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Inverse problems: variables and key equations

@ Variables

e 7z ¢ RM: data.

Medical imaging Ph

s

© -
e X € RY: unknown parameters.

Astronomy

e X € RY: estimated parameters.

@ Forward model
z = D(AX)

7N

Stochatic degradation  Linear operator

@ |nverse problem
X =dg(z)

@ Goal: Estimate X close to X from z, A, noise statistic D, and prior

information on the class of image to recover.



Inversion X = dg(z)

=) [1922] Maximum likelihood (Fisher).

X € Argmin %HAX |2 = (A*A)TA%
== [1963] Regularization (Tikhonov, Huber)

R € Argmin %HAX R+ 0|Ix]2  avec 630
== [2000] Sparsity (Donoho, Daubechies-Defrise-DeMol,...)

X € Argmin %HAX TR
== [2010] “End to end” neural networks

X = NNg(z)
= [2020] Plug-and-Play
0 € A"(AX — z) + B(X) 5



Summary of inverse problems in imaging

Original Degraded Tikhonov DTT
SNR=134dB SNR=164dB SNR =16.6 dB

NLTV PnP-DRUnet PnP-ScCP
SNR = 18.8 dB SNR = 19.4 dB SNR = 20.0 dB SNR = 20.2 dB®



Focus in this presentation

=p [1922] Maximum likelihood (Fisher).
1
X € Argmin _ || Ax — z|3 = (A*A)"1A*z
= [1963] Regularization (Tikhonov, Huber)

- 1
X € Argmin §||AX — 2|3 + 0||Lx||3 avec 6>0
X

== [2000] Sparsity (Donoho, Daubechies-Defrise-DeMol,...)

= 1
X € Argmin §HAX — 2|2 + 9||Lx| «

= [2010] “End to end” neural networks
X = NNg(z)
== [2020] Plug-and-Play
0e€ A"(AX — z) + B(X) 7



Focus in this presentation

Original Degraded Tikhonov DTT
SNR =13.4dB  SNR=164dB SNR =16.6 dB

NLTV PnP-DRUnet PnP-ScCP
SNR = 18.8 dB SNR = 19.4 dB SNR = 20.0 dB SNR = 20.2 dB
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Iterative scheme

== Minimization problem :

X € Argxmin fx) 4+ g(x)

with f and g either diff. with Lipschitz gradient or proximable.

== Design of a recursive sequence of the form

(VEeN)  xpp1 = (xx),

Gradient descent ®=1-7(Vf+Vyg)

Proximal point algorithm =~ ® = prox, ;)

Forward-Backward ® = prox, (I -7V f)
Peaceman-Rachford ® = (2prox,, —1I) o (2prox,; —1I)
Douglas-Rachford ® = prox,,(2prox, ; —I) + I - prox,;
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Main goal : provide acceleration for high dimensional problems

High dimensional problems — high computation time.

Alternatives :

e FISTA [Beck & Teboulle, 2009] [Chambolle & Dossal, 2015],

e Preconditionning [Donatelli, 2019][Repetti et al., 2014],

e Blocks methods [Liu, 1996] [Chouzenoux et al., 2016]
[Salzo, Villa 2022],

e multiresolution strategy
@ |dea that comes from the PDE field [Nash, 2000].
@ preliminary results for non-smooth optimization in [Parpas,
2017].

Common aim of these methods:

@ improve the gradient/proximal gradient steps with well chosen

rules. 10



Multilevel algorithm for smooth optimization

Some references:

e A. Javaherian and S. Holman, A Multi-Grid Iterative Method for
Photoacoustic Tomography, |IEEE Transactions on Medical Imaging,
(2017)

e S. W. Fung and Z. Wendy, Multigrid Optimization for Large-Scale
Ptychographic Phase Retrieval, SIAM Journal on Imaging Sciences, 13
(2020)

e J. Plier, F. Savarino, M. Kotvara, and S. Petra, First-Order Geometric
Multilevel Optimization for Discrete Tomography, in Scale Space and
Variational Methods in Computer Vision, A. Elmoataz, J. Fadili, Y.
Quéau, J. Rabin, and L. Simon, eds., vol. 12679, Springer International
Publishing, Cham, (2021)

— Successful attempts of accelerating minimization in imaging.
— Restricted to smooth optimization.
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Multilevel algorithms



First order descent methods

Goal: Xrél%{% F(x):= f(x) +9(x)

f and g proper, lower semi-continuous, and convex.
f is assumed differentiable with Lipschitz gradient.
g is not necessarily differentiable.

Build a sequence: xj1 = ®(x;) = x — Dy,
olf f and g are differentiable: Gradient descent

Dy, = m(V f(xx) + Vg(xx))

olf g is not differentiable: Proximal gradient descent

DA; = X — pI'OXTkg (Xk — Tkvf(xk))

12



Multilevel smooth optimization

Goal: Exploit hierarchy of approximations of the objective function.
Example: Two levels case with fine (k) and coarse (H) levels.

Fine level h

~ h
Xh,k Xnk = Xnk + Ig (XEkm — XH 1,0)

Coarse level H

H | XH,k,m
XH.k0 = 1) Xnk e

LY
\_' minimize F(xp) /

13



Design of I and I/: Information transfer operators

Definition IfT : RM» — RN# (transfer from fine to coarse scales) and
I% . RNH — RNe (transfer from coarse to fine scales) are coherent

information transfer (CIT) operators, if there exists v > 0 such that:

It = (1T,

e particular case of squared grids reads:

2 0 0 2 1 0 0
7 0 1 1 0 ... 0 0o 1 2 1 0 ... o0
== . el . € RVHXNn
T . . . .
0 0
0 o 1 2 1 0 o 1 2 1
VNR/2Xy/Np, VNR/2X\/Np

14



Design of Fy: First order coherence

Smoothed convex function [Beck 2012, Definition 2.1]
Let g be a convex, |.s.c., and proper function on RY.

For every v > 0, g, is a smoothed convex function if there exist
scalars 11, n2 satisfying 11 + 12 > 0 such that the following holds:

(Vy e RY)  g(y) —mvy < 97(y) < 9(¥) +m27-

ii5)



Design of Fy: First order coherence

First order coherence [Nash, 2000][Parpas et al. 1016, 2017]

The first order coherence between the smoothed version of the ob-
jective function Fj, at the fine level and the coarse level objective
function Fy is verified in a neighbourhood of v, € RV% if the follow-

ing equality holds:

VE(Iyyn) = IV (fa + gnan) (Un)-

@ Impact: Coherence up to order one in the neighbourhood of

the current iterates y;, = yp k-

16



Design of Fy: First order coherence

Coarse model Fy for non-smooth functions
The coarse model Fy is defined for the point y;, € RV as:

Fy = fu + guqy + (vH, ), (1)
where

v = IF (Y fu(yn) + Vany, (W) — (VI yn) + Var . (I yn)).

If Fy is given by definition (1), it necessarily verifies the first

order coherence.

Proof.
Considering the gradient of the coarse model Fiy and combining it with

the definition of vy, yields
VEx(Ifyn) = Via(IFyn) + Vauvu I yn) + vm,
= I (Vfn(yn) + Vany, (yn)) - 17



Design of Fy: First order coherence

Coarse model Fy for non-smooth functions

The coarse model Fy is defined for the point y;, € RV as:
Fg = fu + g0y +(vH, "),
where

v = I (Y fa(yn) + Vnpn (Wn) — (V fa (I yn) + Vauq T yn)).-

Remarks:

@ Adding the linear term (vg,-) to fg + g, allows to impose
the so-called first order coherence.
@ if g, and gp are smooth by design, one can simply replace
9Hyy and gn, by gg and g,
18



Design of Fy: First order coherence

Fine level h fn+9n
V(fn+ gn)(@n,k)

Thk

0

Coarse level H

i

19



Design of Fy: First order coherence

Fine level h
V(fn+ gn)(@n,k)

0

Coarse level H ,
. ¥
fu +gm+(vn,-)
fH + gH IIhJ I[h{ V(fH +gH)($H,k,o) +ug

V(fr + 9n\SH.x,0)

19



IML FB: Multilevel algorithm for nonsmooth optimization

1: Set Th,0,Yh,0 € RY, tho=1

2: while Stopping criterion is not met do

3: if Descent condition then

4 SH k0 = I}?mmk Projection

5: SHkm = PHm—-10..0 P o(sH ko) Coarse minimization
6 Set Thik > 0,

7 Thik = Thk +7_—h,k:I]}}[ (SH,k:,m = SH7]§70) Coarse step update
8 else

9 Thk = Thk

10:  end if

1:  zpg+1 = P r(Zh k) Forward-Backward step
12: end while

20



Convergence analysis

Lemma (Fine level decrease). Let assume that I7 and I}, are CIT

operators and that F satisfies Definition (1) and ®f, allows a de-
crease of the coarse model. The iterations of IML FB ensure:

Fy(xp + 71 (sHm — $10)) < Fr(xn) + (m + n2) 78

Proof.
This directly comes from the definition of a smoothed convex

function:
Fr(xp 4 oI (s5m — 880))
< (L + Ry (Wn + 7ol (SHm — SH,0)) + YR
< (L + Rpy) (xn) + M
< Fu(xn) + (m + n2)7h-

o 21



Convergence analysis

Lemma (Fine level decrease). Let assume that I7 and I}, are CIT

operators and that F satisfies Definition (1) and ®f, allows a de-
crease of the coarse model. The iterations of IML FB ensure:

Fy(xp + 71 (sHm — $10)) < Fr(xn) + (m + n2) 78

@ (Coarse level minimization step, leads to a decrease of F},, up
to a constant (71 + 72)7, that can be made arbitrarily small
by driving ~;, to zero.

@ Commonly found in the literature of multilevel algorithms.
@ Not sufficient to guarantee the convergence of the generated

sequence.

21



What has been done:

@ Remarks on multilevel framework to non-smooth optimization:

-+ Handles non-smooth g.
-+ Smoothing to define the first order coherence.
— Requires explicit form of prox, = prox,,r,.

— No convergence guarantee to a minimizer.

@ Some references:

e V. Hovhannisyan, P. Parpas, and S. Zafeiriou, MAGMA: Multilevel Accelerated
Gradient Mirror Descent Algorithm for Large-Scale Convex Composite
Minimization, SIAM J. Imaging Sciences (2016)

e P. Parpas, A Multilevel Proximal Gradient Algorithm for a Class of Composite
Optimization Problems, SIAM J. Scient. Comp., 39 (2017)

e G. Lauga, E. Riccietti, N. Pustelnik, and P. Goncalves Multilevel FISTA for
Image Restoration, IEEE ICASSP, 2023.
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IML FISTA




Motivations and contribution

@ Goal:

e inexact proximal steps to handle state-of-the-art
regularization: Total Variation (TV) and Non-Local Total
Variation (NLTV).

e obtain state-of-the-art convergence guarantees.

@ Proposed scheme: IML FISTA a convergent multilevel
inexact and inertial proximal gradient algorithm:

® prox, is explicit.

® DProX,.y, is not known under closed form.

23



Inexact FISTA for solving min, f(x) + ¢(Lx)

Inexact FISTA [Aujol, Dossal, 2015]:

Tkl ~ prOXTgpoL (yk - va(yk) +

Ykt1 = Tht1 + 0k (Thy1 — Tk)

te—1

k+ :
tey1

. . d
where ay, is chosen with t1 = (2£2)7, a; =

)

Contribution: update y; through a multilevel step.

e How to construct such multilevel update ?

e How to guarantee convergence ?

24



Smoothing of F), and F; with the Moreau envelope

@ Moreau envelope of gj;:
1
Yo = inf - —yll?
gH ylgHgH(y)Jr Q,yH yll

@ Properties of the Moreau envelope:

o Vigy =~71(Id - prox., .. )
o Vg v~ 1 - Lipschitz
o V("pgoLpy) () = 7;,1]47, (LH = ProX., o, (LH-))
@ [llustration: Moreau envelope of /;-norm for and v =1

25



First order coherence for ¢ non-smooth

Coarse model Fyg for non-smooth functions

Fg=fa+ ("ogoLy)+ (va,-)

where

v = IF (Viu(yn) + V(" ¢p 0 Ly) (yn))
— (VI yn) + V(" oy o L) (I yr))

Minimization scheme at coarse level:

Oy =V + V(" gyoLy)

26



Multilevel algorithm for nonsmooth optimization

1. Set Th,0,Yh,0 € RN, th70 =1
2: while Stopping criterion is not met do
3:  if Descent condition then

4 SH k0 = I,{{yh’k Projection
5 SHEm = PHm—10..0 P o(sH ko) Coarse minimization
6: Set Thik > 0,
7 Uhk = Ynk + Thidly (SHkm — SHE0)
Coarse step update with size 73, 1,
8: else
9: Ynk = Yn,k
10:  end if

11 Tppyr = q’:h’k (Gn,x) Forward-backward step
. _ (k+a _ thr—1
12 tpgt1 = (T ) P Qb = 35
13:  Ynktl = Thkt1 + O k(Thkt1 — Thk)- Inertial step
14: end while 27



Convergence of IML FISTA




Multilevel steps interpreted as gradient errors

@ FISTA steps allow errors on the computation of the backward
and on the forward steps:

Thk+1 ey, PTOXy, 0, o1, (Ynk — TV fh (Ynk) + €n )

Yhj+1 = Tht1 + Wk (Th 41 — Thk)

@ Rewriting coarse corrections:

_ Th,k
ehk = Th (th(yh,k) — Vfr(Gn) + Thfﬁr(sH,k,m - 5H7k,0)>

@ Multilevel steps = bounded errors on the gradient

28



Convergence analysis

Lemma (Coarse corrections are finite)
Let 3;, and By be the Lipschitz constants of fj, and fg, respectively.
Assume that we compute at most p coarse corrections.

Let 77, 7 € (0, +00) be the step sizes taken at fine and coarse levels,
respectively.

Assume that 77 < ﬁ,}l and that 7, < B;l and denote 7j, = supy, T, k-
Then the sequence (ep i)ken in RN: generated by IML FISTA is
defined as:

enk = Th (th(yh,k) — Vi @nk) + (70) Tk Il (SHkm — SH,k:,O)) :

if a coarse correction has been computed, and e = 0 otherwise.
This sequence is such that >, kllen | < +oo.

29



Inexact proximal step

The e-subdifferential of g at z € dom g is defined as:
0e9(z) ={y eRY | g(2) > g(2) + (z — z,y) — ¢,V € RV}

Type 0 approximation [Combettes, Wajs, 2005]
z € RN is a type 0 approximation of prox,,(y) with precision ¢, and
we write z 2~ prox.,,(y), if and only if ||z — prox,,(y)|| < v/27e.

Type 1 approximation [Villa et al., 2013]
z € RN is a type 1 approximation of prox,,(y) ith precision ¢, and

we write z =~ prox.,(y), if and only if 0 € O (g(z) o %Hz - yH2) .

Type 2 approximation [Villa et al., 2013]
z € RN is a type 2 approximation of prox.,,(y) with precision ¢, and
we write z 2 prox,,(y), if and only if == € d.g(z).

B0




Inexact proximity operator step

@ At each iteration of fine level minimization we need to compute

prox,,, op, (r) = — Lyu

with:

u € argmin *HL*U — z||* + g5 (w)
u€RK

which can be solved iteratively with accuracy € so that:

K~
L= Lhu’G :6 prOX"prhOLh (‘r)

@ Equivalent to:

L} 4,

€ O (pn o L) (z — Lyue)

31



Inexact proximity operator step

@ At each iteration of fine level minimization we need to compute

prox,, op, (¥r) = — Lyu

with:

U € argmin fHL u — z||2 + v (u)
u€RK

which can be solved iteratively with accuracy € so that:

3R ~Y
T — Lpue ~ Prox, ., oL, (JJ)
@ Equivalent to:

LhuE

€ 0, ( hOLh)(J}—L;klae)

= Type 2 approximation

31



Convergence analysis

Considering Vk € N*, aj, = 0 and the sequence (ep, i) ken is such

that >, oy /llenill < +o00. Set 1,0 € R and choosing approxi-
mation of Type 0, the sequence (xp, i )ren generated by IML FISTA

converges to a minimizer of F},.

32



Convergence analysis

Let Vk € N*, tp 141 = (%)d, with (a,d) satisfying the conditions
in [Aujol, Dossal, 2015 — Definition 3.1], and that the assumptions of
Lemma 29 hold. Moreover, if we assume that:

° 22'3 k‘d\/ﬂ < 400 in the case of Type 1 approximation,
o > k%ep, ). < 400 in the case of Type 2 approximation.
Let (xp k)ken the sequence generated by IML FISTA, then
e The sequence (k%? (Fy,(zp 1) — Fr(2*)))ren belongs to £oo(N).

e The sequence (xp, 1 )xen converges to a minimizer of F,.

33



Numerical experiments




Numerical experiments on hyperspectral images

Résolution spatiale

Fh evolution with CPU time

ﬂ—FISTA‘
——IML FISTA Spec|
——IML FISTA Spat

0 20000 40000
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Numerical experiments in
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Partial conclusions

e Unifying and extended convergence guarantees for IML FB.
e Convergent IML FISTA.
e IML FISTA much faster than FISTA for large scale problems.

Future works:

e Deeper analysis of the design of [T and I%.
e Improve the rule to go from fine to a coarser step.

e What about multilevel PnP and unfolded networks ?

36



Perspective: Towards deep learning

Original Degraded Tikhonov DTT
SNR=134dB SNR=164dB  SNR = 16.6 dB

NLTV PnP-DRUnet PnP-ScCP

SNR=188dB SNR=19.4dB | SNR=120.0dB SNR =20.2dB
37




Perspective: Towards deep learning

=) [1922] Maximum likelihood (Fisher).

X € Argxmin ;”AX —z||3 = (A*A) 1A%z
== [1963] Regularization (Tikhonov, Huber)

X € Arg}'{min %HAX — z||3 + 6| Lx]||3 avec 6 >0
== [2000] Sparsity (Donoho, Daubechies-Defrise-DeMol,...)

X € Argxmin %HAX — 2|3 + 0]|Lx]|
= [2010] “End to end” neural networks

X = NNg(z)
== [2020] Plug-and-Play
0€ A*(AXx —z) + B(X) &
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