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Learning rate and sharpness

� Optimization problem
min
W∈Rp

RL(W) .

� Gradient descent (GD):
Wt+1 = Wt − η∇RL(Wt) .

� Maximal admissible value of η?

� Notation: the sharpness S(W) is the largest eigenvalue of the Hessian of RL.

� Convex optimization: descent lemma for gradient descent (GD) with learning rate η if

η <
2

supW∈Rp S(W)
⇔ sup

W∈Rp
S(W) <

2

η
.

� This is a necessary condition for convergence for a quadratic objective.
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Learning rate and sharpness

� see Wu, Bartlett, Telgarsky, Yu (2024).
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Deep linear networks for regression

� Deep linear networks
x 7→ p>WL . . .W1x ,

with x ∈ Rd , parameters W = {Wk ∈ Rdk×dk−1}1≤k≤L, and p ∈ RdL is a fixed vector.

2 key settings

. Multi-layer perceptron: dL = 1 and p = 1.

. Residual network: d0 = · · · = dL = d, Wk ≈ I .

� Regression task: X ∈ Rn×d , y ∈ Rn , π? optimal regressor of minimal norm.

� Mean squared error:

RL(W) =
1

n
‖y − XW>

1 . . .W>
L p‖22 .
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GD fails when η exceeds a critical value
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Where does the critical learning rate value come from?

Damian, Nichani, Lee (2023)

GD implicitly solves

min
W

RL(W) such that S(W) ≤ 2

η
.

� Interpretation: GD cannot converge to a minimizer as soon as

inf
W∈arg min(RL)

S(W) >
2

η
⇔ η >

2

infW∈arg min(RL) S(W)
.

Theorem (Mulayoff and Michaeli, 2020; M. and Chizat, 2024)

inf
W∈arg min(RL)

S(W) ∼ 2La‖π?‖22 with a =
( π?

‖π?‖

)> X>X
n

π?

‖π?‖
.
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La‖π?‖2

2
.

� After training to a minimizer, 2La‖π?‖22 ≤ S(W) ≤ 2
η .
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Back to our experiment

� GD fails if η > 1
La‖π?‖2

2
.
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From a small-scale initialization

. Sharpness does not saturate at 2/η.

. The final sharpness is independent of the learning rate.
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Our setting

� Deep linear networks
x 7→ WL . . .W1x ,

with x ∈ Rd , parameters W = {Wk ∈ Rdk×dk−1}1≤k≤L, and dL = 1.
� Mean squared error:

RL(W) =
1

n
‖y − XW>

1 . . .W>
L ‖22 .

� Gradient flow (GF):
dWk

dt
(t) = − ∂RL

∂Wk
(t) .

� Initialization such that RL(W(0)) ≤ 1
n‖y‖22 and ∇RL(W(0)) 6= 0.

2 questions

. Convergence of gradient flow?

. Structure of the minimizer?
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Initialization scale controls the structure of the weights

Define σk, uk, vk the first singular value, left vector and right vector of Wk , and

ε := 3 max
1≤k≤L

‖Wk(0)‖2F + 2

L−1∑
k=1

‖Wk(0)W>
k (0)− W>

k+1(0)Wk+1(0)‖2 .

Lemma
The parameters following gradient flow satisfy for any t ≥ 0 that

� for k ∈ {1, . . . ,L}, ‖Wk(t)‖2F − ‖Wk(t)‖22 ≤ ε ,

� for j, k ∈ {1, . . . ,L}, |σ2
k(t)− σ2

j (t)| ≤ ε ,

� for k ∈ {1, . . . ,L − 1}, 〈vk+1(t), uk(t)〉2 ≥ 1− ε

σ2
k+1(t)

.

Proof: for any time t ≥ 0 and any k ∈ {1, . . . ,L − 1},
W>

k+1(t)Wk+1(t)− W>
k+1(0)Wk+1(0) = Wk(t)W>

k (t)− Wk(0)W>
k (0) .

+ computations...
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Convergence of GF

Theorem (M. and Chizat, 2024)

The network satisfies the Polyak-Łojasiewicz condition for t ≥ 1, in the sense that there
exists some µ > 0 such that, for t ≥ 1,

L∑
k=1

∥∥∥ ∂RL

∂Wk
(t)

∥∥∥2
F
≥ µ(RL(W(t))− Rmin) .

Beginning of the proof:
∂RL

∂W1
(t) = (WL(t) . . .W2(t))>︸ ︷︷ ︸

d1×1

g>︸︷︷︸
1×d0

.

Therefore ∥∥∥ ∂RL

∂W1
(t)

∥∥∥2
F
= ‖WL(t) . . .W2(t)‖22‖g‖22

≥ 4λ‖WL(t) . . .W2(t)‖22(RL(W(t))− Rmin) .
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Putting everything together

Corollary

Assume that 32L
√
ε ≤ 1 and that the data covariance matrix 1

n X>X is full rank with
smallest (resp. largest) eigenvalue λ (resp. Λ).

Then the gradient flow dynamics converge to a global minimizer WSI of the risk, such that

� for k ∈ {1, . . . ,L}, ‖W SI
k ‖2F − ‖W SI

k ‖22 ≤ ε , (rank-one)

� for k ∈ {1, . . . ,L},
(

‖π?‖2

2

)1/L
≤ σSI

k ≤
(
2‖π?‖2

)1/L
, (low-norm)

� for k ∈ {1, . . . ,L − 1}, 〈vSIk+1, uSI
k 〉2 ≥ 1− ε(

2‖π?‖2
)2/L , (alignment)

� 1 ≤ S(WSI)
Smin

≤ 4Λ
λ . (low-sharpness)
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From multi-layer perceptrons to residual networks

hk+1 = f (hk,Vk+1) hk+1 = hk + f (hk,Vk+1)

He, Zhang, Ren, Sun (2015)

20



Linear residual networks

hk+1 = hk + Vk+1hk = (I + Vk+1)︸ ︷︷ ︸
=:Wk+1

hk

� GF on Vk+1 initialized at V (0) is equivalent to GF on Wk+1 initialized at I + V (0).

� Deep linear networks
x 7→ p>WL . . .W1x ,

with x ∈ Rd , parameters W = {Wk ∈ Rd×d}1≤k≤L, and p ∈ Rd is fixed.

� Gradient flow (GF):
dWk

dt
= − ∂RL

∂Wk
.

� Initialization:
Wk(0) = I +

s√
Ld

Nk .
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Zoom on the initialization

Wk(0) = I +
s√
Ld

Nk .

� Nk : matrices with independent standard Gaussian entries.

� 1/
√

d factor: “right” scaling in the large-width limit.

� 1/
√

L factor: “right” scaling in the large-depth limit.

� s factor: hyperparameter (independent of width and depth).

� On scaling factors, see (for example) Glorot and Bengio (2010); He, Zhang, Ren,
Sun (2015); Arpit, Campos, Bengio (2019); Marion, Fermanian, Biau, Vert (2022); Chizat
and Netrapalli (2023); Yang, Yu, Zhu, Hayou (2024).
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Convergence of GF

Theorem (M. and Chizat, 2024)

There exist C1, . . . ,C5 > 0 depending only on s such that, if L ≥ C1 and d ≥ C2, then, with
probability at least

1− 16 exp(−C3d) ,

if

RL(W(0))− Rmin ≤ C4λ
2‖p‖22
Λ

,

the gradient flow converges to a global minimizer WRI of the risk. Furthermore, the
minimizer WRI satisfies

W RI
k = I +

s√
Ld

Nk +
1

L
θRIk with ‖θRIk ‖F ≤ C5 , 1 ≤ k ≤ L .
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Concentration of singular values of product of random matrices

Lemma (simplified)

For u > 0, with probability at least

1− 8 exp
(
− du2

32s2
)
,

it holds for all θ such that max1≤k≤L ‖θk‖2 ≤ 1
64 exp(−2s2 − 4u) and all k ∈ {1, . . . ,L} that∥∥∥(I +

s√
Ld

Nk +
1

L
θk

)
. . .

(
I +

s√
Ld

N1 +
1

L
θ1

)∥∥∥
2
≤ 4 exp

(s2

2
+ u

)
,

and

σmin

((
I +

s√
Ld

Nk +
1

L
θk

)
. . .

(
I +

s√
Ld

N1 +
1

L
θ1

))
≥ 1

4
exp

(
− 2s2

d
− u

)
.
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Connection with sharpness

Theorem (M. and Chizat, 2024)

The minimizer WRI satisfies

W RI
k = I +

s√
Ld

Nk +
1

L
θRIk with ‖θRIk ‖F ≤ C5 , 1 ≤ k ≤ L .

Corollary

If the data covariance matrix 1
n X>X is full rank, there exists C > 0 depending only on s

such that the following bounds on the sharpness of the minimizer WRI hold:

1 ≤ S(WRI)

Smin
≤ C Λ

λ
.

25



Conclusion: an open problem

Why does the sharpness increase during the early phase of training?

Damian, Nichani, Lee (2023)
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Thank you!
Want to know more? arXiv:2405.13456

� pierre.marion@epfl.ch
� https://pierremarion23.github.io
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All minimizers implement the same optimal regressor

� Mean squared error:

RL(W) =
1

n
‖y − XW>

1 . . .W>
L p‖22 .

� Assumption: the covariance matrix 1
n X>X ∈ Rd×d is full-rank, with smallest and

largest eigenvalues λ and Λ.

� The linear regression problem of y on X has a unique minimizer π? ∈ Rd .

� Consequence: all minimizers of RL(W) are equal in function space to x 7→ x>π?.

28



Lower bounds on the sharpness of minimizers

Theorem (Mulayoff and Michaeli, 2020; M. and Chizat, 2024)

Let Smin = infW∈arg min RL(W) S(W) and a := (w?/‖w?‖)>Σ̂(w?/‖w?‖). We have

Smin ≥ 2a‖w?‖2−
1
L

2 ‖p‖ 1
L

L∑
k=1

1

‖Wk‖F
,

and
2‖w?‖2−

2
L

2 ‖p‖ 2
L La ≤ Smin ≤ 2‖w?‖2−

2
L

2 ‖p‖ 2
L
√
(2L − 1)Λ2 + (L − 1)2a2 .

� The sharpness of minimizers can be arbitrarily high: take any minimizer
W = (W1, . . .WL) and consider WC = (CW1,W2/C ,W3, . . . ,WL). Then

S(WC) ≥ 2λ‖π?‖2−
1
L

2

‖W2/C‖F
=

2λ‖π?‖2−
1
L

2 C
‖W2‖F

C→∞−−−−→ ∞.
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How to lower-bound ‖WL(t) . . .W2(t)‖2?

∥∥∥ ∂RL

∂W1
(t)

∥∥∥2
F
≥ 4λ‖WL(t) . . .W2(t)‖22(RL(W(t))− Rmin) .

� Two cases depending on the magnitude of σ1(t).
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How to lower-bound ‖WL(t) . . .W2(t)‖2?

∥∥∥ ∂RL

∂W1
(t)

∥∥∥2
F
≥ 4λ‖WL(t) . . .W2(t)‖22(RL(W(t))− Rmin) .

� If σ1(t) is “small”:

Assumption (reminder)

� Initialization such that RL(W(0)) ≤ 1
n ‖y‖22 and ∇RL(W(0)) 6= 0.

💡 For t ≥ 1, π(W(t)) cannot be too close from 0.
💡 Since σ1(t) is small, this implies that ‖WL(t) . . .W2(t)‖2 is large.
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Deep linear networks with small-scale initialization

GF for deep linear networks for regression from a small-scale initialization:

� converges to a global minimum.

� the weights matrices are rank-one and aligned.

� implicit regularization towards small norm and small sharpness.

Some prior work with a similar flavor

� Ji and Telgarsky (2018): aligned and rank-one layers for classification with linearly
separable data.

� Saxe et al. (2014, 2019); Lampinen and Ganguli (2019); Gidel et al. (2019); Varre et al.
(2023): implicit regularization towards low-rank structure in parameter space for
two-layer neural networks.

� Jacot et al. (2021): low-rank saddle-to-saddle dynamics for deep linear networks.
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Deep linear networks with residual initialization

GF for deep linear networks for regression from a residual initialization:

� converges when the initial risk is small enough.

� the change to weight matrices is of order O(1/L).
� the final sharpness can be bounded.

Some prior work with a similar flavor

� Bartlett et al. (2018); Arora et al. (2019); Zou et al. (2020); Sander et al. (2022); Marion et
al. (2024): convergence for identity or weight-tied initialization.

� Marion et al. (2022); Zhang et al. (2022): similar concentration bounds for product of
random matrices.
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