone NNs – remarks 000
A. Repetti et al.	* Learning Monor	TONE OPERATORS FOR COM	putational Imaging \star	11/16
Comparison with	other PnP me	thods: Color	images	
	Motion A	Gaussian A	Square	
		Proposed		

(31.89, 0.901)

 $(\mathbf{31.61}, \mathbf{0.921})$

 $(\mathbf{28.10}, \mathbf{0.733})$

Learning FNE NNs – remarks	FB-PnP-MMO results	COIL-sim	Learning monotone NNs – remarks
0000000		●○	000
A. Repetti <i>et al.</i>	\star Learning Monotone Operators for Ce	omputational Imaging \star	12/16

Simulated COIL data

Setting:

- M = 1089 patterns (121 individual cores \times 9 rotations)
- input SNR 30dB
- Use 50 images with geometric patterns, of size $N=377\times377$
- Fix $\varepsilon = 50$ for data-fidelity ℓ_2 bound

v	PSNR (dB)	SSIM	GPU (sec.)	CPU (sec.)
5	$37.81(\pm 2.49)$	$0.698(\pm 0.012)$	$13.0(\pm 1.6)$	$70.5(\pm 8.0)$
10	$37.61(\pm 2.08)$	$0.687(\pm 0.024)$	$17.0(\pm 4.3)$	$94.2(\pm 24.8)$
20	$36.81(\pm 2.42)$	$0.672(\pm 0.022)$	$16.4(\pm 4.9)$	$92.3(\pm 29.0)$
SARA-COIL	$30.72(\pm 1.38)$	$0.544(\pm 0.023)$	_	$98.9(\pm 11.8)$

Average results on the 50 images:

Learning FNE NNs – remarks 0000000	FB-PnP-MMO 0000	results	COIL-sim ○●	Learning monotone NN: 000	s – remarks
A. REPETTI <i>et al.</i>	★ Learning Mon	NOTONE OPERATORS FOR	Computational Imagine	3 *	13/16
Simulated COIL d	ata results				
Ground truth	SARA-COIL	$PnP - \sigma = 5$	$PnP - \sigma = 10$	$PnP - \sigma = 20$	
		!	.	!	

Learning FNE NNs – remarks	FB-PnP-MMO results	COIL-sim	Learning monotone NNs – remarks
0000000		00	●00
A. REPETTI <i>et al.</i>	\star Learning Monotone Operators for C	omputational Imaging \star	14/16

Learning monotone operators – Remarks

Learning FNE NNs – remarks 0000000	FB-PnP-MMO results	COIL-sim	Learning monotone NNs – remarks ○●○
A. REPETTI et al.	* Learning Monotone Oper.	ators for Computational Imaging \star	15/16
	Alexalther 2.0 Theiring a most true att	and F	
	Algorithm 3.2 Training a monotone netw	OFK F ₀	
	• E_{α} N _{mode} $B \Delta \xi > 0$	> Training parameters	
	• L, P, Drain	> Loss, penalization and training set	
	• Optimizer step: \mathcal{O} : $(\theta, g) \mapsto \theta^+$	\triangleright e.g., Adam, SGD, etc.	
	$2: \xi \leftarrow 0$		
	3: for $j = 1, \ldots, N_{\text{epochs}}$ do		
	4: for each batch $\mathbb{B} = \{(x_b, y_b)\}_{1 \le b \le B}$	$\subset \mathbb{D}_{\text{train}} \text{ of size } B \operatorname{ do}$	
	5: Computational graph related to i	the loss and the penalization:	
	6: $b_0 \leftarrow$ realization of discrete ratio 7: $\nu \leftarrow$ realization of random un		
	8: $\widetilde{x}_{b_0} \leftarrow \nu x_{b_0} + (1-\nu)y_{b_0}$ 9: $\ell_{\mathbb{B}} : \vartheta \mapsto \frac{1}{B} \sum_{b=1}^{B} \mathcal{L}(F_{\vartheta}(x_b), y_b)$) + $\xi \mathcal{P}(\vartheta, \tilde{x}_{b_0}) \triangleright Use Algorithm 3.1$	
	10: Gradient computation and optim	nizer step:	
	11: $g_{\mathbb{B}}(\theta) \in \partial \ell_{\mathbb{B}}(\theta)$		
	12: $\theta \leftarrow \mathcal{O}(\theta, g_{\mathbb{B}}(\theta))$		
	13: end for		
	14: $\xi \leftarrow \xi + \Delta \xi$ 15: end for	\triangleright Increase penalization parameter	
	16: Output: F_{θ}		

Learning FNE NNs – remarks 0000000	FB-PnP-MMO results	COIL-sim oo	Learning monotone NNs – remarks ○○●
A. REPETTI et al.	\star Learning Monotone Operators for Computational Imaging \star		16/16
	Algorithm 3.1 Computation of $\lambda_{\min}(J_{R_{p_{e_{i}}}}^{s}(\widetilde{x}))$		
	1: Input:		
	• $R_{F_{\theta}}, \widetilde{x} \in \mathbb{D}_{ ext{penal}}$ • $N_{ ext{iter}}$	▷ Neural network model and data ▷ Parameter	
	2: Disable auto-differentiation		
	3: Computation of $\rho > \overline{\lambda}_{\max}(\mathbf{J}_{R_{F_{\theta}}}^{s}(\widetilde{x}))$: 4: $u_{0} \leftarrow \text{realization of } \mathcal{N}(0, \text{Id})$ 5: for $k = 1, \dots, N_{\text{iter}}$ do		
	6: $u_{k+1} = \frac{\gamma_{KP_{\theta}}(x)u_{k}}{\ u_{k}\ _{2}^{2}}$ 7: end for $\frac{1}{\ u_{k}\ _{2}^{2}}$ 8: Choose $\widehat{\rho} > \frac{u_{k+1}^{T} J_{KP_{\theta}}^{*}(\overline{x})u_{k+1}}{\ u_{k+1}\ _{2}^{2}}$		
	9: Computation of the eigenvector associated with $\chi = \overline{\lambda}_{\max} \left(\rho \operatorname{Id} - \operatorname{J}_{R_{F_{\theta}}}^{s}(\widetilde{x}) \right)$:		
	10: $v_0 \leftarrow \text{realization of } \mathcal{N}(0, \text{Id})$		
	12: $v_{k+1} = \frac{\left(\hat{\rho} \operatorname{Id} - J_{R_{F_{\theta}}}^{n}(\tilde{x})\right)v_{k}}{\ v_{k}\ _{2}^{2}}$ 13: end for		
	14: Enable auto-differentiation		
	15: Computation of χ :		
	16: $\widehat{\chi} = \frac{v_{N_{\text{iter}}+1}^{N} \left(\widehat{\rho} \text{id} - J_{R_{F_g}}^{n}(\widehat{x}) \right) v_{N_{\text{iter}}+1}}{\ v_{N_{\text{iter}}+1} \ _{2}^{2}}$		
	17: return $\widehat{ ho} - \widehat{\chi} \simeq \lambda_{\min} \big(\operatorname{J}_{R_{F_{\theta}}}^{\mathrm{s}}(x) \big)$		