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Setting the scene: polynomial interpolation

Context:
¢ K C C a compact set

o n+ 1 distinct points zp,...,z, in K
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Setting the scene: polynomial interpolation

Context:
¢ K C C a compact set

o n+ 1 distinct points zp,...,z, in K

Polynomial interpolation: for f € C°(K,C) known at the z's, approximate f by its unique
Lagrange interpolating polynomial L,(f) € C,[X] satisfying
La(F)(z) = f(z), ied{0,...,n}.

Goal: choose points zo, ..., z, ensuring good approximation properties as n — +00.
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What does one mean by "good"?

Define [|g||x := sup,cx lg(2)] for g € C°(K, C).

o Minimal expectation: a family of points n — zo, ..., z, is said to be extremal if

for all £ holomorphic in a neighbourhood of K, ||L,(f) — f|jx — O.
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Define [|g||x := sup,cx lg(2)] for g € C°(K, C).

o Minimal expectation: a family of points n — zo, ..., z, is said to be extremal if
for all £ holomorphic in a neighbourhood of K, ||L,(f) — f|jx — O.

o More ambitious: associated Lebesgue constant A, is of moderate growth

A= suan:H

Z€K 20 i

z-z

Zi — Zj

quantifies approximation quality from the basic estimate

n - < n i - .
ILaF) = Fllc < (L+A) inf (1P =l
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Define [|g||x := sup,cx lg(2)] for g € C°(K, C).

o Minimal expectation: a family of points n — zo, ..., z, is said to be extremal if
for all £ holomorphic in a neighbourhood of K, ||L,(f) — f|jx — O.

o More ambitious: associated Lebesgue constant A, is of moderate growth

A= supzn:H

Z€K 20 i

z-z

Zi — Zj

quantifies approximation quality from the basic estimate

n - < n i - .
ILaF) = Fllc < (L+A) inf (1P =l

Finding good points is notoriously hard:
o equidistant points typically are not extremal...
o Polynomially-growing Lebesgue constants is quite satisfactory,

o logarithmic growth is the Holy Grail.
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© Lebesgue constants
- for generic K, subexponential Lebesgue constant AV 51 (Totik '23)
- for K= D(0,1), A, = O(n) (Chkifa '13),
- for K =[-1,1], A, = O(n) is conjectured, best known estimate is
A, = O(n13/4) (Andrievskii and Nazarov '22)...



We focus on families of points that are hierarchical and sufficiently tractable
Popular hierarchical and (seemingly) tractable points:

Leja points (Leja '57)

n—1
Z, € arg maxH |z — z|.
zeK i—0

o Leja points are extremal (proof essentially present in Leja’s original work)
o Lebesgue constants

- for generic K, subexponential Lebesgue constant AV 51 (Totik '23)

- for K= D(0,1), A, = O(n) (Chkifa '13),
- for K =[-1,1], A, = O(n) is conjectured, best known estimate is
A, = O(n13/4) (Andrievskii and Nazarov '22)...

Problem: how can one compute them efficiently? More difficult than it may seem.



Be careful with Leja points

Usual implementation: fix a grid A once and for all and maximise over the grid, i.e.,
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Be careful with Leja points

Usual implementation: fix a grid A once and for all and maximise over the grid, i.e.,

n—1 n—1
z, € arg max | | |z —z| ~ z, € argmax | | |z — z]

zek o €A i
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Figure: Function to be interpolated, i.e., z — ﬁ.
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Be careful with Leja points

Usual implementation: fix a grid A once and for all and maximise over the grid, i.e.,
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zneargmaxH|z—z,-| ~ zneargmaxH\z—z,-\
€K o €A il

100

-100 -075 050 —025 000 025 050 075 100

Figure: Function to be interpolated, i.e., z +—> ﬁ, grid of equidistant points of size 500,
Lagrange interpolating polynomial L,(f) for n = 10.
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Figure: Function to be interpolated, i.e., z — ﬁ grid of equidistant points of size 500,
Lagrange interpolating polynomial L,(f) for n = 50.



Be careful with Leja points

Usual implementation: fix a grid A once and for all and maximise over the grid, i.e.,

n—1 n—1
zneargmaxl | |z —zi| ~ zn€argmax| | |z — z]
zek o €A il
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Figure: Function to be interpolated, i.e., z — ﬁ grid of equidistant points of size 500,
Lagrange interpolating polynomial L,(f) for n = 100.
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Be careful with Leja points

Usual implementation: fix a grid A once and for all and maximise over the grid, i.e.,

n—1 n—1
zneargmaxl | |z —zi| ~ zn€argmax| | |z — z]
zek o €A il
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Figure: Function to be interpolated, i.e., z — grid of equidistant points of size 500,

1
2240.12"
Lagrange interpolating polynomial L,(f) for n = 150.
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Leja points: sequence (z,) € K~ such that
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Pseudo-Leja points (Biatas-Ciez and Calvi '12): sequence (z,) € K" such that
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i=0

/

where 0 < 7, < 1 is subexponential, i.e., satisfies T,} " 5 1asn— +oo.

If 7, ~ n=#, pseudo-Leja points of order 8.
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Pseudo-Leja points

Leja points: sequence (z,) € K~ such that

ma(za)| 2 Imallcs — Tal2) = H< ).

Pseudo-Leja points (Biatas-Ciez and Calvi '12): sequence (z,) € K" such that

n—1

|7n(zn)| = Tallmnllk, 7n(z) := H(z - z)

i=0

/

where 0 < 7, < 1 is subexponential, i.e., satisfies T,} " 5 1asn— +oo.

If 7, ~ n=#, pseudo-Leja points of order 8.

Known results:
o for generic K, pseudo-Leja points are still extremal

o Lebesgue constants? Not much except for pseudo-Leja points of order 5 = 0.
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Pseudo-Leja points and weakly admissible meshes

Several ways to build so-called weakly admissible meshes (Calvi - Levenberg '08)
Idea: choose z, € A, such that, recalling 7,(z) = H::ol z—z),
[7n(20)| = max |m(2)],

where A, is discrete finite set of cardinal N,.
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n—1

Idea: choose z, € A, such that, recalling 7,(z) =[]/,

z—z),
[7n(20)| = max |m(2)],
where A, is discrete finite set of cardinal N,.

Different recipes to compute such meshes that lead to pseudo-Leja points (Biatas-Ciez and
Calvi '12):

o For sets with C' boundaries, N, ~ n"™ where r,, (generically r,, € {1,2}) stems from
Markov's inequality
[1P]|x

PeC,[X]\{0} ||P||K

< nr’"
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Requires to parameterise the boundary.

o N, ~ n for polygons at the price of parameterising each edge.



Pseudo-Leja points and weakly admissible meshes

Several ways to build so-called weakly admissible meshes (Calvi - Levenberg '08)

n—1

Idea: choose z, € A, such that, recalling 7,(z) =[]/,

z—z),
[7n(20)| = max |m(2)],
where A, is discrete finite set of cardinal N,.

Different recipes to compute such meshes that lead to pseudo-Leja points (Biatas-Ciez and
Calvi '12):

o For sets with C' boundaries, N, ~ n"™ where r,, (generically r,, € {1,2}) stems from
Markov's inequality
[1P]|x

PeC,[X]\{0} ||P||K

< nr’"

~

Requires to parameterise the boundary.

o N, ~ n for polygons at the price of parameterising each edge.

Main issue: lack of modularity.



Random Leja points

All results can be found in my preprint: Random Leja points, arXiv:2406.11499
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Compute (z,) € KN by only sampling uniformly inside of K (underlying Borel measure ).

Idea: random relaxation of Leja points: given Zo, ..., Z,—1, draw Z, through
n—1
Zo~ (@) = [ 12 - 2.
i=0

Are these points any good?

Lemma: let (Z,) be any sequence of random variables such that for some 5 > 0,
ZIP’ [mn(Zn)| < n ﬂ||7r,,\|;<) converges.

Then, almost surely, the points Z, are extremal.
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Random Leja points

All results can be found in my preprint: Random Leja points, arXiv:2406.11499

Compute (z,) € KN by only sampling uniformly inside of K (underlying Borel measure ).

Idea: random relaxation of Leja points: given Zo, ..., Z,—1, draw Z, through
n—1
Zo~ (@) = [ 12 - 2.
i=0

Are these points any good?

Lemma: let (Z,) be any sequence of random variables such that for some 5 > 0,
ZIP’ [mn(Zn)| < n ﬂ||7r,,\|;<) converges.

Then, almost surely, the points Z, are extremal.

Proof. Borel-Cantelli's Lemma implies that a.s. |m,(Z,)| > n~?||7a||x for n large enough.
= the points Z, a.s. are pseudo Leja points of order 3, hence a.s. extremal. O
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Random Leja points are extremal

Recall m,(2) = [1'=g'(z — Z), Zn of density ‘”"ll conditionally on F,, := 0(Zo, ... Zy-1).

i=0 Il

For generic K and o, random Leja points are almost surely extremal. I
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Random Leja points are extremal

Recall ma(z) = [1/=9 (z — Z), Zx of density ‘”"ll conditionally on F,, := 0(Zo, ... Zy-1).

llall

For generic K and o, random Leja points are almost surely extremal. \

Proof. By Markov’s inequality + definition of random Leja points

P (Im(Zn)] < 1P lmallos | Fa) < 0 mallow B (|l Z0)] 7

)

_ 1 _ _ Th||loco
= 1l [ @) (@) do(2) = fo(kylml
Tl Ji

llal[x

Nikolskii inequality for any reasonable K and o:

IPllsc
pec,ix\{o} IIPllL ™

Leads to convergence of >.P (|mn(Z,)| < n™?||mal|k) for any B> ro + 1. O
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Random Leja points are extremal

Recall ma(z) = [1/=9 (z — Z), Zx of density ‘”"ll conditionally on F,, := 0(Zo, ... Zy-1).

llall

For generic K and o, random Leja points are almost surely extremal. \

Proof. By Markov’s inequality + definition of random Leja points

P (Im(Zn)] < 1P lmallos | Fa) < 0 mallow B (|l Z0)] 7

)

_ 1 _ _ Th||loco
= 1l [ @) (@) do(2) = fo(kylml
Tl Ji

llal[x

Nikolskii inequality for any reasonable K and o:

1Pl <
pec,ixn{o} IIPll1

Leads to convergence of >.P (|mn(Z,)| < n™?||mal|k) for any B> ro + 1. O

Caveat: as "theoretical" as Leja points already were!
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Metropolis-Hastings random Leja points

Imal \while only sampling from the

ll7nlla

Zo, ..., Zn—1 known, want to draw Z, of density
uniform distribution U, (K)
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Metropolis-Hastings random Leja points

Zo, ..., Zn—1 known, want to draw Z, of density HL::,H‘: while only sampling from the
uniform distribution U, (K)

Rejection sampling is intractable: build Z, by the (independent) Metropolis-Hastings
sampling algorithm, with proposal distribution U, (K).
© on paper, will almost surely give extremal points by the previous theorem.
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Metropolis-Hastings random Leja points

[7n

ll7nl

Zo, ..., Zn—1 known, want to draw Z, of density
uniform distribution U, (K)

L while only sampling from the

Rejection sampling is intractable: build Z, by the (independent) Metropolis-Hastings
sampling algorithm, with proposal distribution U, (K).

© on paper, will almost surely give extremal points by the previous theorem.

o in practice, halted at the kth iterate...

In other words, draw (Xk)en i.i.d Us(K), (Ur)ken i.i.d U([O,1]).
Yo =Xo
i i 70 (X))
v, {Xc i U< min (1, ol
Yio1 else

Set Z, := Yk for appropriately chosen k = N,: Metropolis Hastings (MH) random Leja
points.
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Metropolis-Hastings random Leja points

[7n

ll7nl

Zo, ..., Zn—1 known, want to draw Z, of density
uniform distribution U, (K)

L while only sampling from the

Rejection sampling is intractable: build Z, by the (independent) Metropolis-Hastings
sampling algorithm, with proposal distribution U, (K).

© on paper, will almost surely give extremal points by the previous theorem.

o in practice, halted at the kth iterate...

In other words, draw (Xk)en i.i.d Us(K), (Ur)ken i.i.d U([O,1]).
Yo =Xo

; ; |7 (X
Yk _ Xk If Uk S min (1, IWn(Yk71)|)
Yi_1 else

Set Z, := Yk for appropriately chosen k = N,: Metropolis Hastings (MH) random Leja
points.
How to choose N,? Convergence results for various distances, in the form
1\ k

d(p, k) S (1 - W) :
where M is a bound such that

Il 1

<M
l|7nl|2 o(K)

a.e.



Extremality of MH random Leja points (1)

For generic K and o, choose

N, ~ n%, with a>r.

Then MH random Leja points are almost surely extremal.

Generically, r; from Nikolskii's inequality sUpg<geg(p)<n ”lﬁ,””"f < n' satisfies r; € {1,2}.
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conditionally on Zy, ..., Z,—1).
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Extremality of MH random Leja points (1)

For generic K and o, choose

N, ~ n%, with a>r.

Then MH random Leja points are almost surely extremal.

Generically, r; from Nikolskii's inequality sUpg<geg(p)<n ”lﬁ,””"f < n' satisfies r; € {1,2}.

|70 |
lImalla

Proof. Let Z, be any random Leja point associated to Zy, ..., Zp—1 (i.e., of density
conditionally on Zy, ..., Z,—1).

P(Ima(Za)l < 1~ Plimallos | 72 )
< P(Ima(Zo)l < 20 Plmallos | Fa) + P (|Ima(Z0)] = Ima(Za)l| > n=Plimallos | F2)
First term already dealt with:

P (Ima(Zn)] < 20 Plimalloe | Fa) S 0P,
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Extremality of MH random Leja points (2)

For the second term, use Markov's inequality as well as Markov's inequality (!)
B( [Ima(20)] = [ma(Z0)l| > 0P [malloe | F2)

<P [ec””"rmlz"_z”‘ —1>n78 ‘]—'n] <nmnPE [|Z,, - 2,,}

)
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For the second term, use Markov's inequality as well as Markov's inequality (!)
B( [Ima(20)] = [ma(Z0)l| > 0P [malloe | F2)

<P [ec””"rmlz"_z”‘ —1>n" ‘]—'n] < nmnPE [|Z,, — 2,,}

)

Choose Z, to be coupled to Z, in such a way that (conditionally on F,), it realises the infimum
within the 1-Wasserstein distance, that is,

1\
]:’7] W(.U‘Z,,HU‘Z ) (1_ M ) 5

]E[|zn—2,,|

where M, is any constant such that “Hﬂ'n””oo < M"ﬁ: can take M, ~ n't.
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Extremality of MH random Leja points (2)

For the second term, use Markov's inequality as well as Markov's inequality (!)
B( [Ima(20)] = [ma(Z0)l| > 0P [malloe | F2)

<P [ec””"rmlz"_z”‘ —1>n" ‘fn] < nmnPE [|Zn - Zn}

)

Choose Z, to be coupled to Z, in such a way that (conditionally on F,), it realises the infimum
within the 1-Wasserstein distance, that is,

J—'n] W(kz, nz) S (1— 1>Nn,

]E[|zn—2,,|

Mp
where M, is any constant such that HH”nH”oo < M, ( SRy can take M, ~ n't.
Conclusion: estimate
1\
P <|7"n(Zn)‘ < ”_B”ﬂ'nHoo) S n=Fn + nmnf (1 - ﬁ) )
n

= convergence of S_P (|mn(Z,)| < n=P||ma||k) for any B> ro + 1 since Ny ~ n®, o> rp. [
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Randomised weakly admissible meshes

Randomised weakly admissible meshes proposed in (Xu and Narayan '23) lead to
Randomised mesh (RM) random Leja points:
Z, € arg max |mp(Xk)|.
1<k<N,

with X, i.i.d. Us(K).
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Randomised weakly admissible meshes

Randomised weakly admissible meshes proposed in (Xu and Narayan '23) lead to

Randomised mesh (RM) random Leja points:

Z, € arg max |mp(Xk)|.
1<k<N,

with X, i.i.d. Us(K).

Using techniques of proofs inspired by Xu and Narayan '23 and the recent result of Totik '23

For generic K and o, choose

N, ~n%, with a> ryre.

Then RM random Leja points almost surely have subexponential Lebesgue constant.

Generically, rn, € {1,2} and rc € {1,2} (associated to covering numbers for K, o)
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Disk

Toy example (equidistant points on the boundary are already excellent).
MH and RM random Leja points; here r; =2, rpre =1 X 2.
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Figure: Example of n =200 MH points (left figure) and RM points (right figure), with
Ny = |n®T¢] in both cases, for ¢ = 0.01.
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Figure: Example of n =200 MH points (left figure) and RM points (right figure), with
Ny = |n®T¢] in both cases, for ¢ = 0.01.

l H MH points [ RM points ‘

E[As]

2.92

0.50

/Var(A,)

2.99

0.51

Table: Estimates for polynomial growth of E[A,] and /Var(A,).



Home-made polygons

MH random Leja points for polygons. RM Leja points are intractable, due to rpre =2 x 2.
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Figure: Example of n = 200 MH points for two polygons, with N, = [n?>*¢|, ¢ = 0.01.



MH points | RM points | pseudo-Leja points
modularity v v X
reproducibility X X v
order as pseudo-Leja points ~14n 0 0
(accuracy)
number of underlylng points . o "
(complexity)

Table: Comparison between different methods.
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MH points | RM points | pseudo-Leja points

modularity v v X

reproducibility X X v

order as pseudo-Leja points ~14r 0 0
(accuracy)

number of underlying points

. re mfc m
(complexity)

Table: Comparison between different methods.

And some open questions:

o Higher dimension? curse of dimensionality because ry, re scale linearly with
dimension... ry, however, does not.

o Estimates for Lebesgue constants, at least on average?

o Alternative clever sampling strategies?
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