Three stories on deep linear networks

SIGMA 2024 WORKSHOP, CIRM, MARSEILLE OCTOBER 29TH, 2024

Pierre Marion, Lénaïc Chizat

Deep linear networks for regression are implicitly regularized towards flat minima NeurIPS 2024

[Maximal learning rate for gradient descent](#page-2-0)

[Gradient flow from a small-scale initialization](#page-20-0)

[Gradient flow from a residual initialization](#page-29-0)

[Maximal learning rate for gradient descent](#page-2-0)

[Gradient flow from a small-scale initialization](#page-20-0)

[Gradient flow from a residual initialization](#page-29-0)

▶ Optimization problem

 $\min_{\mathcal{W}\in\mathbb{R}^p}R^L(\mathcal{W})$.

� **Gradient descent** (GD):

$$
\mathcal{W}_{t+1} = \mathcal{W}_t - \eta \nabla R^L(\mathcal{W}_t).
$$

 \sum Maximal admissible value of η ?

� Optimization problem

 $\min_{\mathcal{W}\in\mathbb{R}^p}R^L(\mathcal{W})$.

� **Gradient descent** (GD):

$$
\mathcal{W}_{t+1} = \mathcal{W}_t - \eta \nabla R^L(\mathcal{W}_t).
$$

- \sum Maximal admissible value of η ?
- \blacktriangleright **Notation:** the sharpness $S(\mathcal{W})$ is the largest eigenvalue of the Hessian of R^L .
- � **Convex optimization:** descent lemma for gradient descent (GD) with learning rate η if

$$
\eta < \frac{2}{\sup_{\mathcal{W} \in \mathbb{R}^p} S(\mathcal{W})} \quad \Leftrightarrow \quad \sup_{\mathcal{W} \in \mathbb{R}^p} S(\mathcal{W}) < \frac{2}{\eta} \, .
$$

 \sum This is a necessary condition for convergence for a quadratic objective.

 \blacktriangleright see Wu, Bartlett, Telgarsky, Yu (2024). 5

Deep linear networks for regression

> Deep linear networks

$$
x \mapsto p^{\top} W_L \ldots W_1 x,
$$

with $x\in\mathbb{R}^d$, parameters $\mathcal{W}=\set{W_k\in\mathbb{R}^{d_k\times d_{k-1}}}_{1\leq k\leq L}$ and $p\in\mathbb{R}^{d_L}$ is a fixed vector.

Deep linear networks for regression

> Deep linear networks

$$
x \mapsto p^{\top} W_L \ldots W_1 x,
$$

with $x\in\mathbb{R}^d$, parameters $\mathcal{W}=\set{W_k\in\mathbb{R}^{d_k\times d_{k-1}}}_{1\leq k\leq L}$ and $p\in\mathbb{R}^{d_L}$ is a fixed vector.

2 key settings

- \triangleright Multi-layer perceptron: $d_L = 1$ and $p = 1$.
- \triangleright Residual network: $d_0 = \cdots = d_L = d$, $W_k \approx I$.

Deep linear networks for regression

> Deep linear networks

$$
x \mapsto p^{\top} W_L \ldots W_1 x,
$$

with $x\in\mathbb{R}^d$, parameters $\mathcal{W}=\set{W_k\in\mathbb{R}^{d_k\times d_{k-1}}}_{1\leq k\leq L}$ and $p\in\mathbb{R}^{d_L}$ is a fixed vector.

2 key settings

- \triangleright Multi-layer perceptron: $d_L = 1$ and $p = 1$.
- \triangleright Residual network: $d_0 = \cdots = d_L = d$, $W_k \approx I$.

▶ Regression task: $X \in \mathbb{R}^{n \times d}$, $y \in \mathbb{R}^n$, π^\star optimal regressor of minimal norm.

� Mean squared error:

$$
R^{L}(\mathcal{W}) = \frac{1}{n} \|y - XW_{1}^{\top} \dots W_{L}^{\top} p\|_{2}^{2}.
$$

GD fails when η exceeds a critical value

Where does the critical learning rate value come from?

Damian, Nichani, Lee (2023)

GD implicitly solves

$$
\min_{\mathcal{W}} R^L(\mathcal{W}) \quad \text{such that} \quad S(\mathcal{W}) \le \frac{2}{\eta} \, .
$$

� **Interpretation:** GD cannot converge to a minimizer as soon as

$$
\inf_{\mathcal{W}\in \arg\min(R^L)} S(\mathcal{W}) > \frac{2}{\eta} \quad \Leftrightarrow \quad \eta > \frac{2}{\inf_{\mathcal{W}\in \arg\min(R^L)} S(\mathcal{W})} \, .
$$

Where does the critical learning rate value come from?

Damian, Nichani, Lee (2023)

GD implicitly solves

$$
\min_{\mathcal{W}} R^L(\mathcal{W}) \quad \text{such that} \quad S(\mathcal{W}) \le \frac{2}{\eta} \, .
$$

� **Interpretation:** GD cannot converge to a minimizer as soon as

$$
\inf_{\mathcal{W}\in \arg\min(R^L)} S(\mathcal{W}) > \frac{2}{\eta} \quad \Leftrightarrow \quad \eta > \frac{2}{\inf_{\mathcal{W}\in \arg\min(R^L)} S(\mathcal{W})} \, .
$$

Theorem (Mulayoff and Michaeli, 2020; M. and Chizat, 2024)

$$
\inf_{\mathcal{W}\in\arg\min(R^L)} S(\mathcal{W}) \sim 2 L a \|\pi^{\star}\|_2^2 \quad \text{with} \quad a = \Big(\frac{\pi^{\star}}{\|\pi^{\star}\|}\Big)^{\top} \frac{X^{\top}X}{n} \frac{\pi^{\star}}{\|\pi^{\star}\|} \,.
$$

Where does the critical learning rate value come from?

Damian, Nichani, Lee (2023)

GD implicitly solves

$$
\min_{\mathcal{W}} R^L(\mathcal{W}) \quad \text{such that} \quad S(\mathcal{W}) \le \frac{2}{\eta} \, .
$$

Theorem (Mulayoff and Michaeli, 2020; M. and Chizat, 2024)

$$
\inf_{\mathcal{W}\in \arg \min(R^L)} S(\mathcal{W}) \sim 2La \|\pi^{\star}\|_2^2 \quad \text{with} \quad a = \left(\frac{\pi^{\star}}{\|\pi^{\star}\|}\right)^\top \frac{X^\top X}{n} \frac{\pi^{\star}}{\|\pi^{\star}\|} \,.
$$

 \blacktriangleright GD fails if $\eta > \frac{1}{La \|\pi^\star\|_2^2}$. \blacktriangleright After training to a minimizer, $2 La \| \pi^\star \|_2^2 \leq S(\mathcal{W}) \leq \frac{2}{\eta}$.

5 OD fails if
$$
\eta > \frac{1}{La \|\pi^{\star}\|_2^2}
$$
.

5 5 GD fails if
$$
\eta > \frac{1}{La||\pi^*||_2^2}
$$
.

 \blacktriangleright After training, $2La \|\pi^\star\|_2^2 \leq S(\mathcal{W}) \leq \frac{2}{\eta}$.

5 5 GD fails if
$$
\eta > \frac{1}{La||\pi^*||_2^2}
$$
.

 \blacktriangleright After training, $2La \|\pi^\star\|_2^2 \leq S(\mathcal{W}) \leq \frac{2}{\eta}$.

From a small-scale initialization

- \triangleright Sharpness does not saturate at $2/\eta$.
- \triangleright The final sharpness is independent of the learning rate.

[Maximal learning rate for gradient descent](#page-2-0)

[Gradient flow from a small-scale initialization](#page-20-0)

[Gradient flow from a residual initialization](#page-29-0)

Our setting

> Deep linear networks

 $x \mapsto W_L \dots W_1 x$

with $x\in\mathbb{R}^d$, parameters $\mathcal{W}=\set{W_k\in\mathbb{R}^{d_k\times d_{k-1}}}_{1\leq k\leq L}$, and $d_L=1.$ > Mean squared error:

$$
R^{L}(\mathcal{W}) = \frac{1}{n} \|y - XW_{1}^{\top} \dots W_{L}^{\top}\|_{2}^{2}.
$$

� Gradient flow (GF):

$$
\frac{dW_k}{dt}(t) = -\frac{\partial R^L}{\partial W_k}(t).
$$

 \blacktriangleright Initialization such that $R^L(\mathcal{W}(0)) \leq \frac{1}{n} \|y\|_2^2$ and $\nabla R^L(\mathcal{W}(0)) \neq 0.$

2 questions

- \triangleright Convergence of gradient flow?
- \triangleright Structure of the minimizer?

Initialization scale controls the structure of the weights

Define σ_k , u_k , v_k the first singular value, left vector and right vector of W_k , and

$$
\varepsilon := 3 \max_{1 \leq k \leq L} \| W_k(0) \|_F^2 + 2 \sum_{k=1}^{L-1} \| W_k(0) W_k^{\top}(0) - W_{k+1}^{\top}(0) W_{k+1}(0) \|_2.
$$

Initialization scale controls the structure of the weights

Define σ*k*, *uk*, *v^k* the first singular value, left vector and right vector of *Wk*, and

$$
\varepsilon := 3 \max_{1 \leq k \leq L} \|W_k(0)\|_F^2 + 2 \sum_{k=1}^{L-1} \|W_k(0)W_k^{\top}(0) - W_{k+1}^{\top}(0)W_{k+1}(0)\|_2.
$$

Lemma

The parameters following gradient flow satisfy for any *t* ≥ 0 that

Example 5 For
$$
k \in \{1, ..., L\}
$$
, $||W_k(t)||_F^2 - ||W_k(t)||_2^2 \le \varepsilon$,
\n**Example 5** For $j, k \in \{1, ..., L\}$, $|\sigma_k^2(t) - \sigma_j^2(t)| \le \varepsilon$,

For
$$
k \in \{1, ..., L-1\}
$$
, $\langle v_{k+1}(t), u_k(t) \rangle^2 \ge 1 - \frac{\varepsilon}{\sigma_{k+1}^2(t)}$.

Initialization scale controls the structure of the weights

Define σ*k*, *uk*, *v^k* the first singular value, left vector and right vector of *Wk*, and

$$
\varepsilon := 3 \max_{1 \leq k \leq L} \|W_k(0)\|_F^2 + 2 \sum_{k=1}^{L-1} \|W_k(0)W_k^{\top}(0) - W_{k+1}^{\top}(0)W_{k+1}(0)\|_2.
$$

Lemma

The parameters following gradient flow satisfy for any $t \geq 0$ that

$$
⇒ for k ∈ {1, ..., L}, \t ||Wk(t)||2F - ||Wk(t)||22 ≤ ε,\n⇒ for j, k ∈ {1, ..., L}, \t |σ2k(t) - σ2j(t)| ≤ ε,\n⇒ for k ∈ {1, ..., L − 1}, \t $\langle v_{k+1}(t), u_k(t) \rangle^2 ≥ 1 - \frac{ε}{σ_{k+1}^2(t)}$.
$$

Proof: for any time $t > 0$ and any $k \in \{1, \ldots, L-1\}$,

$$
W_{k+1}^{\top}(t) W_{k+1}(t) - W_{k+1}^{\top}(0) W_{k+1}(0) = W_k(t) W_k^{\top}(t) - W_k(0) W_k^{\top}(0).
$$

+ computations...

Convergence of GF

Theorem (M. and Chizat, 2024)

The network satisfies the Polyak-Łojasiewicz condition for $t \geq 1$, in the sense that there exists some $\mu > 0$ such that, for $t \geq 1$,

$$
\sum_{k=1}^{L} \left\| \frac{\partial R^L}{\partial W_k}(t) \right\|_F^2 \ge \mu(R^L(\mathcal{W}(t)) - R_{\min}).
$$

Convergence of GF

Theorem (M. and Chizat, 2024)

The network satisfies the Polyak-Łojasiewicz condition for $t \geq 1$, in the sense that there exists some $\mu > 0$ such that, for $t \geq 1$,

$$
\sum_{k=1}^{L} \left\| \frac{\partial R^L}{\partial W_k}(t) \right\|_F^2 \ge \mu(R^L(\mathcal{W}(t)) - R_{\min}).
$$

Beginning of the proof:

$$
\frac{\partial R^L}{\partial W_1}(t) = \underbrace{(W_L(t) \dots W_2(t))^\top}_{d_1 \times 1} \underbrace{g^\top}_{1 \times d_0}.
$$

Therefore

$$
\left\| \frac{\partial R^L}{\partial W_1}(t) \right\|_F^2 = \| W_L(t) \dots W_2(t) \|_2^2 \| g \|_2^2
$$

\n
$$
\ge 4\lambda \| W_L(t) \dots W_2(t) \|_2^2 (R^L(\mathcal{W}(t)) - R_{\min}).
$$

Corollary

Assume that $~32L\sqrt{\varepsilon}\leq 1$ and that the data covariance matrix $\frac{1}{n}X^{\top}X$ is full rank with smallest (resp. largest) eigenvalue λ (resp. Λ).

Then the gradient flow dynamics converge to a global minimizer \mathcal{W}^{SI} of the risk, such that

Corollary

Assume that $~32L\sqrt{\varepsilon}\leq 1$ and that the data covariance matrix $\frac{1}{n}X^{\top}X$ is full rank with smallest (resp. largest) eigenvalue λ (resp. Λ).

Then the gradient flow dynamics converge to a global minimizer \mathcal{W}^{SI} of the risk, such that

$$
\begin{aligned}\n\text{For } k \in \{1, \ldots, L\}, & \|\boldsymbol{W}_{k}^{\text{SI}}\|_{F}^{2} - \|\boldsymbol{W}_{k}^{\text{SI}}\|_{2}^{2} \leq \varepsilon, & \text{(rank-one)} \\
\text{For } k \in \{1, \ldots, L\}, & \left(\frac{\|\pi^{\star}\|_{2}}{2}\right)^{1/L} \leq \sigma_{k}^{\text{SI}} \leq \left(2\|\pi^{\star}\|_{2}\right)^{1/L}, & \text{(low-norm)} \\
\text{For } k \in \{1, \ldots, L-1\}, & \langle v_{k+1}^{\text{SI}}, u_{k}^{\text{SI}}\rangle^{2} \geq 1 - \frac{\varepsilon}{\left(2\|\pi^{\star}\|_{2}\right)^{2/L}}, & \text{(alignment)} \\
\text{for } k \in \{\frac{N}{\sigma_{\min}}\} \leq 4\frac{\Lambda}{\lambda}.\n\end{aligned}
$$

[Maximal learning rate for gradient descent](#page-2-0)

[Gradient flow from a small-scale initialization](#page-20-0)

[Gradient flow from a residual initialization](#page-29-0)

From multi-layer perceptrons to residual networks

 $h_{k+1} = f(h_k, V_{k+1})$ $h_{k+1} = h_k + f(h_k, V_{k+1})$ $60¹$ 50 50 $\begin{array}{c} \frac{\sqrt{3}}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{array}$ $\text{error}\left(\% \right)$ $\overline{4}$ 34-layer 18-layer $3($ 30 18-layer plain-18 ResNet-18 muni plain-34 -ResNet-34 34-layer $\overline{20}$ $\overline{30}$ $\overline{50}$ $\overline{20}$ $\overline{30}$ 10 40 $10[°]$ 40 50 iter. $(1e4)$ iter. $(1e4)$

He, Zhang, Ren, Sun (2015)

$$
h_{k+1} = h_k + V_{k+1}h_k = \underbrace{(I + V_{k+1})}_{=:W_{k+1}}h_k
$$

 \blacktriangleright GF on V_{k+1} initialized at $V(0)$ is equivalent to GF on W_{k+1} initialized at $I + V(0)$.

$$
h_{k+1} = h_k + V_{k+1}h_k = \underbrace{(I + V_{k+1})}_{=:W_{k+1}}h_k
$$

 \triangleright GF on V_{k+1} initialized at $V(0)$ is equivalent to GF on W_{k+1} initialized at $I + V(0)$. **▶ Deep linear networks**

$$
x \mapsto p^{\top} W_L \ldots W_1 x,
$$

with $x\in\mathbb{R}^d$, parameters $\mathcal{W}=\set{W_k\in\mathbb{R}^{d\times d}}_{1\leq k\leq L}$, and $p\in\mathbb{R}^d$ is fixed.

$$
h_{k+1} = h_k + V_{k+1}h_k = \underbrace{(I + V_{k+1})}_{=:W_{k+1}}h_k
$$

 \triangleright GF on V_{k+1} initialized at $V(0)$ is equivalent to GF on W_{k+1} initialized at $I + V(0)$. **▶ Deep linear networks**

$$
x \mapsto p^{\top} W_L \ldots W_1 x,
$$

with $x\in\mathbb{R}^d$, parameters $\mathcal{W}=\set{W_k\in\mathbb{R}^{d\times d}}_{1\leq k\leq L}$, and $p\in\mathbb{R}^d$ is fixed.

� Gradient flow (GF):

$$
\frac{dW_k}{dt} = -\frac{\partial R^L}{\partial W_k}.
$$

$$
h_{k+1} = h_k + V_{k+1}h_k = \underbrace{(I + V_{k+1})}_{=:W_{k+1}}h_k
$$

 \triangleright GF on V_{k+1} initialized at $V(0)$ is equivalent to GF on W_{k+1} initialized at $I + V(0)$. **▶ Deep linear networks**

$$
x \mapsto p^{\top} W_L \ldots W_1 x,
$$

with $x\in\mathbb{R}^d$, parameters $\mathcal{W}=\set{W_k\in\mathbb{R}^{d\times d}}_{1\leq k\leq L}$, and $p\in\mathbb{R}^d$ is fixed.

� Gradient flow (GF):

$$
\frac{dW_k}{dt} = -\frac{\partial R^L}{\partial W_k}.
$$

> Initialization:

$$
W_k(0) = I + \frac{s}{\sqrt{Ld}} N_k.
$$

Zoom on the initialization

$$
W_k(0) = I + \frac{s}{\sqrt{Ld}} N_k.
$$

- **→** N_k : matrices with independent standard Gaussian entries.
- \sum_{k} 1/ \sqrt{d} factor: "right" scaling in the large-width limit.
- \blacktriangleright 1/ \sqrt{L} factor: "right" scaling in the large-depth limit.
- � *s* factor: hyperparameter (independent of width and depth).
- � On scaling factors, see (for example) Glorot and Bengio (2010); He, Zhang, Ren, Sun (2015); Arpit, Campos, Bengio (2019); Marion, Fermanian, Biau, Vert (2022); Chizat and Netrapalli (2023); Yang, Yu, Zhu, Hayou (2024).

Convergence of GF

Theorem (M. and Chizat, 2024)

There exist $C_1, \ldots, C_5 > 0$ depending only on *s* such that, if $L > C_1$ and $d > C_2$, then, with probability at least

$$
1-16\exp(-C_3 d)\,
$$

if

$$
R^{L}(\mathcal{W}(0)) - R_{\min} \leq \frac{C_4\lambda^2\|p\|_2^2}{\Lambda},
$$

the gradient flow converges to a global minimizer \mathcal{W}^{RI} of the risk. Furthermore, the minimizer \mathcal{W}^{RI} satisfies

$$
W^{\text{RI}}_k = I + \frac{s}{\sqrt{Ld}}N_k + \frac{1}{L}\theta^{\text{RI}}_k \quad \text{with} \quad \|\theta^{\text{RI}}_k\|_F \leq C_5\,, \quad 1\leq k\leq L\,.
$$

Lemma (simplified)

For $u > 0$, with probability at least

$$
1 - 8 \exp\left(-\frac{du^2}{32s^2}\right),\,
$$

it holds for all θ such that $\max_{1\leq k\leq L}\|\theta_k\|_2\leq \frac{1}{64}\exp(-2s^2-4u)$ and all $k\in\{1,\ldots,L\}$ that

$$
\left\|\left(I+\frac{s}{\sqrt{Ld}}N_k+\frac{1}{L}\theta_k\right)\dots\left(I+\frac{s}{\sqrt{Ld}}N_1+\frac{1}{L}\theta_1\right)\right\|_2\leq 4\exp\left(\frac{s^2}{2}+u\right),\,
$$

and

$$
\sigma_{\min}\Big(\Big(I+\frac{s}{\sqrt{Ld}}N_k+\frac{1}{L}\theta_k\Big)\dots\Big(I+\frac{s}{\sqrt{Ld}}N_1+\frac{1}{L}\theta_1\Big)\Big)\geq \frac{1}{4}\exp\Big(-\frac{2s^2}{d}-u\Big)\,.
$$

Connection with sharpness

Theorem (M. and Chizat, 2024)

The minimizer W^{RI} satisfies

$$
W^{\text{RI}}_k = I + \frac{s}{\sqrt{Ld}}N_k + \frac{1}{L}\theta^{\text{RI}}_k \quad \text{with} \quad \|\theta^{\text{RI}}_k\|_F \leq C_5\,, \quad 1\leq k\leq L\,.
$$

Corollary

If the data covariance matrix $\frac{1}{n}X^\top X$ is full rank, there exists $\mathit{C}>0$ depending only on s such that the following bounds on the sharpness of the minimizer \mathcal{W}^{RI} hold:

$$
1 \leq \frac{S(\mathcal{W}^{\text{RI}})}{S_{\min}} \leq C \frac{\Lambda}{\lambda} \, .
$$

Why does the sharpness increase during the early phase of training?

Damian, Nichani, Lee (2023)

Thank you!

Want to know more? arXiv:2405.13456

 \triangleright pierre.marion@epfl.ch \bigcirc <https://pierremarion23.github.io> � Mean squared error:

$$
R^{L}(\mathcal{W}) = \frac{1}{n} ||y - XW_{1}^{\top} \dots W_{L}^{\top} p||_{2}^{2}.
$$

- \blacktriangleright $\,$ <code>Assumption:</code> the covariance matrix $\frac{1}{n}X^{\top}X \in \mathbb{R}^{d \times d}$ is full-rank, with smallest and largest eigenvalues λ and Λ .
- \blacktriangleright The linear regression problem of y on X has a unique minimizer $\pi^\star \in \mathbb{R}^d.$
- \blacktriangleright Consequence: all minimizers of $R^L(\mathcal{W})$ are equal in function space to $x \mapsto x^{\top}\pi^{\star}.$

Lower bounds on the sharpness of minimizers

Theorem (Mulayoff and Michaeli, 2020; M. and Chizat, 2024)

Let
$$
S_{\min} = \inf_{\mathcal{W} \in \arg \min R^L(\mathcal{W})} S(\mathcal{W})
$$
 and $a := (w^*/\|w^*\|)^{\top} \hat{\Sigma}(w^*/\|w^*\|)$. We have
\n
$$
S_{\min} \ge 2a \|w^*\|_2^{2-\frac{1}{L}} \|p\|^{\frac{1}{L}} \sum_{k=1}^L \frac{1}{\|W_k\|_F},
$$

and

$$
2\|w^\star\|_2^{2-\frac{2}{L}}\|p\|^{\frac{2}{L}}La \leq S_{\min} \leq 2\|w^\star\|_2^{2-\frac{2}{L}}\|p\|^{\frac{2}{L}}\sqrt{(2L-1)\Lambda^2+(L-1)^2a^2}.
$$

◆ The sharpness of minimizers can be arbitrarily high: take any minimizer $W = (W_1, \ldots, W_L)$ and consider $W^C = (CW_1, W_2/C, W_3, \ldots, W_L)$. Then

$$
S(\mathcal{W}^C) \geq \frac{2\lambda \|\pi^\star\|_2^{2-\frac{1}{L}}}{\|W_2/C\|_F} = \frac{2\lambda \|\pi^\star\|_2^{2-\frac{1}{L}}C}{\|W_2\|_F} \xrightarrow{C \to \infty} \infty.
$$

How to lower-bound $||W_L(t)...W_2(t)||_2$?

$$
\left\|\frac{\partial R^L}{\partial W_1}(t)\right\|_F^2 \geq 4\lambda \|W_L(t)\dots W_2(t)\|_2^2(R^L(\mathcal{W}(t)) - R_{\min}).
$$

 \blacktriangleright Two cases depending on the magnitude of $\sigma_1(t)$.

How to lower-bound $||W_L(t)...W_2(t)||_2$?

$$
\left\|\frac{\partial R^L}{\partial W_1}(t)\right\|_F^2 \geq 4\lambda \|W_L(t)\dots W_2(t)\|_2^2(R^L(\mathcal{W}(t)) - R_{\min}).
$$

 \blacktriangleright If $\sigma_1(t)$ is "large":

Lemma (reminder)

The parameters following gradient flow satisfy for any *t* ≥ 0 that

$$
\begin{array}{ll}\n\text{for } j, k \in \{1, \ldots, L\}, & |\sigma_k^2(t) - \sigma_j^2(t)| \leq \varepsilon \, . \\
\text{for } k \in \{1, \ldots, L - 1\}, & \langle v_{k+1}(t), u_k(t) \rangle^2 \geq 1 - \frac{\varepsilon}{\sigma_{k+1}^2(t)} \, .\n\end{array}
$$

How to lower-bound $||W_L(t)...W_2(t)||_2$?

$$
\left\|\frac{\partial R^L}{\partial W_1}(t)\right\|_F^2 \geq 4\lambda \|W_L(t)\dots W_2(t)\|_2^2(R^L(\mathcal{W}(t)) - R_{\min}).
$$

 \blacktriangleright If $\sigma_1(t)$ is "small":

Assumption (reminder)

 \blacktriangleright Initialization such that $R^L(\mathcal{W}(0)) \leq \frac{1}{n} \|y\|_2^2$ and $\nabla R^L(\mathcal{W}(0)) \neq 0$.

P For $t \geq 1$, $\pi(\mathcal{W}(t))$ cannot be too close from 0.

Since $\sigma_1(t)$ is small, this implies that $||W_L(t)... W_2(t)||_2$ is large. P

Deep linear networks with small-scale initialization

GF for deep linear networks for regression from a small-scale initialization:

- > converges to a global minimum.
- \blacktriangleright the weights matrices are rank-one and aligned.
- � implicit regularization towards small norm and small sharpness.

Some prior work with a similar flavor

- � Ji and Telgarsky (2018): aligned and rank-one layers for classification with linearly separable data.
- � Saxe et al. (2014, 2019); Lampinen and Ganguli (2019); Gidel et al. (2019); Varre et al. (2023): implicit regularization towards low-rank structure in parameter space for two-layer neural networks.
- � Jacot et al. (2021): low-rank saddle-to-saddle dynamics for deep linear networks.

GF for deep linear networks for regression from a residual initialization:

- \sum converges when the initial risk is small enough.
- \blacktriangleright the change to weight matrices is of order $\mathcal{O}(1/L)$.
- > the final sharpness can be bounded.

Some prior work with a similar flavor

- � Bartlett et al. (2018); Arora et al. (2019); Zou et al. (2020); Sander et al. (2022); Marion et al. (2024): convergence for identity or weight-tied initialization.
- � Marion et al. (2022); Zhang et al. (2022): similar concentration bounds for product of random matrices.