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Reconstruction problem in parallel MRI

Given: (incomplete) discrete measurements for Nc receiver channels

y (j)
ν := y (j)

(
ν
N

)
=
∫
Ω

s(j)(x)m(x) e−2πi ν
N ·xdx + n(j)

(
ν
N

)
,

for ν ∈ ΛN := {−N
2 , . . . ,

N
2 − 1} × {−N

2 , . . . ,
N
2 − 1}, j = 0, . . . ,Nc − 1.

m magnetization image (complex)
s(j) complex valued sensitivity profiles

of the Nc individual coils
n(j) noise term
Ω bounded area of interest,

here Ω = [−N
2 ,

N
2 ]2.

(Mardani et al. (2016))
Wanted: m and s(j), j = 0, . . . ,Nc − 1.
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Fully sampled coil images after inverse Fourier transform

step, we scale and round the values mn such that the values are in {0, . . . , 255}.
Let N = 512, Nc = 8, L = 5, M = 8 in Algorithm 3.1. In Figure 2 (first row), we
compare the reconstruction from exact data with the reconstructions from noisy data
for deviation parameters ‡ = 0.05, 0.1, 0.2. In the second row of Figure 2 we present
the corresponding reconstruction errors |mexact≠m|

255 . These results impressively show
that the proposed algorithm is stable with regard to noise.
Next we provide the reconstruction results of Algorithm 4.1 for incomplete data with-
out noise, where we have taken N , Nc, L, M as before and — = 0, ‘ = 10≠5 in
Algorithm 4.3. In Figure 3, we compare the reconstruction results obtained from com-
plete data with Algorithm 3.1 in (a) with the reconstruction results obtained from
incomplete data by Algorithm 4.1, where outside of the centered calibration area of
size (L+M≠1)◊(L+M≠1), (b) every second row and every second column, (c) every
fourth column, and (d) every second row and every third column is acquired, respec-
tively. Furthermore we present the corresponding reconstruction errors |mexact≠m|

255 in
the second row of Figure 3. The numerical results support our theoretical observations
that for incomplete data, we can still obtain perfect reconstructions for a fourth of the
data. Even if only about a sixth of the data is acquired, we still obtain a reconstruc-
tion result which is almost exact. This can be explained theoretically as follows: To
compute the N2 = 5122 parameters to recover m and the 8 ú L2 = 200 parameters to
recover the 8 coil sensitivities s(j) for our model we have still about 8

6 ú 5122 acquired
data from the eight coil images (not counting the small calibration areas).

7.2 Reconstruction from Parallel MRI Data
Now we test Algorithm 4.1 with parallel MRI data. These data are available at https:
//people.eecs.berkeley.edu/~mlustig/Software.html and have been also used in
[37]. Here, we employ Algorithm 4.1 always with the modification presented in Section
5.2, i.e., we omit the renormalization mÕ = (d+) 1

2 ¶ m̃ in step 3 of the algorithm.
We apply the data of the data set brain_8ch in the ESPIRiT toolbox. The magni-

tudes of the coil images |F≠1y(j)| for this data set are illustrated in Figure 4.

Figure 4: Magnitudes of the coil images 0 to 7 for the test data set brain_8ch.

The 8 coil images are of size 200◊200, i.e., N = 200. In our first test we consider the
case of incomplete data, where outside of the calibration area only every second column
is acquired. We have used — = 0 and ‘ = 10≠5 in Algorithm 4.3. For a fixed size L = 5
(i.e. L2 = 25 parameters per coil sensitivity) we compare the reconstruction results
for calibration matrices AM with M = 8, M = 14 and M = 20. The corresponding
results are presented in Figure 5, first row. We also present the errors

|mrec ≠ mcpl|/ max
nœ�N

|mcpl
n |, (7.1) ?{eq:err}?

where |mrec ≠ mcpl| is taken pointwise and where mcpl denotes the reconstruction
from complete measurements with the sos condition (5.5) and mrec the achieved re-
construction from incomplete measurements. Small periodicity artifacts are visible in

25
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Test data of the data set brain_8ch in the ESPIRiT toolbox.
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Overview of reconstruction methods (incomplete)
Given sensitivities:
SENSE (Pruessmann et al. ’99))
Approximation of unacquired data using calibration data:
SMASH (Jakob et al. ’98, Heidemann et al. ’01),
GRAPPA (Griswold et al. ’02),
SPIRiT (Lustig et al. ’10)
Subspace methods using calibration data:
ESPIRiT (Uecker et al. ’14)
PISCO ( Lobos et al ’24)
Low rank matrix completion (no calibration):
SAKE (Shin et al. ’14),
ALOHA (Jin et al. ’15),
LORAKS (Haldar et al. ’14)
Nonlinear optimization problem (no calibration):
NLINV (Uecker et al. ’08), Keeling et al ’12, Allison et al. ’13,
BARISTA (Muckley et al. ’15),
ENLIVE (Holme et al. ’19)
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Discrete model

Discrete model: y (j) = (y (j)
ν )ν∈ΛN = F (m ◦ s(j)) j = 0, . . . ,Nc − 1

where F = FN2 := (ων·n
N )ν,n∈ΛN , m := (mn)n∈ΛN , s(j) := (s(j)(n))n∈ΛN .

Problem
Reconstruct m := (mn)n∈ΛN and s(j) := (s(j)(n))n∈ΛN from undersampled data

Py (j) = PF (m ◦ s(j)) j = 0, . . . ,Nc − 1

where P chooses only the acquired locations in k-space.
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MOCCA (Model based coil calibration) [Plonka & Riebe ’24]
Given incomplete measurements:

Py (j) = P F (m ◦ s(j)), j = 0, . . . ,Nc − 1

Auto calibration signal (ACS) region ΛM ⊂ ΛP ⊂ ΛN

Illustration of the grid ΛN (N = 100), the ACS region and the grid of incomplete
measurements outside (here each fourth column)
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MOCCA: Modelling sensitivities as trigonometric polynomials

Let ΛL := {−n, . . . , n} × {−n, . . . , n}, L = 2n + 1� N.

Model for s(j) = (s(j)
n )n∈ΛN :

s(j)
n :=

∑
r∈ΛL

c(j)
r e 2πi

N n·r , j = 0, . . . ,Nc − 1,

where n · r = k1r1 + k2r2, c(j)
r ∈ C.

Matrix form: s(j) := (s(j)
n )n∈ΛN = FN,L c(j), j = 0, . . . ,Nc − 1,

where FN,L := (ωr ·n
N )n∈ΛN ,r∈ΛL and c(j) := (c(j)

r )r∈ΛL ∈ CL2
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Generalized model and ambiguities

The coil sensitivity model can be generalized to

s̃(j)
n := γn s(j)

n = γn
∑
r∈ΛL

c(j)
r ω−r ·n

N j = 0, . . . ,Nc − 1, n ∈ ΛN ,

where γn 6= 0 does not depend on j . Then,

y (j) = F(m ◦ s(j)) = F(m ◦ γ−1︸ ︷︷ ︸
m̃

◦ γ ◦ s(j)︸ ︷︷ ︸
s̃(j)

) = F(m̃ ◦ s̃(j))

with γ := (γn)n∈ΛN γ−1 := (γ−1n )n∈ΛN ,

solution (m, (s(j))Nc−1
j=0 ) =⇒ many solutions (m̃, (s̃(j))Nc−1

j=0 )
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Ambiguities and the sum-of-squares condition
Many recovery algorithms approximate the unacquired data y (j)

n from the
acquired data in a first step and apply

mn =
( Nc−1∑

j=0
|y̌ (j)

n |2
) 1
2 , n ∈ ΛN , (ground truth)

Taking s̃(j)
n := γn s(j)

n and m̃n = 1
γn
mn with with

γn :=

 sign(mn)
( Nc−1∑

j=0
|s(j)

n |2
)−1/2

, n ∈ ΛN ,
Nc−1∑
j=0
|s(j)

n |2 > 0,

0 otherwise,

Then
Nc−1∑
j=0
|s̃(j)

n |2 = 1 for γn 6= 0 and m̃n =
( Nc−1∑

j=0
|y̌ (j)

n |2
) 1
2 .
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MOCCA (Model based coil calibration)
Given: y (j) = (y (j)

ν )ν∈ΛN = F (m ◦ s(j)), j = 0, . . . ,Nc − 1.

Step 1: Reconstruction of s(j) = FN,L c(j)

We have y̌(j) := F−1y(j) = m ◦ s(j) = m ◦ (FN,Lc(j))
and

y̌ (j) ◦ s(j′) = s(j) ◦ s(j′) ◦m = s(j) ◦ y̌ (j′)

Then

(y̌ (j)) ◦ (
∑
j′ 6=j

s(j′)) = (
∑
j′ 6=j

y̌ (j′)) ◦ s(j)

i.e.,

(y̌ (j) ◦ FN,L
∑
j′ 6=j

c(j′))− (
∑
j′ 6=j

y̌ (j′) ◦ FN,L c(j)) = 0.
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MOCCA: Reconstruction of s(j) from the calibration area
Multiplying this equation with the 2D-Fourier matrix F we obtain

[−F diag(
∑
j′ 6=j

y̌ (j′))FN,L, F diag(y̌ (j))FN,L]

 c(j)∑
j′ 6=j

c(j′)

 = 0.

Hence, with Y(j)
N,L := (y (j)

(ν−r) mod ΛN
)ν∈ΛN ,r∈ΛL ∈ CN2×L2 ,

−(
∑̀
6=0

Y(`)
N,L) Y(0)

N,L Y(0)
N,L . . . Y(0)

N,L

Y(1)
N,L −(

∑̀
6=1

Y(`)
N,L) Y(1)

N,L . . . Y(1)
N,L

Y(2)
N,L Y(2)

N,L −(
∑̀
6=2

Y(`)
N,L) . . . Y(2)

N,L

...
. . .

...
Y(Nc−1)

N,L . . . Y(Nc−1)
N,L Y(Nc−1)

N,L −(
∑
6̀=Nc−1

Y(`)
N,L)




c(0)

c(1)

c(2)

...
c(Nc−1)

 = 0,

i.e., reducing from N to M

AM,Lc = 0 with AM,L ∈ CNcM2×NcL2
.
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MOCCA: Reconstruction from incomplete measurements

Step 1: Reconstruction of s(j) from data in the calibration region:
Build AM,L from the k-space data in the calibration region,
compute c(j) by solving AM,Lc = 0.
Compute s(j) = FN,L c(j).

Normalize the sensitivities:

Compute d = (dn)n∈ΛN :=
Nc−1∑
j=0

s(j) ◦ s(j).

Define s̃(j) := (d+) 1
2 ◦ s(j), such that

Nc−1∑
j=0
|s̃(j)

n |2 = 1, n ∈ ΛN .

Then,

y(j) = F(s(j) ◦m) = F(s̃(j) ◦ m̃) with m̃ := d 1
2 ◦m.
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MOCCA: Reconstruction from incomplete measurements
Step 2: Reconstruction of m.
Solve

m̃ := argmin
m∈CN2

(
Nc−1∑
j=0
‖Py (j) − (P F (s̃(j) ◦m)‖22

)
.

We obtain the linear system( Nc−1∑
j=0

(G(j))∗G(j)
)
m̃ =

Nc−1∑
j=0

(G(j))∗ Py(j).

with G(j) := PFdiag(s̃(j)).

Regularization:

(
βI +

Nc−1∑
j=0

(G(j))∗G(j)
)
m̃ =

Nc−1∑
j=0

(G(j))∗ Py(j)

with β > 0. However, for β > 0 an exact reconstruction is not longer

obtained, even if the original matrix
Nc−1∑
j=0

(G(j))∗G(j) is positive definite.
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Algorithm for reconstruction from incomplete measurements

Input: Py (j) j = 0, . . . ,Nc − 1.
L ≤ M � N (size of index sets)

1 Build AM,L from calibration data and solve AM,Lc = 0. Extract c(j).
2 Compute s(j) = FN,Lc(j), j = 0, . . . ,Nc − 1, and d+.

3 Normalization: For j = 0 : Nc − 1 compute s̃(j) := (d+) 1
2 ◦ s(j).

4 Solve the equation system

(
β I +

Nc−1∑
j=0

(G(j))∗G(j)
)

m̃ =
Nc−1∑
j=0

(G(j))∗ P y (j)

with G(j) := PF s̃(j) and β ≥ 0.
5 Compute m̃ = sign(m) ◦m and s̃(j) = sign(m) ◦ s̃(j), j = 0, . . . ,Nc − 1.

Output: m̃, s̃(j).
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Reconstruction from incomplete measurements

Theorem (Plonka & Riebe (2024))
Let the incomplete measurement vectors Py (j) for j = 0, . . . ,Nc − 1, be
given, where the index set ΛP of acquired measurements contains the
calibration region, i.e., ΛL+M ⊂ ΛP ⊂ ΛN . Let the model assumptions for
m and s(j) be satisfied and suppose that:

1 The matrix AM,L has a nullspace of dimension 1.

2 The matrix
Nc−1∑
j=0

(B(j))∗B(j) with B(j) := PF diag(s̃(j)) is invertible.

Then the vector m determining m and the vectors c(j) determining s(j),
j = 0, . . . ,Nc − 1, are uniquely reconstructed by Algorithm 2 up to a
constant.

Theorem (Plonka & Riebe (2024))
The matrix AM,L has a nullspace of dimension 1 almost surely.
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Reconstruction results for the first MRI data set
24 G. PLONKA AND Y. RIEBE

Table 1
Comparison of the reconstruction performance for the incomplete data from the first data set.

method measure R = 2, (1, 1
2
) R = 3, (1, 1

3
) R = 4, (1, 1

4
) R = 4, ( 1

2
, 1

2
) R = 6, ( 1

2
, 1

3
)

GRAPPA PSNR 41.4367 36.2093 30.3212 34.8741 28.9493
SSIM 0.9638 0.9039 0.7561 0.8821 0.7236

SPIRiT PSNR 26.7296 28.3496 26.7414 30.8745 29.6801
SSIM 0.9441 0.8794 0.7192 0.8871 0.7307

ESPIRiT PSNR 37.2218 35.1977 32.0629 35.4497 32.6245
SSIM 0.8138 0.7808 0.7022 0.7848 0.7164

L1-ESPIRiT PSNR 37.3810 35.9555 34.1941 35.9088 33.5887
SSIM 0.8279 0.7689 0.7612 0.7714 0.7589

JSENSE PSNR 33.5558 34.0555 30.8670
SSIM 0.8723 0.8665 0.7818

MOCCA PSNR (12)38.7136 (40)35.1875 (75)32.0755 (50)35.6563 (90)32.0203
(L=5) SSIM 0.9119 0.8795 0.8111 0.8896 0.7995

MOCCA-S PSNR (12)39.4055 (40)36.7334 (75)33.2165 (50)37.2826 (90)33.6516
(L=5) SSIM 0.9241 0.9301 0.8845 0.9354 0.8897

MOCCA PSNR 41.3746. 35.1676 29.1279 35.0675 27.8404
direct (L=5) SSIM 0.9643 0.8859 0.6491 0.8815 0.6078

MOCCA-S PSNR 42.1886 37.4517 32.2398 36.7925 29.3610
direct (L=5) SSIM 0.9717 0.9369 0.7876 0.9294 0.7119

Figure 3. Reconstruction results for the first data set obtained from a third of the k-space data of 8 coils
(every third column acquired) for di↵erent methods. From left to right: (1) MOCCA using Algorithm 3.1
(taking Algorithm 3.2 with 40 iterations), (2) MOCCA-S (with 40 iterations and smoothing), (3) L1-ESPIRiT,
(4) ESPIRiT and (5) GRAPPA. Corresponding error maps are given below. All error images use the same
scale with relative error in [0, 0.12], where 0 corresponds to black and 0.12 to white.

step, where the parameter � is taken in dependence of R. We used � = 0.00015 for R = 2,661

� = 0.0005 for R = 3 and R = 4(1
2 , 1

2), � = 0.0013 for R = 4(1, 1
4) and R = 6. The results662

MOCCA direct and MOCCA-S direct are obtained by Algorithm 3.3. As before, Algorithm663

3.3 outperforms Algorithm 3.2 for R = 2, 3, and R = 4(1
2 , 1

2) and is worse for the other cases.664

Since the parallel MRI data do not exactly fit our model with the chosen support sizes, the665

MOCCA matrix AM obtained from the second data set possesses several very small singular666
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Table 1
Comparison of the reconstruction performance for the incomplete data from the first data set.

method measure R = 2, (1, 1
2
) R = 3, (1, 1

3
) R = 4, (1, 1

4
) R = 4, ( 1

2
, 1

2
) R = 6, ( 1

2
, 1

3
)

GRAPPA PSNR 41.4367 36.2093 30.3212 34.8741 28.9493
SSIM 0.9638 0.9039 0.7561 0.8821 0.7236

SPIRiT PSNR 26.7296 28.3496 26.7414 30.8745 29.6801
SSIM 0.9441 0.8794 0.7192 0.8871 0.7307

ESPIRiT PSNR 37.2218 35.1977 32.0629 35.4497 32.6245
SSIM 0.8138 0.7808 0.7022 0.7848 0.7164

L1-ESPIRiT PSNR 37.3810 35.1451 31.6841 35.2158 30.7156
SSIM 0.8279 0.7975 0.7528 0.8016 0.7513

JSENSE PSNR 33.5558 34.0555 30.8670
SSIM 0.8723 0.8665 0.7818

MOCCA PSNR (12)38.7136 (40)35.1875 (75)32.0755 (50)35.6563 (90)32.0203
(L=5) SSIM 0.9119 0.8795 0.8111 0.8896 0.7995

MOCCA-S PSNR (12)39.4055 (40)36.7334 (75)33.2165 (50)37.2826 (90)33.6516
(L=5) SSIM 0.9241 0.9301 0.8845 0.9354 0.8897

MOCCA PSNR 41.3746. 35.1676 29.1279 35.0675 27.8404
direct (L=5) SSIM 0.9643 0.8859 0.6491 0.8815 0.6078

MOCCA-S PSNR 42.1886 37.4517 32.2398 36.7925 29.3610
direct (L=5) SSIM 0.9717 0.9369 0.7876 0.9294 0.7119

Figure 3. Reconstruction results for the first data set obtained from a third of the k-space data of 8 coils
(every third column acquired) for di↵erent methods. From left to right: (1) MOCCA using Algorithm 3.1
(taking Algorithm 3.2 with 40 iterations), (2) MOCCA-S (with 40 iterations and smoothing), (3) L1-ESPIRiT,
(4) ESPIRiT and (5) GRAPPA. Corresponding error maps are given below. All error images use the same
scale with relative error in [0, 0.12], where 0 corresponds to black and 0.12 to white.

MOCCA-S direct) are obtained by using the direct fast Algorithm 3.3. Similarly as before,662

Algorithm 3.3 outperforms Algorithm 3.2 for the cases R = 2, R = 3, and R = 4(1
2 , 1

2) and is663

worse for the other cases.664

Since the parallel MRI data do not exactly fit our model with the chosen support sizes, the665

MOCCA matrix AM obtained from the second data set possesses several very small singular666

values, see Figure 5. While for the first data set with L = 5 and M = 20 (i.e., ACS area of667
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MOCCA MOCCA-S L1-ESPIRiT ESPIRiT GRAPPA
Reconstruction results for the first data set obtained from a third of the k-space
data of 8 coils (every third column acquired). All error images use the same
scale with relative error in [0, 0.12], where 0 corresponds to black and 0.12 to

white.
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Figure 4. Magnitude (left) and phase (in [�⇡,⇡]) (right) of the 8 coil sensitivities obtained for MRI
reconstruction for L = 5 for the first data set before and after multiplication with sign(m), see step 7 of
Algorithm 3.1. The normalized sensitivities are samples of bivariate trigonometric polynomials with L2 = 25

nonzero coe�cients, pointwisely multiplied with the normalization factors (d+)
1
2 to ensure the sos condition.

size 24⇥ 24), the matrix AM contains only two singular values being smaller than �1
100 (where668

�1 denotes the largest singular value), we observe for the second data set (with M = 20 and669

L = 5) that already 11 values are below this bound. For support size L = 7 we have 45 values670

smaller than �1
100 , and for L = 9, even 139 values.671
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Figure 5. Illustration of the singular values of the matrix AM for the first and the second data set. From
left to right: (1) Singular values of AM with L = 5 and 25 · 8 = 200 columns for the first data set. (2) Singular
values of AM with L = 5 and 25 · 8 = 200 columns, (3) with L = 7 and 49 · 8 = 392 columns, and (4) with
L = 9 and 81 · 8 = 648 columns for the second data set.

Therefore, to compute the coe�cient vector c (see step 2 of Algorithm 3.1), we propose672

to take a suitable linear combination of several singular vectors corresponding to the smallest673

singular values of AM . More exactly, for reconstruction from the second data set, we employ674

a linear combination of the form675

c =
NsP
⌫=1

↵⌫c⌫(5.1)676
677

with Ns � 1, ↵⌫ 2 C and with c⌫ being the singular vector of AM corresponding to its ⌫-th678

smallest singular value. Our numerical experiments have shown that this linear combination679

should be taken such that the final vector c = (c(j))Nc
j=0 leads via step 3 of Algorithm 3.1 to680

This manuscript is for review purposes only.

Magnitude (left) and phase (in [−π, π]) (right) of the 8 coil sensitivities
obtained for MRI reconstruction for L = 5 for the first data set before and after

multiplication with sign(m).
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Comparison of reconstructed of coil sensitivities

We have removed this section and have newly written the section on numerical ex-
periments for recovery of MRI images.

10. Please use well-known reconstruction terms such as ACS lines, in-plane acceleration,
etc.
We have tried to improve the manuscript by incorporating these terms which are
usually taken in MRI papers.

11. "und" should be "and" in line 661.
Done.

12. In Figures 2, 3, 5, 6, 7, 8, and 9, the di�erence images should be the same size as the
reconstructed images.
The di�erence images had been smaller to show the colormap description. This is
changed now. The di�erence images now use always the same scale to be comparable.
Furthermore, we presented corresponding tables with PSNR and SSIM values.

13. In Figure 10, a comparison with ESPIRiT maps would be helpful.
In the figure below, we compare the eigenmaps (magnitude) obtained by ESPIRiT
for the first data set with the coil sensitivities obtained in our MOCCA algorithm,
see also Figure 4 in the revised manuscript. The figure for ESPIRiT is obtained from
demo_ESPIRiT_recon.m in the ESPIRiT toolbox by incorporating the first dataset.
This comparison is needs to be taken with care. In ESPIRiT, usually a linear combi-
nation of so-called eigenmaps is used. In the MOCCA algorithm, linear combinations
of singular vectors of the MOCCA matrix (corresponding to the smallest singular
values) can be taken to reconstruct s(j), see Section 5 of the revised manuscript. The
figure shows that both methods lead to similar coil sensitivities while being derived
with very di�erent methods.
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Figure 1:
Magnitude of the 8 coil sensitivities obtained for MRI reconstruction for the first data set (before

multiplication with sign(m)) for ESPIRiT (left) and for MOCCA with L = 5 (right).

14. Please redefine L and M in the results section and the figure captions.
We have repeated the meaning of L and M several times in the results section.
L fixes the size of the support of the sensitivities in k-space, i.e., the number of nonzero
coe�cients L2 of the trigonometric polynomials that determine the coil sensitivities.
M fixes the size of the ACS area, which is then M + L≠ 1. For M = 20 and L = 5,
the ACS box is of size 24 ◊ 24.

16

Magnitude of the 8 coil sensitivities obtained for MRI reconstruction (before
multiplication with sign(m)) for ESPIRiT (left) and for MOCCA with L = 5
(right).

M. Uecker, P. Lai, Mark J. Murphy, P. Virtue, M. Elad, J.M. Pauly, S.S. Vasanawala,
and M. Lustig,
ESPIRiT – An eigenvalue approach to autocalibrating parallel MRI: Where SENSE
meets GRAPPA,
Magn. Reson. Med. 71(3) (2014), 990–1001.
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should be taken such that the final vector c = (c(j))Nc�1
j=0 leads via step 3 of Algorithm 3.1 to680

sensitivities s(j), where the matrix d = (dn)n2⇤N
=
PNc�1

j=0 s(j) � s(j) does not have very small681

entries. In other words, one should exploit the freedom to choose c = (c(j))Nc�1
j=0 in (5.1) to682

achieve sensitivities s(j), which are already close to satisfying the sos condition, such that all683

components dn, n 2 ⇤N are of similar size.684

We have implemented the following method to compute ↵ = (↵⌫)
Ns
⌫=1 determining c685

in (5.1). Let AM = U⌃V denote the SVD of the MOCCA-matrix AM in (3.10), which686

is computed in step 2 of Algorithm 3.1. Further, let VL2Nc,Ns
be the partial matrix of687

V containing the last Ns eigenvectors of AM and w := (eT
0 , eT

0 , . . . , eT
0 )T 2 CL2Nc , with688

e0 = (�0,k)
(L2�1)/2
k=�(L2�1)/2

and the Kronecker symbol �0,k := 0 for k 6= 0 and �0,0 := 1. Then we689

take ↵ = V⇤
L2Nc,Ns

w. The question of how to take Ns suitably and the problem of finding690

better methods to choose ↵⌫ is still open und requires further investigations.691

In Table 2 we have used this approach for L = 5 with Ns = 15 for R = 4, (1
2 , 1

2), R = 6,692

and Ns = 30 otherwise, for L = 7 with Ns = 47, and for L = 9 with Ns = 45 to achieve693

the presented results. We observe very high SSIM values for the MOCCA algorithm, which694

are particularly much higher than for ESPIRiT. This may be due to the fact that the errors695

occurring for the MOCCA reconstructions are very small also outside the boundary of the696

brain.697

Table 2
Comparison of the reconstruction performance for the incomplete data from the second data set.

method measure R = 2, (1, 1
2
) R = 3, (1, 1

3
) R = 4, (1, 1

4
) R = 4, ( 1

2
, 1

2
) R = 6, ( 1

2
, 1

3
)

GRAPPA PSNR 47.2028 42.9704 37.6036 41.5961 38.5314
SSIM 0.9796 0.9573 0.9167 0.9498 0.9244

ESPIRiT PSNR 40.3668 39.7082 37.1418 39.6082 38.4716
SSIM 0.7490 0.7462 0.7243 0.7461 0.7354

L1-ESPIRiT PSNR 40.2750 39.7584 38.1926 39.6515 38.8431
SSIM 0.7465 0.7520 0.7455 0.7521 0.7503

MOCCA PSNR (10)42.6611 (50)40.3835 (70)34.8179 (50)40.6865 (90)35.9914
(L=5) SSIM 0.9258 0.9474 0.8769 0.9472 0.8752

MOCCA-S PSNR (10)43.2025 (50)41.7574 (70)35.8326 (50)42.2273 (90)37.5114
(L=5) SSIM 0.9314 0.9675 0.9192 0.9679 0.9239

MOCCA PSNR (10)43.5172 (50)41.9112 (70)37.3703 (50)41.7795 (90)37.4211
(L=7) SSIM. 0.9251 0.9461 0.9143 0.9534 0.9011

MOCCA-S PSNR (10)44.0399 (50)43.5151 (70)38.9200 (50)43.5679 (90)39.3194
(L=7) SSIM 0.9299 0.9630 0.9537 0.9729 0.9463

MOCCA PSNR (10)43.2813 (50)41.7241 (70)38.0292 (50)41.2087 (90)37.9957
(L=9) SSIM 0.9199 0.9437 0.9214 0.9489 0.9127

MOCCA-S PSNR (10)43.7645 (50)43.1347 (70)39.7013 (50)42.6955 (90)40.0862
(L=9) SSIM 0.9245 0.9597 0.9579 0.9675 0.9571

MOCCA PSNR 47.4233 42.2531 35.8053 42.1402 34.4736
direct (L=7) SSIM. 0.9844 0.9615 0.8838 0.9616 0.8293

MOCCA-S PSNR 47.9400 43.8822 38.0142 43.9457 36.4445
direct (L=7) SSIM 0.9866 0.9764 0.9374 0.9792 0.8954

In Figure 6, we exemplarily represent the reconstruction results for R = 4 (every fourth698

column acquired) and the corresponding error maps for the second data set. The MOCCA-S699
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reconstructions for L = 9 and L = 11 in Figure 6 do not contain obviously visible aliasing arti-701

facts. The GRAPPA and ESPIRiT reconstructions in Figure 6 contain slightly visible alising702

artifacts. Note that a high PSNR value not always implies a very good visual reconstruction703

result since pointwise large errors are not strongly punished by this measure.704

Figure 6. Reconstruction results obtained from a fourth of the k-space data of the second data set with 8
coils (every fourth column acquired) for MOCCA-S, ESPIRiT, and GRAPPA. From left to right: (1) MOCCA-
S with L = 7, (2) MOCCA-S with L = 9, and (3) MOCCA-S with L = 11, all using Algorithm 3.1 with
Algorithm 3.2 and smoothing with � = 0.002, (4) ESPIRiT, (5) GRAPPA. Corresponding error maps are given
below, where darker means smaller error. All error images use the same scale with relative error in [0, 0.14],
where 0 corresponds to black and 0.14 to white.

Finally, in Figure 7, we illustrate the magnitude and the phase of the 8 normalized coil705

sensitivities s̃(j) obtained for the second data set with L = 9. Since these sensitivities are706

constructed from bivariate trigonometric polynomials of higher degree (with 81 nonzero coef-707

ficients) they possess a more oscillatory behavior in magnitude and phase than the sensitivities708

for the first data set for L = 5.709

The implementation of the MOCCA algorithms have been performed in Matlab. The710

presentation of coils in Figures 4 and 7 uses imshow3.m by M. Lustig and phasemap.m by C.711

Greene. The code is available at https://na.math.uni-goettingen.de.712

6. Conclusions. Previous sub-space methods in parallel MRI [38, 42, 10, 23] are usu-713

ally based on the assumption that the block Hankel matrix (Y
(0)
N,L,Y

(1)
N,L, . . . ,Y

(Nc�1)
N,L ) 2714

CN2⇥L2Nc , where Y
(j)
N,L = (y

(j)
(⌫�r)mod⇤N

)⌫2⇤N ,r2⇤L
with L being a suitable small window size,715

has low rank. More exactly, it is assumed that the rank of this matrix is essentially smaller716

than L2Nc. The application of these methods based on (structured) low-rank matrix ap-717

proximations and the study the reconstructed sensitivities s(j) leads to the observation that718

the s(j) usually have (approximately) a small support in k-space, see e.g. [38, 42]. Our new719

MOCCA approach directly computes the sensitivities and the magnetization image based on720

the a priori fixed model (2.2) (resp. (2.4)) and can therefore be seen as a counterpart of the721

known algorithms. Our di↵erent view provides several advantages: We can provide simple and722

fast reconstruction algorithms for incomplete k-space data in parallel MRI achieving similarly723
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MOCCA-S MOCCA-S MOCCA-S ESPIRiT GRAPPA
(L = 7) (L = 9) (L = 11)

Reconstruction results obtained from a fourth of the k-space data of the second
data set with 8 coils (every fourth column acquired).

Gerlind Plonka (University of Göttingen) Parallel MRI, MOCCA Luminy 2024 22 / 25



Reconstruction of coil sensitivities for the second data set

28 G. PLONKA AND Y. RIEBE

0.2

0.4

0.6

0.8

-2

0

2

0

0.2

0.4

0.6

0.8

-2

0

2

Figure 7. Magnitude (left) and phase (in [�⇡,⇡]) (right) of the 8 coil sensitivities obtained for MRI
reconstruction for L = 9 for the second data set before and after multiplication with sign(m), see step 7 of
Algorithm 3.1. The normalized sensitivities are samples of bivariate trigonometric polynomials with L2 = 81

nonzero coe�cients, pointwisely multiplied with the normalization factors (d+)
1
2 to ensure the sos condition.

good reconstruction results as the best sub-space methods.724

One question, which still stays to be open regarding the MOCCA approach is to determine725

a suitable support index set ⇤L for the coil sensitivities in practice. A larger support index726

set may lead to many singular values of the MOCCA matrix AM in (3.10) being close to727

zero. In this case, the choice of a suitable linear combination of singular vectors is crucial to728

achieve satisfying sensitivities and image reconstructions. In this paper, we have exemplarily729

shown that the MOCCA algorithm can outperform several other methods, while the problem730

of finding an optimal linear combination of singular vectors in case of overestimated support731

set is still under investigation.732

There is a close connection between the MOCCA approach and the subspace methods733

ESPIRiT and SAKE which we study in a forthcoming paper [21]. A better understanding734

of the relation between subspace methods and sensitivity modelling will help us to answer735

the question of optimal recovering of sensitivity profiles with small k-space support and to736

find other sensitivity models being appropriate for parallel MRI reconstructions thereby still737

allowing fast reconstruction procedures.738
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Summary

We have proposed a new model based reconstruction method (MOCCA)
for the blind deconvolution problem occurring in parallel MRI.

The sensitivity functions are modeled by bivariate trigonometric
polynomials of small degree and can be recovered in a first step by solving
an eigenvalue problem.

The magnetization image can be recovered from incomplete measurement
data by solving a least squares problem.

The algorithm provides exact recovery up to a global constant if the data
satisfy the model.

The algorithm is numerically stable and highly efficient, it requires
O(NcN2 logN) operations.

The approach can be simply generalized to other models for the
sensitivities.
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