The Fast Newton Transform: Multivariate Interpolation in **Downward Closed Spaces**

Phil-Alexander Hofmann and Michael Hecht

ror_object Mathematical Foundations of Complex Systems Science, CASUS / HZDR Mathematical Foundations Mathematical Institute, University Wrocław use y = F irror_mod.use_z = False **operation** == "MIRROR_Y irror_mod.use_x = False irror_mod.use_y = SIGNA, CIRN, Marseile, 20

SPONSORED BY THE

Federal Ministry of Education and Research

STAATSMINISTERIUM FÜR WISSENSCHAFT KULTUR UND TOURISMUS

CASUS - Center for Advanced Systems Understanding

CBG Max Planck Institute of Molecular Cell Biology and Genetics

SPONSORED BY THE

Federal Ministry of Education and Research

STAATSMINISTERIUM FÜR WISSENSCHAFT KULTUR UND TOURISMUS

Complex Systems Across Disciplines

bio-physics and bio-chemistry

Drosophila Embryo development by Loic Royer

neuro science

droplet simulations / fluid dynamics

astro and quantum physics

Federal Ministry of Education and Research

from SIAM News, Volume 33, Number 4 (2000)

The Best of the 20th Century: Editors Name Top 10 Algorithms

By Barry A. Cipra

lames Cooley

1965: James Cooley of the IBM T.J. Watson Research Center and John Tukey of Princeton University and AT&T Bell Laboratories unveil the fast Fourier transform.

Easily the most far-reaching algo-rithm in applied mathematics, the FFT revolutionized signal processing. The underlying idea goes back to Gauss (who needed to calculate orbits of asteroids), but it was the Cooley–Tukey paper that made it clear how easily Fourier transforms can be computed. Like Quicksort, the FFT relies on a divide-and-conquer strategy to reduce an ostensibly $O(N^2)$ chore to an $O(N \log N)$ frolic. But unlike Quick-sort, the implementation is (at first sight) nonintuitive and less than straightforward. This in itself gave computer science an impetus to investigate the inherent complexity of computational problems and algorithms.

John Tukey

Dongarra, J. and F. Sullivan (2000). Top ten algorithms of the century. Computing in Science and Engineering 2(1), 22–23.

What new insights and algorithms will the 21st century bring? The complete answer obviously won't be known for another hundred years. One thing seems certain, however. As Sullivan writes in the introduction to the top-10 list, "The new century is not going to be very restful for us, but it is not going to be dull either!"

1987: Leslie Greengard and Vladimir Rokhlin of Yale University invent the fast multipole algorithm.

This algorithm overcomes one of the biggest headaches of N-body simulations: the fact that accurate calculations of the motions of N particles interacting via gravitational or electrostatic forces (think stars in a galaxy, or atoms in a protein) would seem to require $O(N^2)$ computations — one for each pair of particles. The fast multipole algorithm gets by with O(N) computations. It does so by using multipole expansions (net charge or mass, dipole moment, quadrupole, and so forth) to approximate the effects of a distant group of particles on a local group. A hierarchical decomposition of space is used to define ever-larger groups as distances increase. One of the distinct advantages of the fast multipole algorithm is that it comes equipped with rigorous error estimates, a feature that many methods lack.

How to compute Multivariate Function Expansions that closely approximate the ground truth function and its derivatives FAST?

Gauss, C. F. (1886). Theoria interpolationis methodo nova tractata Werke band 3, 265–327. *Göttingen: Königliche Gesellschaft der Wissenschaften*.

How to compute Multivariate Function Expansions that closely approximate the ground truth function and its derivatives FAST?

Limitations

senschaften

Polynomials are <u>not</u> feasible for computations ?!

"By the change of variables $x = \cos(\theta)$, one can show that interpolation by polynomials in Chebyshev points is equivalent to interpolation of periodic functions by series of sines and cosines in equispaced points. The latter is the subject of discrete Fourier analysis, and one cannot help noting that whereas there is widespread suspicion that it is not safe to compute with polynomials, nobody worries about the Fast Fourier Transform! In the end, that this may be the biggest difference between Fourier and polynomial interpolants, the difference in their reputations." (Trefethen, 2019).

Figure 1: Chebyshev polynomials of first kind and Chebyshev-Lobatto points, from Trefethen (2019).

Trefethen, L. N. (2019). Approximation theory and approximation practice, SIAM.

Polynomials are <u>not</u> feasible for computations ?!

Geometric approximation of analytic functions in 1D

Theorem: Let $f: [-1,1] \to \mathbb{R}$, p_n^* its best polynomial approximation of degree $n \in \mathbb{N}$. Then

if and only if, f is the restriction of a function $F: E_{\rho} \subset \mathbb{C} \to \mathbb{C}$ holomorphic in the open Bernstein ellipse E_{ρ} . Consequently,

 $||f-Q_n|$

applies for the resulting interpolant Q_n in Chebyshev-Lobatto-nodes. Moreover, even the k-th order deriavitves are approximated as $\|f^{(k)} - Q_n^{(k)}\|$

Trefethen, L. N. (2019). Approximation theory and approximation practice, SIAM.

- $||f p_n * ||_{\infty} = \mathcal{O}(\rho^{-n}), \quad \rho > 1$

$$\|_{\infty} = \mathcal{O}(\rho^{-n+1}), \quad \rho > 1$$

$$\| \|_{\infty} = \mathcal{O}_{\varepsilon}(\rho^{-n+1}) = \mathcal{O}((\rho - \varepsilon)^{-n+1}), \quad \rho > \varepsilon > 0.$$

Polynomials are <u>not</u> feas

Geometric ar

Theorem: Let $f: [-1,1] \to \mathbb{R}$, p_n^* its be

if and only if, f is the restriction of a funct Consequently,

applies for the resulting interpolant Q_n in approximated as

Trefethen, L. N. (2019). Approximation theory and approximation practice, SIAM.

Approximation Theory and Approximation Practice

Extended Edition

Lloyd N. Trefethen

siam

nctions in 1D

E ℕ. Then

pen Bernstein ellipse E_{ρ} .

on the k-th order deriavitives are

$$(-\varepsilon)^{-n+1}), \quad \rho > \varepsilon > 0.$$

The framework in mD

$$P_i = \{p_0, \dots, p_n\} \subseteq [-1, 1], i = 1, \dots, m.$$

$$\leq k \leq n$$
 $\left\{ \begin{array}{l} \leq_{\text{Leja}} \\ , P_i = \text{Cheb}_n^{\leq_{\text{Leja}}}, i = 1, \dots, m. \right\}$

Leja ordered Chebyshev – Lobatto (LCL) nodes

Kuntzmann J. (1960) Methodes numeriques interpolation derivees. Dunod Editeur, Paris. Guenther, R. B., & Roetman, E. L. (1970). Some observations on interpolation in higher dimensions. Mathematics of Computation, 24(111), 517-522. Chung, K. C., & Yao, T. H. (1977). On lattices admitting unique Lagrange interpolations. SIAM Journal on Numerical Analysis, 14(4), 735-743. Chkifa, A., Cohen, A., & Schwab, C. (2014). High-dimensional adaptive sparse polynomial interpolation and applications to parametric PDEs. 11 Foundations of Computational Mathematics, 14, 601-633.

minterpy

due to a multivariate divided difference scheme (DDS)

STORAGE RUNTIME $\mathcal{O}(|A|^2)$ $\mathcal{O}(|A|), |A| = \dim \Pi_A$ center for dresden $[p_{A_0}, p_{A_1}, p_{A_2}, p_{A_3}]f$ $\begin{pmatrix} 0 & 1 & 2 & 3 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 & 2 \\ 1 & 1 & 1 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 & 2 \\ 2 & 2 & 2 \\ 0 & 0 & 0 \end{pmatrix}$ $\begin{pmatrix} 0 \\ 3 \\ 0 \end{pmatrix} \begin{pmatrix} 0 & 1 & 2 \\ 0 & 0 & 0 \\ 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 0 & 1 & 2 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$ $\begin{pmatrix} 0 & 1 & 2 \\ 2 & 2 & 2 \\ 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 0 & 1 & 2 \\ 0 & 0 & 0 \\ 2 & 2 & 2 \end{pmatrix} \quad \begin{pmatrix} 0 & 1 & 2 \\ 1 & 1 & 1 \\ 2 & 2 & 2 \end{pmatrix} \quad \begin{pmatrix} 0 & 1 \\ 2 & 2 \\ 2 & 2 \end{pmatrix}$ Ivo F. Sbalzarini $A_3 = (0)$ Multivariate Divided Difference Scheme (DDS)

Sir Isaac Newt 1643-1726

minterpy a

PDE solv

differential geometry,

 black box optimisation, auto encoder regularisation, model inference etc...

Tal-Ezer, H. (1988). High degree interpolation polynomial in Newton form (No. ICASE-88-39). minterpy Multivariate interpolation, Python (2021) https://github.com/casus/minterpy

Based on Newton interpolation for **downward closed sets**

Acknowledgements

Jannik Michelfeit

Michael Bussmann

Nico Hoffmann

Sir Isaac Newton 1643-1726

Joseph-Louis Lagrange 1736-1813

minterpy applications

- PDE solvers & numerical differential geometry,
- black box optimisation, auto encoder regularisation, model inference etc...

Based on Newton interpolation for **downward closed sets** due to a multivariate divided difference scheme (DDS)

Multivariate Divided Difference Scheme (DDS)

Tal-Ezer, H. (1988). High degree interpolation polynomial in Newton form (No. ICASE-88-39). minterpy Multivariate interpolation, Python (2021) https://github.com/casus/minterpy

minterpy

Acknowledgements

Jannik Michelfeit

Nico Hoffmann

Leslie Greengard

center for dresden

Ivo F. Sbalzarini

Michael Bussmann

How powerful is lp-degree Chebyshev expansion?

Trefethen's Theorem If $f: \square_m \to \mathbb{R}$ is analytic in the **Trefethen domain** $N_{m,o} = \{(z_1, ..., z_m) \in$ where E_{m,h^2}^2 is the **Newton ellipse** with foci 0 and *m* and of the Chebyshev series $f(x) = \sum c_{\alpha} T_{\alpha}(x), c_{\alpha} \in \mathbb{R}$, $\alpha \in \mathbb{N}$ yields the errors $\|f - \mathcal{T}_{A_{m,n,p}}(f)\|_{C^{0}(\Omega)} = \begin{cases} \mathcal{O}_{\varepsilon}(\rho^{-n/\sqrt{m}}) & p = 1\\ \mathcal{O}_{\varepsilon}(\rho^{-n}) & p = 2\\ \mathcal{O}_{\varepsilon}(\rho^{-n}) & n = \infty \end{cases}$ total degree

Trefethen, L. (2017). Multivariate polynomial approximation in the hypercube. Proceedings of the American Mathematical Society, 145(11), 4837-4844.

$$\mathbb{C}^{m}: (z_{1}^{2} + \dots + z_{m}^{2}) \in E_{m,h^{2}}^{2} \} \subseteq \mathbb{C}^{m},$$

leftmost point $-h^{2}, h \in [0,1]$. Then the truncation $\mathcal{T}_{A_{m,n,p}}(x)$
 $T_{\alpha}(x) = \prod_{i=1}^{m} T_{\alpha_{i}}(x_{i}), \quad \mathcal{T}_{A_{m,n,p}}(f) = \sum_{\alpha \in A_{m,n,p}} c_{\alpha}T_{\alpha}(x), \text{ to } \Pi$

= 1
= 2,
$$\rho = h + \sqrt{1 + h^2} > 1$$
.
= ∞

 $|A_{m,n,1}| = \binom{m+n}{m} \in \mathcal{O}(m^n) \qquad |A_{m,n,2}| \approx \frac{(n+1)^m}{\sqrt{\pi m}} \left(\frac{\pi e}{2m}\right)^{m/2} \in o(n^m) \qquad |A_{m,n,\infty}| = (n+1)^m \in \mathcal{O}(m^n)$ **Euclidean degree** maximum degree

Is the converse also true?

Trefethen's Conjecture: If $f: \square_m \to \mathbb{R}$ possesses a polynomial approximation of geometric rate

 $\|f$

Then f can be analytically extended to $N_{m,\rho}$.

Bos-Levenberg Theorem: Let $f: K \to \mathbb{C}, K \subseteq \mathbb{C}^m$, PL-regular $\Pi_n = \Pi(nP), P$ is a convex body. Then

$$\|f - p_n^*\|_{C^0(\Omega)} \lesssim \rho^{-n}, \quad \rho = \rho(P), \quad \Longleftrightarrow \quad f = F_{|K} \text{ with } F \text{ holomorphic in } \Omega_{\rho},$$

where the **Bos-Levenberg domain** $\Omega_{\rho} = \{z \in \mathbb{C}^m : |Q(z)| < \log(\rho), \text{ for all } Q \in \Pi(nP), \|Q_{|K}\|_{\infty} \leq 1\} \subset \mathbb{C}^m \text{ is } \mathbb{C}^m \}$ precompact.

L. Bos & N. Levenberg Bernstein–Walsh theory associated to convex bodies and applications to multivariate approximation theory. Computational Methods and Function Theory (2018)

<u>Theorem</u>: Let $f: \square_m \to \mathbb{R}$, $f = F_{|\square_m}$, F holomorphic in $\|f - Q_n\|_{C^k(\square_m)} = \mathcal{O}_{\varepsilon}(\square_m)$ where $Q_n = Q_{f,P_{A_m,n,p}}$ is the interpolant of f in LCL-nodes.

Chkifa, A., Cohen, A., & Schwab, C. (2014). High-dimensional adaptive sparse polynomial interpolation and applications to parametric PDEs. 15 Foundations of Computational Mathematics, 14, 601-633.

$$-p_n^*\|_{\infty} = \mathcal{O}(\rho^{-n}) \; .$$

n
$$\Omega_{\rho}, \ \Pi_n = \Pi_{m,n,p} \ (P = A_{m,n,p}) \ \text{and} \ k \in \mathbb{N}.$$
 Then
$$(\rho^{-n}), \quad \rho = \rho_p \ ,$$

Interpolating the Runge function in 3D

minterpy Multivariate interpolation, Python (2021) https://github.com/casus/minterpy

Interpolating the Runge function in 3D

minterpy Multivariate interpolation, Python (2021) https://github.com/casus/minterpy

Interpolating the Runge function in 4D

minterpy Multivariate interpolation, Python (2021) https://github.com/casus/minterpy

function	dim	fit range	$ ho_{ m MIP}$	С	ρ
$f_R(x) = 1/(1+10 x ^2)$	2	$2 \sim 121$	1.35	4.30	1.365
$f_R(x) = 1/(1+10 x ^2)$	3	$2\sim 121$	1.34	4.41	1.365
$f_R(x) = 1/(1+1 x ^2)$	4	$2\sim40$	2.33	5.40	2.41
$f_R(x) = 1/(1+1 x ^2)$	5	$2\sim40$	2.35	13.37	2.41

Interpolation in Dimension 5

minterpy Multivariate interpolation, Python (2021) https://github.com/casus/minterpy

Differentiation of the Runge function

		<i>m</i> =	= 2	<i>m</i> =	= 3	<i>m</i> =	= 4
		LCL	LP	LCL	LP	LCL	LP
	1.0	1.911	1.896	1.700	1.703	1.585	1.584
1	2.0	2.332	2.351	2.313	2.353	2.303	2.360
	∞	2.408	2.349	2.412	2.359	2.408	2.371
	1.0	1.252	1.255	1.201	1.204	1.175	1.169
3	2.0	1.360	1.373	1.370	1.375	1.293	1.303
2 <u>1</u>	~	1.387	1.372	1.387	1.367	1.367	1.346
	1.0	1.145	1.147	1.116	1.115	0.000	0.000
5	2.0	1.206	1.212	1.208	1.209	0.000	0.000
· ·	∞	1.219	1.209	1.219	1.209	0.000	0.000

Table 6: Approximation rates of LCL-node and LP-node interpolants of the Runge function F2). Optimal rates are marked bold.

р	<u> 0</u> <u></u> 2:	$\frac{f}{x_1}$	$\frac{\partial^2}{\partial z}$	$\frac{2f}{x_1^2}$
Γ	LCL	LP	LCL	LP
1.0	1.191	1.193	1.169	1.171
2.0	1.338	1.364	1.310	1.325
~	1.365	1.349	1.334	1.333

Table 7: Approximation rates of derivatives of LCL-node and LP-node interpolants of the Runge function F2) in dimension m = 3, with r = 3.

minterpy

1643-1726

- differential
- inference etc...

minterpy Multivariate interpolation, Python (2021) https://github.com/casus/minterpy

Based on Newton interpolation for **downward closed sets** due to a multivariate divided difference scheme (DDS)

Acknowledgements

Relevant publications and contributions

Hecht, M., and Sbalzarini, I.F. Fast interpolation and Fourier transform in high-dimensional spaces. In Intelligent Computing. Proc. 2018 IEEE Computing Conf., Vol.2, (London, UK), K. Arai, S. Kapoor, and R. Bhatia, Eds., vol. 857 of Advances in Intelligent Systems and Computing, Springer Nature, pp. 53–75, 2018.

preprints:

Hecht, M., Gonciarz, K., Michelfeit, J., Sivkin, V., and Sbalzarini, I.F. Multivariate Interpolation in Unisolvent Nodes–Lifting the Curse of Dimensionality, arXiv:2010.10824, 2020.

Hecht, M., Hoffmann, K.B., Cheeseman, B.L., and Sbalzarini, I.F. Multivariate Newton interpolation. arXiv:1812.04256, 2018.

Hecht, M., Hoffmann, K.B., Cheeseman, B.L., and Sbalzarini, I.F. A Quadratic-Time Algorithm for General Multivariate Polynomial Interpolation. arXiv:1710.10846, 2017.

in preparation:

Hecht, M., Wicaksono, D., Gonciarz, K., Michelfeit, J., Sivkin, V., and Sbalzarini, I.F. Multivariate Newton Interpolation Reaches the Optimal Approximation Rates for Bos–Levenberg– Trefethen Functions, submission planned to IMA Journal of Numerical Analysis, Oxford Academic

Hofmann, P.A., Wicaksono, D., and Hecht, M. The Fast Newton Transform: Interpolation in Downward Closed Spaces

Relevant publications and contributions

software releases:

Zavalani, G., and Hecht, M. Surfgeopy: A Python3 library for numerical differential geoemetry on regular surfaces, 2024, https://codebase.helmholtz.cloud/interpol/surfgeopy

Thekke Veettil, S.K., Zavalani, G., Hernandez Acosta, U., Sbalzarini, I.F., and Hecht, M. Global polynomial level sets for numerical differential geometry of smooth closed surfaces. Python library, https://github.com/minterpy-project/minterpy-levelsets,2023

Wicaksono, D., and Hecht, M. UQTestFuns: A Python3 library of uncertainty quantification (UQ) test functions, 2023. https://github.com/casus/uqtestfuns

Hernandez Acosta, U., Thekke Veettil, S. K., Wicaksono, D., and Hecht, M. minterpy – multivariate interpolation in python, 2022, https://github.com/casus/minterpy/

Fast Multivariate Interpolation in Downward-Closed Spaces

Phil-Alexander Hofmann, Damar Wicaksono, and Michael Hecht

CASUS – Center for Advanced Systems Understanding HZDR – Helmholtz-Zentrum Dresden-Rossendorf University Wrocław

October 31, 2024

SIGMA-2024

CASUS - CENTER FOR ADVANCED SYSTEMS UNDERSTANDING HZDR - HELMHOLTZ-ZENTRUM DRESDEN-ROSSENDORF UNIVERSITY WROCŁAW

= 200

→ < Ξ

Introduction	Framework	Fast Full-Tensor Transform	Fast Downward–Closed Transform	Numerical Experiments
00	00000	00000	00000000	0000

Outline

1 Introduction

- 2 Framework
- 3 Fast Full-Tensor Transform
- 4 Fast Downward–Closed Transform
- 5 Numerical Experiments

CASUS - CENTER FOR ADVANCED SYSTEMS UNDERSTANDING HZDR - HELMHOLTZ-ZENTRUM DRESDEN-ROSSENDORF UNIVERSITY WROCLAW

= 900

.

Introduction	Framework	Fast Full-Tensor Transform	Fast Downward–Closed Transform
●O	00000	00000	00000000

Overview

1 Introduction

- 2 Framework
- 3 Fast Full-Tensor Transform
- 4 Fast Downward–Closed Transform
- **5** Numerical Experiments

CASUS - CENTER FOR ADVANCED SYSTEMS UNDERSTANDING HZDR - HELMHOLTZ-ZENTRUM DRESDEN-ROSSENDORF UNIVERSITY WROCLAW

ELE DOG

イロト イポト イヨト イヨト

Introduct O	ion	Framework 00000	Fast Full-Tensor Transform 00000	Fast Downward–Closed Transform 00000000	Numerical Experiments 0000
Intro	ductio	n			
	т		spatial dimension		
	n		polynomial degree		
	$A \subset \mathbb{N}$	m 0 ···	downward closed multi-i	ndex set (non–empty finite)	
	П		downward-closed polynor	nial space	

CASUS - CENTER FOR ADVANCED SYSTEMS UNDERSTANDING HZDR - HELMHOLTZ-ZENTRUM DRESDEN-ROSSENDORF UNIVERSITY WROCLAW

<ロト < 団ト < 国ト < 国ト < 国ト 三国 のQ()</p>

Introducti O●	on	Framework 00000	Fast Full-Tensor Transform 00000	Fast Downward–Closed Transform 00000000	Numerical Experiments 0000	
Intro	ductio	n				
-	т		spatial dimension			
	n		polynomial degree			
	$A \subset \mathbb{N}'_0$	^m	downward closed multi-index set (non-empty finite)			
	П		downward-closed polynor	nial space		

Provide a *framework* for multivariate interpolation in Π for any pair of P' ... one-dimensional nodes, Q ... polynomial basis.

CASUS - CENTER FOR ADVANCED SYSTEMS UNDERSTANDING HZDR - HELMHOLTZ-ZENTRUM DRESDEN-ROSSENDORF UNIVERSITY WROCLAW

◆□▶ ◆母▶ ◆ヨ▶ ◆ヨ▶ ヨヨ シッペ

Introducti O	on	Framework 00000	Fast Full-Tensor Transform 00000	Fast Downward–Closed Transform 00000000	Numerical Experiments 0000	
Intro	ductio	n				
-						
	т	• • •	spatial dimension			
	n		polynomial degree			
	$A \subset \mathbb{N}'_0$	m) ···	downward closed multi-index set (non-empty finite)			
	П		downward-closed polynor	nial space		

I Provide a *framework* for multivariate interpolation in Π for any pair of

P' ... one-dimensional nodes, Q ... polynomial basis.

2 Interpolation is realised on a *non-tensorial grid P*, where all nodes are grid points, but not vice versa.

CASUS - CENTER FOR ADVANCED SYSTEMS UNDERSTANDING HZDR - HELMHOLTZ-ZENTRUM DRESDEN-ROSSENDORF UNIVERSITY WROCLAW

Introducti O●	on	Framework 00000	Fast Full-Tensor Transform 00000	Fast Downward–Closed Transform 00000000	Numerical Experiments 0000	
Intro	ductio	n				
-	m		spatial dimension			
	n		polynomial degree			
	$A \subset \mathbb{N}'_0$	$m \dots$	downward closed multi-index set (non-empty finite)			
	П		downward-closed polynor	nial space		

1 Provide a *framework* for multivariate interpolation in Π for any pair of

P' ... one-dimensional nodes, Q ... polynomial basis.

- Interpolation is realised on a non-tensorial grid P, where all nodes are grid points, but not vice versa.
- **3** Present an *algorithm* for Π that applies the backward and forward transform in

 $\mathcal{O}(N \cdot m \cdot n \cdot \kappa), \quad N \coloneqq \dim(\Pi), \quad 1 \le \kappa \le m.$

▲□▶ ▲□▶ ▲□▶ ▲□▶ 三回日 ののべ

CASUS – Center for Advanced Systems Understanding HZDR – Helmholtz-Zentrum Dresden-Rossendorf University Wrocław

Introducti ○●	on	Framework 00000	Fast Full-Tensor Transform	Fast Downward–Closed Transform 00000000	Numerical Experiments 0000
Intro	ductio	n			
-	т		spatial dimension		
	n		polynomial degree		
	$A \subset \mathbb{N}_0^m$ downward closed multi–index set (non–empty finite)				
	_				

Π ... downward-closed polynomial space

I Provide a *framework* for multivariate interpolation in Π for any pair of

P' ... one-dimensional nodes, Q ... polynomial basis.

- 2 Interpolation is realised on a *non-tensorial grid P*, where all nodes are grid points, but not vice versa.
- **3** Present an *algorithm* for Π that applies the backward and forward transform in

$$\mathcal{O}(N \cdot m \cdot n \cdot \kappa), \quad N \coloneqq \dim(\Pi), \quad 1 \le \kappa \le m.$$

4 The algorithm is designed for any Π, with a detailed analysis conducted on l^p degree polynomial spaces, including Euclidean degree polynomials.

Trefethen, 2017 Chkifa, Cohen, Schwab, 2014

CASUS – CENTER FOR ADVANCED SYSTEMS UNDERSTANDING HZDR – HELMHOLTZ-ZENTRUM DRESDEN-ROSSENDORF UNIVERSITY WROCLAW

Framewor
00000

Overview

1 Introduction

mework

2 Framework

ELE DOG イロト イポト イヨト イヨト

CASUS - Center for Advanced Systems Understanding HZDR – Helmholtz-Zentrum Dresden-Rossendorf UNIVERSITY WROCLAW

Introduction	Framework	Fast Full-Tensor Transform	Fast Downward–Closed Transform	Numerical Experiments
00	00000	00000	00000000	0000

Framework

Downward Closed Polynomial Space

Definition (downward closed multi-index set)

(Finite) $A \subset \mathbb{N}_0^m$ downward closed, if $\forall \beta \in A : \beta \in A \Rightarrow \{\alpha \in \mathbb{N}^m \mid \alpha \leq \beta\} \subset A$.

CASUS - CENTER FOR ADVANCED SYSTEMS UNDERSTANDING HZDR - HELMHOLTZ-ZENTRUM DRESDEN-ROSSENDORF UNIVERSITY WROCLAW

Introduction	Framework	Fast Full-Tensor Transform	Fast Downward–Closed Transform	Numerical Experiments
00	00000	00000	00000000	0000

Framework

Downward Closed Polynomial Space

Definition (downward closed multi-index set)

(Finite) $A \subset \mathbb{N}_0^m$ downward closed, if $\forall \beta \in A : \beta \in A \Rightarrow \{\alpha \in \mathbb{N}^m \mid \alpha \leq \beta\} \subset A$.

1 The maximum degree of each x_i , $1 \le i \le m$, and the overall maximum degree:

$$n_{A,i} \coloneqq \max_{\alpha \in A} \alpha_i, \quad n_A \coloneqq \max_{i=1,\dots,m} n_{A,i}$$

2 The smallest hyper-rectangle containing A:

$$A^{\square} := \{0,\ldots,n_{A,1}\} \times \ldots \times \{0,\ldots,n_{A,m}\}.$$

CASUS - Center for Advanced Systems Understanding HZDR - Helmholtz-Zentrum Dresden-Rossendorf University Wrocław

< □ > < 同 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Introduction	Framework	Fast Full-Tensor Transform	Fast Downward–Closed Transform	Numerical Experiments
00	00000	00000	00000000	0000

Framework

Downward Closed Polynomial Space

Definition (downward closed multi-index set)

(Finite) $A \subset \mathbb{N}_0^m$ downward closed, if $\forall \beta \in A : \beta \in A \Rightarrow \{\alpha \in \mathbb{N}^m \mid \alpha \leq \beta\} \subset A$.

1 The maximum degree of each x_i , $1 \le i \le m$, and the overall maximum degree:

 $n_{A,i} := \max_{\alpha \in A} \alpha_i, \quad n_A := \max_{i=1,\ldots,m} n_{A,i}.$

2 The smallest hyper-rectangle containing A:

$$A^{\square} := \{0,\ldots,n_{A,1}\} \times \ldots \times \{0,\ldots,n_{A,m}\}.$$

Definition (downward closed polynomial space)

Let $m \in \mathbb{N}$ and a (finite) downward closed multi-index set $A \subset \mathbb{N}^m$. Then

$$\Pi_A \coloneqq \operatorname{span}_{\mathrm{I\!R}} \left\{ x^\alpha \mid \alpha \in A \right\}, \quad N_A \coloneqq \dim(\Pi_A) = |A|.$$

CASUS – Center for Advanced Systems Understanding HZDR – Helmholtz-Zentrum Dresden-Rossendorf University Wrocław

< □ > < 同 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □
Introduction	Framework	Fast Full-Tensor Transform	Fast Downward–Closed Transform	Numerical Experiments
00	00000	00000	00000000	0000

Framework

Downward Closed Polynomial Space

Definition (downward closed multi-index set)

(Finite) $A \subset \mathbb{N}_0^m$ downward closed, if $\forall \beta \in A : \beta \in A \Rightarrow \{\alpha \in \mathbb{N}^m \mid \alpha \leq \beta\} \subset A$.

1 The maximum degree of each x_i , $1 \le i \le m$, and the overall maximum degree:

 $n_{A,i} := \max_{\alpha \in A} \alpha_i, \quad n_A := \max_{i=1,\dots,m} n_{A,i}.$

2 The smallest hyper-rectangle containing A:

$$A^{\square} := \{0,\ldots,n_{A,1}\} \times \ldots \times \{0,\ldots,n_{A,m}\}.$$

Definition (downward closed polynomial space)

Let $m \in \mathbb{N}$ and a (finite) downward closed multi-index set $A \subset \mathbb{N}^m$. Then

$$\Pi_A \coloneqq \operatorname{span}_{\mathbb{R}} \left\{ x^{\alpha} \mid \alpha \in A \right\}, \quad N_A \coloneqq \operatorname{dim}(\Pi_A) = |A|.$$

Definition (ℓ^p degree multi-index set)

 $A_{m,n,p} \coloneqq \{ \alpha \in \mathbb{N}_0^m : \|\alpha\|_p \le n \}, \quad \Pi_{m,n,p} \coloneqq \mathsf{span}_{\mathbb{R}} \{ x^\alpha \mid \alpha \in A_{m,n,p} \}$

CASUS - Center for Advanced Systems Understanding HZDR - Helmholtz-Zentrum Dresden-Rossendorf University Wroclaw

Introduction 00	Framework 00●00	Fast Full-Tensor Transform 00000	Fast Downward–Closed Transform 00000000	Numerical Experiments 0000
Framework				

Figure: Absolute, Euclidean and maximal degree multi-index-sets in 3d

- Center for Advanced Systems Understanding HZDR - Helmholtz-Zentrum Dresden-Rossendorf University Wrocław

Introduction 00	Framework 00●00	Fast Full-Tensor Transform 00000	Fast Downward–Closed Transform 00000000	Numerical Experiments 0000
Framework				

 ℓ^p Degree Polynomial Spaces (2)

Figure: Absolute, Euclidean and maximal degree multi-index-sets in 3d

ASUS – Center for Advanced Systems Understanding HZDR – Helmholtz-Zentrum Dresden-Rossendorf University Wrocław

ework 00 ast Full-Tensor Transform

Fast Downward–Closed Transform 00000000

Numerical Experiments

Framework

CASUS - CENTER FOR ADVANCED SYSTEMS UNDERSTANDING HZDR - HELMHOLTZ-ZENTRUM DRESDEN-ROSSENDORF UNIVERSITY WROCLAW

F
c

Fast Downward–Closed Transform 00000000

イロト イポト イヨト イヨト

Numerical Experiments 0000

三日 のへの

Framework

Computational Complexity

ramework

Basis	Interpolation	Differentiation
Fourier ¹	$\mathcal{O}(n \cdot \log_2(n))$	$\mathcal{O}(n)$
Chebyshev ²	$\mathcal{O}(n \cdot \log_2(n))$	$O(n^2/4)$
Newton ³	$\mathcal{O}(n^2/2)$	$O(n^2/2)$
Fast Downward–Closed Transform	$ A \cdot m^2 \cdot \mathcal{O}(-"-/n_A)$	$ A \cdot \mathcal{O}(-"-/n_A)$
Fast ℓ^p Transform	$ A_{m,n,p} \cdot m \cdot \mathcal{O}(-"-/n)$	$ A_{m,n,p} \cdot \mathcal{O}(-"-/n)$

- ¹ James W. Cooley and John W. Tukey, 1965
- ² Ahmed and Fisher, 1968
- ³ Newton, 1736

CASUS – Center for Advanced Systems Understanding HZDR – Helmholtz-Zentrum Dresden-Rossendorf University Wrocław

Framework
00000

Fast Downward–Closed Transform 00000000

イロト イポト イヨト イヨト

Numerical Experiments 0000

三日 のへの

Framework

Computational Complexity

Basis	Interpolation	Differentiation
Fourier ¹	$\mathcal{O}(n \cdot \log_2(n))$	$\mathcal{O}(n)$
Chebyshev ²	$\mathcal{O}(n \cdot \log_2(n))$	$\mathcal{O}(n^2/4)$
Newton ³	$\mathcal{O}(n^2/2)$	$O(n^2/2)$
Fast Downward–Closed Transform	$ A \cdot m^2 \cdot \mathcal{O}(\log_2(n_A))$	$ A \cdot \mathcal{O}(1)$
Fast ℓ^p Transform	$ A_{m,n,p} \cdot m \cdot \mathcal{O}(\log_2(n))$	$ A_{m,n,p} \cdot \mathcal{O}(1)$

- ¹ James W. Cooley and John W. Tukey, 1965
- ² Ahmed and Fisher, 1968
- ³ Newton, 1736

CASUS – Center for Advanced Systems Understanding HZDR – Helmholtz-Zentrum Dresden-Rossendorf University Wrocław

Framework
00000

Fast Downward–Closed Transform 00000000

イロト イポト イヨト イヨト

Numerical Experiments 0000

三日 のへの

Framework

Computational Complexity

Basis	Interpolation	Differentiation
Fourier ¹	$\mathcal{O}(n \cdot \log_2(n))$	$\mathcal{O}(n)$
Chebyshev ²	$\mathcal{O}(n \cdot \log_2(n))$	$O(n^2/4)$
Newton ³	$\mathcal{O}(n^2/2)$	$O(n^2/2)$
Fast Downward–Closed Transform	$ A \cdot m^2 \cdot \mathcal{O}(\log_2(n_A))$	$ A \cdot \mathcal{O}(n_A/4)$
Fast ℓ^p Transform	$ A_{m,n,p} \cdot m \cdot \mathcal{O}(\log_2(n))$	$ A_{m,n,p} \cdot \mathcal{O}(n/4)$

- ¹ James W. Cooley and John W. Tukey, 1965
- ² Ahmed and Fisher, 1968
- ³ Newton, 1736

CASUS – Center for Advanced Systems Understanding HZDR – Helmholtz-Zentrum Dresden-Rossendorf University Wrocław

Framework
00000

Fast Downward–Closed Transform 00000000

イロト イポト イヨト イヨト

Numerical Experiments 0000

三日 のへの

Framework

Computational Complexity

Basis	Interpolation	Differentiation
Fourier ¹	$\mathcal{O}(n \cdot \log_2(n))$	$\mathcal{O}(n)$
Chebyshev ²	$\mathcal{O}(n \cdot \log_2(n))$	$O(n^2/4)$
Newton ³	$O(n^2/2)$	$O(n^2/2)$
Fast Downward–Closed Transform	$ A \cdot m^2 \cdot \mathcal{O}(n_A/2)$	$ A \cdot \mathcal{O}(n_A/2)$
Fast ℓ^p Transform	$ A_{m,n,p} \cdot m \cdot \mathcal{O}(n/2)$	$ A_{m,n,p} \cdot \mathcal{O}(n/2)$

- ¹ James W. Cooley and John W. Tukey, 1965
- ² Ahmed and Fisher, 1968
- ³ Newton, 1736

CASUS – Center for Advanced Systems Understanding HZDR – Helmholtz-Zentrum Dresden-Rossendorf University Wrocław

Introduction 00	Framework 0000●	Fast Full-Tensor Transform 00000	Fast Downward–Closed Transform 00000000	Numerical Experiments 0000
Framework				
Flattening				

1 Arranges sequences of objects based on co-lexicographical rules.

ション 本語 ・ 本語 ・ 本語 ・ 人口 ・

CASUS - CENTER FOR ADVANCED SYSTEMS UNDERSTANDING HZDR - HELMHOLTZ-ZENTRUM DRESDEN-ROSSENDORF UNIVERSITY WROCLAW

Introduction 00	Framework 00000	Fast Full-Tensor Transform 00000	Fast Downward–Closed Transform 00000000	Numerical Experiments 0000
Framewor	k			
Flattening				

- 1 Arranges sequences of objects based on co-lexicographical rules.
- 2 Tensors are flattened into matrices according to co-lexicographic order.

シッの 単則 《四》《四》《日》

CASUS - CENTER FOR ADVANCED SYSTEMS UNDERSTANDING HZDR - HELMHOLTZ-ZENTRUM DRESDEN-ROSSENDORF UNIVERSITY WROCŁAW

Introduction 00	Framework 0000●	Fast Full-Tensor Transform 00000	Fast Downward–Closed Transform 00000000	Numerical Experiments 0000
Framework				

Flattening

- 1 Arranges sequences of objects based on co-lexicographical rules.
- 2 Tensors are flattened into matrices according to co-lexicographic order.
- **3** Whenever an index $\alpha \in A$ appears as a subscript, it is understood to follow the co-lexicographic order.

· • @ • • E • • E • ·

ELE NOR

CASUS - CENTER FOR ADVANCED SYSTEMS UNDERSTANDING HZDR - HELMHOLTZ-ZENTRUM DRESDEN-ROSSENDORF UNIVERSITY WROCLAW

Introduction	Framework	Fast Full-Tensor Transform	Fast Downward–Closed Transform	Numerical Experiments
00	0000●	00000	00000000	0000

Framework

Flattening

- **1** Arranges sequences of objects based on co-lexicographical rules.
- 2 Tensors are flattened into matrices according to co-lexicographic order.
- **3** Whenever an index $\alpha \in A$ appears as a subscript, it is understood to follow the co-lexicographic order.

Definition (Co-Lexicographic Order)

Let $m \in \mathbb{N}$, $A \subset \mathbb{N}^m$ finite and $\alpha, \beta \in \mathbb{N}^m$ we define

 $\alpha \leq_{\mathsf{colex}} \beta \iff \alpha = \beta \text{ or } \alpha_i < \beta_i, \alpha_{i+1} = \beta_{i+1}, \dots, \alpha_m = \beta_m \text{ for } 1 \leq i \leq m.$

CASUS - CENTER FOR ADVANCED SYSTEMS UNDERSTANDING HZDR - HELMHOLTZ-ZENTRUM DRESDEN-ROSSENDORF UNIVERSITY WROCLAW

▲□▶ ▲□▶ ▲□▶ ▲□▶ ヨヨ ののべ

Introduction	Framework	Fast Full-Tensor Transform	Fast Downward–Closed Transform	Numerical Experiments
00	0000●	00000	00000000	0000

Framework

Flattening

- I Arranges sequences of objects based on co-lexicographical rules.
- 2 Tensors are flattened into matrices according to co-lexicographic order.
- **3** Whenever an index $\alpha \in A$ appears as a subscript, it is understood to follow the co-lexicographic order.

Definition (Co-Lexicographic Order)

Let $m \in \mathbb{N}$, $A \subset \mathbb{N}^m$ finite and $\alpha, \beta \in \mathbb{N}^m$ we define

 $\alpha \leq_{\mathsf{colex}} \beta \iff \alpha = \beta \text{ or } \alpha_i < \beta_i, \alpha_{i+1} = \beta_{i+1}, \dots, \alpha_m = \beta_m \text{ for } 1 \leq i \leq m.$

Definition (Ordinal Position)

Let $m \in \mathbb{N}$, $A \subset \mathbb{N}^m$ finite and $\alpha \in \mathbb{N}^m$. The ordinal position of α in denoted by

$$\operatorname{colex}_A : A \ni \alpha \mapsto |\{\beta \in A \mid \beta \leq_{\operatorname{colex}} \alpha\}| \in \mathbb{N}.$$

Hence,

$$\operatorname{colex}_{A}^{-1}(k), \quad 1 \leq k \leq N_{A},$$

ヘロマ 人間マ ヘビマ ヘビマ 回日 ろうろ

denotes the multi-index $\alpha \in A$ belonging to the k-th element of A w.r.t. \leq_{colex} .

CASUS – Center for Advanced Systems Understanding HZDR – Helmholtz-Zentrum Dresden-Rossendorf University Wrocław

Introduction	Framework	Fast Full-Tensor Transform	Fast Downward–Closed Transform	Numerical Experiments
00	00000	●0000	00000000	0000

Overview

1 Introduction

2 Framework

3 Fast Full-Tensor Transform

4 Fast Downward–Closed Transform

5 Numerical Experiments

CASUS - CENTER FOR ADVANCED SYSTEMS UNDERSTANDING HZDR - HELMHOLTZ-ZENTRUM DRESDEN-ROSSENDORF UNIVERSITY WROCLAW

ELE DOG

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 >

Fast Downward–Closed Transform 00000000 Numerical Experiments 0000

= 900

• □ ▶ • • □ ▶ • • □ ▶ • • □

Fast Full-Tensor Transform

Definition

Let $\{Q_{\beta}\}_{\beta \in A}$ be a basis of Π_A . The *backward* transform B_A , the *forward* transform F_A and the *differentiation* matrix D_A are straightforwardly expressed through

$$\mathbf{F}_{\mathcal{A}} \coloneqq \mathbf{B}_{\mathcal{A}}^{-1}, \ \mathbf{B}_{\mathcal{A}} \coloneqq \left(\mathcal{Q}_{\beta}(\boldsymbol{p}_{\alpha}) \right)_{\alpha,\beta \in \mathcal{A}}, \ \mathbf{D}_{\mathcal{A},i} \coloneqq \left(\frac{\partial}{\partial x_{i}} \mathcal{Q}_{\beta}(\boldsymbol{p}_{\alpha}) \right)_{\alpha,\beta \in \mathcal{A}} \in \mathbb{R}^{N_{\mathcal{A}} \times N_{\mathcal{A}}}$$

CASUS - Center for Advanced Systems Understanding HZDR - Helmholtz-Zentrum Dresden-Rossendorf University Wrocław

Fast Downward–Closed Transform 00000000

< 日 > < 同 > < 三 > < 三 >

Numerical Experiments 0000

= nav

Fast Full-Tensor Transform

Definition

Let $\{Q_{\beta}\}_{\beta \in A}$ be a basis of Π_A . The *backward* transform \mathbf{B}_A , the *forward* transform \mathbf{F}_A and the *differentiation* matrix \mathbf{D}_A are straightforwardly expressed through

$$\mathbf{F}_{\mathcal{A}} \coloneqq \mathbf{B}_{\mathcal{A}}^{-1}, \ \mathbf{B}_{\mathcal{A}} \coloneqq \left(\mathcal{Q}_{\beta}(\mathbf{p}_{\alpha}) \right)_{\alpha, \beta \in \mathcal{A}}, \ \mathbf{D}_{\mathcal{A}, i} \coloneqq \left(\frac{\partial}{\partial x_{i}} \mathcal{Q}_{\beta}(\mathbf{p}_{\alpha}) \right)_{\alpha, \beta \in \mathcal{A}} \in \mathbb{R}^{N_{\mathcal{A}} \times N_{\mathcal{A}}}$$

Proposition

If $A = A^{\Box}$, we can express \mathbf{B}_A , \mathbf{F}_A , and $\mathbf{D}_{A,1}$ as Kronecker products

$$\mathbf{F}_{A} = \bigotimes_{i=1}^{m} \mathbf{F}_{\{0,...,n_{i,A}\}}, \mathbf{B}_{A} = \bigotimes_{i=1}^{m} \mathbf{B}_{\{0,...,n_{i,A}\}}, \mathbf{D}_{A,1} = \mathbf{D}_{\{0,...,n_{1,A}\}} \bigotimes_{i=2}^{m} \mathbf{I}_{n_{i,A}+1} \in \mathbb{R}^{N_{A} \times N_{A}}$$

where $I_n \in \mathbb{R}^n$ denotes the identity matrix.

CASUS - Center for Advanced Systems Understanding HZDR - Helmholtz-Zentrum Dresden-Rossendorf University Wrocław

Introduction	Framework	Fast Full-Tensor Transform	Fast Downward–Closed Transform	Numerical Experiments
00	00000	00●00	00000000	0000

Fast Full-Tensor Transform $m = 4, n = 1, p = \infty$

 f1
 f2
 f3
 f4
 f5
 f6
 f7
 f8
 f9
 f10
 f11
 f12
 f13
 f14
 f15
 f16

うてん 正正 《日》《日》《日》《日》

CASUS - CENTER FOR ADVANCED SYSTEMS UNDERSTANDING HZDR - HELMHOLTZ-ZENTRUM DRESDEN-ROSSENDORF UNIVERSITY WROCŁAW

Introduction	Framework	Fast Full-Tensor Transform	Fast Downward–Closed Transform	Numerical Experiments
00	00000	00●00	00000000	0000

 $m = 4, n = 1, p = \infty$

CASUS - Center for Advanced Systems Understanding HZDR - Helmholtz-Zentrum Dresden-Rossendorf University Wrocław

= 900

3

Introduction	Framework	Fast Full-Tensor Transform	Fast Downward–Closed Transform	Numerical Experiments
00	00000	00●00	00000000	0000

 $m = 4, n = 1, p = \infty$

CASUS - CENTER FOR ADVANCED SYSTEMS UNDERSTANDING HZDR - HELMHOLTZ-ZENTRUM DRESDEN-ROSSENDORF UNIVERSITY WROCLAW

= nan

-

Introduction	Framework	Fast Full-Tensor Transform	Fast Downward–Closed Transform	Numerical Experiments
00	00000	00●00	00000000	0000

 $m = 4, n = 1, p = \infty$

CASUS - CENTER FOR ADVANCED SYSTEMS UNDERSTANDING HZDR - HELMHOLTZ-ZENTRUM DRESDEN-ROSSENDORF UNIVERSITY WROCLAW

ELE DOG

イロト イポト イヨト イヨト

Introduction	Framework	Fast Full-Tensor Transform	Fast Downward–Closed Transform	Numerical Experiments
00	00000	00●00	00000000	0000

 $m = 4, n = 1, p = \infty$

CASUS - CENTER FOR ADVANCED SYSTEMS UNDERSTANDING HZDR - HELMHOLTZ-ZENTRUM DRESDEN-ROSSENDORF UNIVERSITY WROCLAW

Introduction	Framework	Fast Full-Tensor Transform	Fast Downward–Closed Transform	Numerical Experiments
00	00000	00●00	00000000	0000

Fast Full-Tensor Transform $m = 4, n = 1, p = \infty$

f10 f11 f12 f13 f14 f15 f16 f1 f2 f3 f4 f₅ f₆ f7 f8 fg n³ n² n² n² n² n² n² n² n² n² n³ n³ n³ n³ n1 n⁴ n⁴ n⁰ n⁵

CASUS - CENTER FOR ADVANCED SYSTEMS UNDERSTANDING HZDR - HELMHOLTZ-ZENTRUM DRESDEN-ROSSENDORF UNIVERSITY WROCLAW

・ロト ・四ト ・ヨト

ELE OQA

Introduction 00	Framework 00000	Fast Full-Tensor Transform 000●0	Fast Downward–Closed Transform	Numerical Experiments

Theorem (Fast Full-Tensor Transform)

Given the square matrices $\mathbf{B}_i \in \mathbb{R}^{(n_{i,A}+1) \times (n_{i,A}+1)}, 1 \leq i \leq m$, and a vector $\mathbf{v} = (v_1, v_2, \dots, v_{N_A})^\top \in \mathbb{R}^{N_A}$, the matrix vector product

 $(B_1 \otimes \ldots \otimes B_m) \cdot v$

can be computed in $\mathcal{O}(N_A \cdot n_A \cdot m)$.

きょう 単前 (西) (四) (日)

CASUS – Center for Advanced Systems Understanding HZDR – Helmholtz-Zentrum Dresden-Rossendorf University Wrocław

Introduction	Framework	Fast Full-Tensor Transform	Fast Downward–Closed Transform	Numerical Experiments
00	00000	000●0	00000000	0000

Theorem (Fast Full-Tensor Transform)

Given the square matrices $\mathbf{B}_i \in \mathbb{R}^{(n_i,A+1)\times(n_i,A+1)}$, $1 \leq i \leq m$, and a vector $\mathbf{v} = (v_1, v_2, \dots, v_{N_A})^\top \in \mathbb{R}^{N_A}$, the matrix vector product

$$(\mathbf{B}_1 \otimes \ldots \otimes \mathbf{B}_m) \cdot \mathbf{v}$$

can be computed in $\mathcal{O}(N_A \cdot n_A \cdot m)$.

Definition (Generalized Matrix-Vector Product)

$$\begin{split} \mathbf{B} &= (\mathbf{B}_{i,j})_{i,j=1}^n \in \mathbb{R}^{(n+1) \times (n+1)}, \ \mathbf{w} = (w_i)_{i=1}^{N'} \in \mathbb{R}^{N'} \text{ and } N' \equiv 0 \mod (n+1). \text{ Next,} \\ \text{partition } \mathbf{w} \text{ into } n+1 \text{ chunks of size } s \coloneqq N'/(n+1), \text{ compute} \end{split}$$

$$\mathbf{u}_i \coloneqq \sum_{j=1}^{n+1} \mathbf{B}_{i,j} \mathbf{w}_{(j-1) \cdot s+1 : j \cdot s} \in \mathbb{R}^s, \quad 1 \le i \le n+1.$$

Consequently, we define # by flattening

$$\mathbf{B} \# \mathbf{v} \coloneqq (\mathbf{u}_1^\top, \dots, \mathbf{u}_{n+1}^\top)^\top \in \mathbb{R}^{N'}.$$

Note that $\# \in \Theta(n^2 \cdot s)$.

Introduction	Framework	Fast Full-Tensor Transform	Fast Downward–Closed Transform	Numerical Experiments
00	00000	0000●	00000000	0000

1
$$H_{m,i} := \mathbb{N}_0^i \times \{0\}^{m-i}, \ H_{m,i}^{\perp} = \{0\}^i \times \mathbb{N}_0^{m-i}$$

2 $N_{A,i} := |A \cap H_{m,i}|, \ N_{A,i}^{\perp} := |A \cap H_{m,i}^{\perp}|$

③日本本語を本語を本語をます。

CASUS - CENTER FOR ADVANCED SYSTEMS UNDERSTANDING HZDR - HELMHOLTZ-ZENTRUM DRESDEN-ROSSENDORF UNIVERSITY WROCŁAW

	Fast Full-Tensor Transform	Fast Downward–Closed Transform	Numerical Experiments
	00000		

1
$$H_{m,i} := \mathbb{N}_0^i \times \{0\}^{m-i}, \ H_{m,i}^\perp = \{0\}^i \times \mathbb{N}_0^{m-i}$$

2 $N_{A,i} := |A \cap H_{m,i}|, \ N_{A,i}^\perp := |A \cap H_{m,i}^\perp|$

Scheme

We further define a double sequence of vectors $\{\mathbf{w}_{i}^{j}\}_{i,j}$, which allows to compute the matrix-vector product in (7) as

$$\mathbf{w}=\mathbf{B}_m\#\mathbf{w}_1^m.$$

Hereby, the double sequence $\{\mathbf{w}_{i}^{j}\}_{i,j}$, is computed by the iterative scheme:

$$\begin{split} \mathbf{w}_{i}^{1} & \coloneqq \mathbf{v}_{(i-1)\cdot(n_{A,1}+1)+1} : i \cdot (n_{A,1}+1), 1 \leq i \leq N_{A,1}^{\perp}, \\ \mathbf{w}_{i}^{j+1} & \coloneqq \left(\mathbf{B}_{j} \# \mathbf{w}_{(i-1)\cdot(n_{A,j+1}+1)+k}^{j}\right)_{1 \leq k \leq n_{A,j+1}+1}^{\top}, 1 \leq i \leq N_{A,j+1}^{\perp}, 1 \leq j \leq m-1 \end{split}$$

CASUS - CENTER FOR ADVANCED SYSTEMS UNDERSTANDING HZDR - HELMHOLTZ-ZENTRUM DRESDEN-ROSSENDORF UNIVERSITY WROCŁAW

イロト イポト イヨト イヨト ヨ

Fast Downward–Closed Transform •0000000

イロト イポト イヨト イヨト

Numerical Experiments 0000

JIN NOR

Overview

1 Introduction

2 Framework

3 Fast Full-Tensor Transform

4 Fast Downward–Closed Transform

5 Numerical Experiments

CASUS - CENTER FOR ADVANCED SYSTEMS UNDERSTANDING HZDR - HELMHOLTZ-ZENTRUM DRESDEN-ROSSENDORF UNIVERSITY WROCLAW

Introduction 00 Framework 00000 ast Full-Tensor Transform

Fast Downward–Closed Transform 0000000

< A

글 🕨 🖌 글

Numerical Experiments 0000

= 900

Fast Downward–Closed Transform

Tube Projections

Figure: Illustration of the second tube projection of $A_{3,5,2}$

CASUS - CENTER FOR ADVANCED SYSTEMS UNDERSTANDING HZDR - HELMHOLTZ-ZENTRUM DRESDEN-ROSSENDORF UNIVERSITY WROCLAW

	Fast Full-Tensor Trans

Numerical Experiments 0000

A 1 1 A 1 A 1

= 900

Fast Downward–Closed Transform

Tube Projections

 $\blacksquare = (0,0,0) + H_{3,2}, \blacksquare = (0,0,1) + H_{3,2}, \blacksquare = (0,0,2) + H_{3,2}, \blacksquare = (0,0,0) + H_{3,3}.$

Figure: Illustration of tube projections of $A_{3,2,1}$

CASUS - Center for Advanced Systems Understanding HZDR - Helmholtz-Zentrum Dresden-Rossendorf University Wrocław

ramework 00000 ast Full-Tensor Transform

Fast Downward–Closed Transform

< 日 > < 同 > < 回 > < 回 > < 回 > <

Numerical Experiments 0000

ELE NOR

Fast Downward–Closed Transform

Tube Projections

 $\blacksquare = (0,0,0) + H_{3,2}, \blacksquare = (0,0,1) + H_{3,2}, \blacksquare = (0,0,2) + H_{3,2}, \blacksquare = (0,0,0) + H_{3,3}.$

CASUS - Center for Advanced Systems Understanding HZDR - Helmholtz-Zentrum Dresden-Rossendorf University Wrocław

Fast Downward–Closed Transform

< 日 > < 同 > < 回 > < 回 > < 回 > <

Numerical Experiments 0000

E SQA

Fast Downward–Closed Transform

Proposition($A_{m,n,p}$ -Construction)

Let $m, n \in \mathbb{N}$ and $p \in [0, \infty]$. To construct $A_{m,n,p}$, it takes

$$(1 + \kappa_{m,n,p}) \cdot |A_{m,n,p}| := |A_{m,n,p}| + |A_{m-1,n,p}| + \ldots + |A_{1,n,p}|.$$

Especially

$$\kappa_{m,n,0} \in \Theta(m), \quad \kappa_{m,n,1} \in \Theta(n/m), \quad \kappa_{m,n,\infty} \in \Theta(1).$$

CASUS - CENTER FOR ADVANCED SYSTEMS UNDERSTANDING HZDR - HELMHOLTZ-ZENTRUM DRESDEN-ROSSENDORF UNIVERSITY WROCLAW

Fast Downward–Closed Transform

イロト 不得 トイヨト イヨト

Numerical Experiments 0000

= 900

Fast Downward–Closed Transform

Proposition($A_{m,n,p}$ -Construction)

Let $m, n \in \mathbb{N}$ and $p \in [0, \infty]$. To construct $A_{m,n,p}$, it takes

$$(1 + \kappa_{m,n,p}) \cdot |A_{m,n,p}| := |A_{m,n,p}| + |A_{m-1,n,p}| + \ldots + |A_{1,n,p}|.$$

Especially

$$\kappa_{m,n,0} \in \Theta(m), \quad \kappa_{m,n,1} \in \Theta(n/m), \quad \kappa_{m,n,\infty} \in \Theta(1).$$

Proposition(A–Construction)

We define the carry-overhead-factor as

$$\kappa_A \coloneqq \mathsf{N}_A^{-1} \sum_{i=2}^m \left| \mathcal{T}_{m,i}(A) \right| \in [0, m-1].$$

To construct $\mathcal{T}_m(A)$, it requires $(1 + \kappa_A) \cdot N_A$ steps.

CASUS - Center for Advanced Systems Understanding HZDR - Helmholtz-Zentrum Dresden-Rossendorf University Wrocław

Introd	

ework

ast Full-Tensor Transform

Fast Downward–Closed Transform

Numerical Experiments 0000

Fast Downward–Closed Transform

Proposition($A_{m,n,p}$ -Construction)

Let $m, n \in \mathbb{N}$ and $p \in [0, \infty]$. To construct $A_{m,n,p}$, it takes

$$(1 + \kappa_{m,n,p}) \cdot |A_{m,n,p}| := |A_{m,n,p}| + |A_{m-1,n,p}| + \ldots + |A_{1,n,p}|.$$

Especially

$$\kappa_{m,n,0} \in \Theta(m), \quad \kappa_{m,n,1} \in \Theta(n/m), \quad \kappa_{m,n,\infty} \in \Theta(1).$$

Proposition(*A*–Construction)

We define the carry-overhead-factor as

$$\kappa_A \coloneqq \mathsf{N}_A^{-1} \sum_{i=2}^m \left| \mathcal{T}_{m,i}(A) \right| \in [0, m-1].$$

To construct $\mathcal{T}_m(A)$, it requires $(1 + \kappa_A) \cdot N_A$ steps.

Proposition($\kappa_{m,n,p}$ -Bound)

For
$$m \in \mathbb{N}$$
, $n > 4 \cdot (m+1)$ and $p \in (1, \infty)$

$$\kappa_{m,n,p} \leq \sqrt{e} \approx 1.65.$$

CASUS - Center for Advanced Systems Understanding HZDR - Helmholtz-Zentrum Dresden-Rossendorf University Wrocław

Introduction	Framework	Fast Full-Tensor Transform	Fast Downward–Closed Transform	Numerical Experiments
00	00000	00000	0000●000	0000

Proposition

For any non-empty finite downward–closed sets $A \subset A' \subset \mathbb{N}_0^m$, the map Φ_m is well-defined through

$$(\mathcal{T},\mathcal{T}') \coloneqq (\mathcal{T}_m(\mathcal{A}),\mathcal{T}_m(\mathcal{A}')) \stackrel{\Phi_m}{\mapsto} \varphi_{\mathcal{A},\mathcal{A}'} \coloneqq \mathsf{colex}_{\mathcal{A}'} \circ \mathsf{colex}_{\mathcal{A}}^{-1}.$$

Further, values of the map Φ_m can be computed in $\mathcal{O}(N_A \cdot (1 + \kappa_A))$.

うせん 単間 (4回)(4回)(4日)

CASUS - CENTER FOR ADVANCED SYSTEMS UNDERSTANDING HZDR - HELMHOLTZ-ZENTRUM DRESDEN-ROSSENDORF UNIVERSITY WROCLAW

Introduction	Framework	Fast Full-Tensor Transform	Fast Downward–Closed Transform	Numerical Experiments
00	00000	00000	0000●000	

Proposition

For any non-empty finite downward–closed sets $A \subset A' \subset \mathbb{N}_0^m$, the map Φ_m is well-defined through

$$(\mathcal{T},\mathcal{T}')\coloneqq (\mathcal{T}_m(\mathcal{A}),\mathcal{T}_m(\mathcal{A}'))\stackrel{\Phi_m}{\mapsto} \varphi_{\mathcal{A},\mathcal{A}'}\coloneqq \mathsf{colex}_{\mathcal{A}'}\circ\mathsf{colex}_{\mathcal{A}}^{-1}.$$

Further, values of the map Φ_m can be computed in $\mathcal{O}(N_A \cdot (1 + \kappa_A))$.

Example

For instance $\varphi_{A,A'}$ with $A = A_{3,2,1}$ and $A' = A_{3,2,\infty}$ is given by:

$$(c_1, c_2, c_3, c_4, c_5, c_6, c_7, c_8, c_9, c_{10}) \\\downarrow \\ c_1, c_2, c_3, c_4, c_5, 0, c_6, 0, 0, c_7, c_8, 0, c_9, 0, 0, 0, 0, 0, c_{10}, 0, 0, 0, 0, 0, 0, 0, 0)$$

CASUS – CENTER FOR ADVANCED SYSTEMS UNDERSTANDING HZDR – HELMHOLTZ-ZENTRUM DRESDEN-ROSSENDORF UNIVERSITY WROCLAW

< ロ > < 同 > < 目 > < 目 > < 目 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Introduction	Framework	Fast Full-Tensor Transform	Fast Downward–Closed Transform	Numerical Experiments
00	00000	00000	0000●000	

Proposition

For any non-empty finite downward–closed sets $A \subset A' \subset \mathbb{N}_0^m$, the map Φ_m is well-defined through

$$(\mathcal{T},\mathcal{T}')\coloneqq (\mathcal{T}_m(\mathcal{A}),\mathcal{T}_m(\mathcal{A}'))\stackrel{\Phi_m}{\mapsto} \varphi_{\mathcal{A},\mathcal{A}'}\coloneqq \mathsf{colex}_{\mathcal{A}'}\circ\mathsf{colex}_{\mathcal{A}}^{-1}.$$

Further, values of the map Φ_m can be computed in $\mathcal{O}(N_A \cdot (1 + \kappa_A))$.

Example

For instance $\varphi_{A,A'}$ with $A = A_{3,2,1}$ and $A' = A_{3,2,\infty}$ is given by:

$$(c_1, c_2, c_3, c_4, c_5, c_6, c_7, c_8, c_9, c_{10})$$

 $(c_1, c_2, c_3, c_4, c_5, 0, c_6, 0, 0, c_7, c_8, 0, c_9, 0, 0, 0, 0, 0, c_{10}, 0, 0, 0, 0, 0, 0, 0, 0)$

Proposition

The backward transformation matrix \mathbf{B}_A , its inverse \mathbf{F}_A , and the differentiation matrix \mathbf{D}_A can be expressed as

$$\mathbf{F}_{A}=\varphi_{A,A^{\square}} \ \mathbf{F}_{A^{\square}}, \quad \mathbf{B}_{A}=\varphi_{A,A^{\square}} \ \mathbf{B}_{A^{\square}}, \quad \mathbf{D}_{A,i}=\varphi_{A,A^{\square}} \ \mathbf{D}_{A^{\square},i},$$

where $\varphi_{A,A^{\square}}$ is interpreted as a matrix.

CASUS – Center for Advanced Systems Understanding HZDR – Helmholtz-Zentrum Dresden-Rossendorf University Wrocław
Framework 00000 ast Full-Tensor Transform

Fast Downward–Closed Transform 00000000

Numerical Experiments 0000

= nar

Fast Downward–Closed Transform

Volume Projections

Figure: Illustration of the second volume projection of $A_{3,5,2}$

CASUS - CENTER FOR ADVANCED SYSTEMS UNDERSTANDING HZDR - HELMHOLTZ-ZENTRUM DRESDEN-ROSSENDORF UNIVERSITY WROCLAW

trod		

Fast Full-Tensor Transform 00000 Fast Downward–Closed Transform

< □ > < □ > < □ > < □ > < □ > < □ >

Numerical Experiments 0000

= 900

Fast Downward–Closed Transform

Volume Projections

 $\blacksquare = (0,0,0) + H_{3,2}, \ \blacksquare = (0,0,1) + H_{3,2}, \ \blacksquare = (0,0,2) + H_{3,2}, \ \blacksquare = (0,0,0) + H_{3,3}.$

Figure: Illustration of volume projections of $A_{3,2,1}$

CASUS – Center for Advanced Systems Understanding HZDR – Helmholtz-Zentrum Dresden-Rossendorf University Wrocław

Framework 00000 ast Full-Tensor Transform

Fast Downward–Closed Transform

< 日 > < 同 > < 回 > < 回 > < 回 > <

Numerical Experiments 0000

ELE NOR

Fast Downward–Closed Transform

Volume Projections

 $\blacksquare = (0,0,0) + H_{3,2}, \blacksquare = (0,0,1) + H_{3,2}, \blacksquare = (0,0,2) + H_{3,2}, \blacksquare = (0,0,0) + H_{3,3}.$

CASUS - CENTER FOR ADVANCED SYSTEMS UNDERSTANDING HZDR - HELMHOLTZ-ZENTRUM DRESDEN-ROSSENDORF UNIVERSITY WROCLAW

Introduction 00 Fast Full-Tensor Transform 00000 Fast Downward–Closed Transform 0000000●

Numerical Experiments 0000

Fast Downward–Closed Transform m = 4, n = 2, p = 1

CASUS - CENTER FOR ADVANCED SYSTEMS UNDERSTANDING HZDR - HELMHOLTZ-ZENTRUM DRESDEN-ROSSENDORF UNIVERSITY WROCŁAW

Introduction	Framework	Fast Full-Tensor Transform	Fast Downward–Closed Transform	Numerical Experiments
00	00000	00000	0000000●	

▲□▶ ▲圖▶ ▲ 圖▶ ▲ 圖▶ ▲圖■ のQの

CASUS - CENTER FOR ADVANCED SYSTEMS UNDERSTANDING HZDR - HELMHOLTZ-ZENTRUM DRESDEN-ROSSENDORF UNIVERSITY WROCLAW

Introduction	Framework	Fast Full-Tensor Transform	Fast Downward–Closed Transform	Numerical Experiments
00	00000	00000	0000000●	0000

CASUS - CENTER FOR ADVANCED SYSTEMS UNDERSTANDING HZDR - HELMHOLTZ-ZENTRUM DRESDEN-ROSSENDORF UNIVERSITY WROCLAW

= nan

3

イロト イポト イヨト イヨト

Introduction	Framework	Fast Full-Tensor Transform	Fast Downward–Closed Transform	Numerical Experiment
00	00000	00000	0000000●	0000

CASUS - CENTER FOR ADVANCED SYSTEMS UNDERSTANDING HZDR - HELMHOLTZ-ZENTRUM DRESDEN-ROSSENDORF UNIVERSITY WROCLAW

EL OQO

イロト イポト イヨト イヨト

Introduction	Framework	Fast Full-Tensor Transform	Fast Downward–Closed Transform	Numerical Experiments
00	00000	00000	0000000●	0000

CASUS - CENTER FOR ADVANCED SYSTEMS UNDERSTANDING HZDR - HELMHOLTZ-ZENTRUM DRESDEN-ROSSENDORF UNIVERSITY WROCLAW

・ロト ・四ト ・ヨト

EL OQO

Introduction	Framework	Fast Full-Tensor Transform	Fast Downward–Closed Transform	Numerical Experimen
00	00000	00000	0000000●	0000

CASUS - Center for Advanced Systems Understanding HZDR - Helmholtz-Zentrum Dresden-Rossendorf University Wrocław

<ロト <問ト < 回ト < 回ト

213 DQC

amework 0000 Fast Full-Tensor Transform 00000 Fast Downward–Closed Transform

Numerical Experiments 0000

Fast Downward–Closed Transform m = 4, n = 2, p = 1

Fast ℓ^p Transformation Given $\{(p_{\beta}, f_{\beta})\}_{\beta \in A_{m,n,p}} \subset \mathbb{R}^{m+1}$, the parameters $\{c_{\alpha}\}_{\alpha \in A_{m,n,p}} \subset \mathbb{R}$ such that $\forall \beta \in A_{m,n,p} : \sum_{\alpha \in A_{m,n,p}} c_{\alpha} \cdot Q_{\alpha}(p_{\beta}) = f_{\beta}$, can be computed in $\mathcal{O}(|A_{m,n,p}| \cdot m \cdot n \cdot \kappa_{m,n,p}) \subset \mathcal{O}(|A_{m,n,p}| \cdot m \cdot n)$, for $n > 4 \cdot (m + 1)$.

CASUS - Center for Advanced Systems Understanding HZDR - Helmholtz-Zentrum Dresden-Rossendorf University Wrocław

Fast Full-Tensor Transform

Fast Downward–Closed Transform 00000000

イロト イポト イヨト イヨト

Numerical Experiments

JIN NOR

Overview

1 Introduction

2 Framework

- 3 Fast Full-Tensor Transform
- 4 Fast Downward–Closed Transform
- 5 Numerical Experiments

CASUS - CENTER FOR ADVANCED SYSTEMS UNDERSTANDING HZDR - HELMHOLTZ-ZENTRUM DRESDEN-ROSSENDORF UNIVERSITY WROCLAW

Introduction 00 Framework 00000 Fast Full-Tensor Transform

Fast Downward–Closed Transform 00000000

< □ > < A > >

Numerical Experiments

= 200

Numerical Experiments

Interpolation of Runges Function

Definition (modified Runge function)

$$f: [-1,1]^m \to, \ x \mapsto \frac{1}{1+9 \cdot \|x\|^2}$$

CASUS - CENTER FOR ADVANCED SYSTEMS UNDERSTANDING HZDR - HELMHOLTZ-ZENTRUM DRESDEN-ROSSENDORF UNIVERSITY WROCLAW

Introduction 00 Framework 00000 ast Full-Tensor Transform

Fast Downward–Closed Transform 00000000 Numerical Experiments

Numerical Experiments

Interpolation of Runges Function

Definition (modified Runge function)

$$f: \left[-1,1\right]^m \to, \ x \mapsto \frac{1}{1+9 \cdot \|x\|^2}$$

We benchmark against

- ApproxFun¹ in 2D
- ChebFun²in 3D

CASUS - CENTER FOR ADVANCED SYSTEMS UNDERSTANDING HZDR - HELMHOLTZ-ZENTRUM DRESDEN-ROSSENDORF UNIVERSITY WROCŁAW

¹Sheehan Olver and Alex Townsend, 2014 ²Trefethen, Lloyd N. and others, 2023

troduction O Fast Full-Tensor Transform 00000 Fast Downward–Closed Transform 00000000

< 一型

Numerical Experiments

-

Numerical Experiments

Interpolation of Runges Function

Figure: Benchmark Runge function 2d

CASUS - Center for Advanced Systems Understanding HZDR - Helmholtz-Zentrum Dresden-Rossendorf University Wrocław

amework 0000 ast Full-Tensor Transform

Fast Downward–Closed Transform 00000000 Numerical Experiments

Numerical Experiments

Interpolation of Runges Function

CASUS - CENTER FOR ADVANCED SYSTEMS UNDERSTANDING HZDR - HELMHOLTZ-ZENTRUM DRESDEN-ROSSENDORF UNIVERSITY WROCLAW

troduction O Fast Full-Tensor Transform 00000 Fast Downward–Closed Transform 00000000

(I) < (II) < (II) < (II) < (II) < (II) < (III) < (IIII) < (III) < (III) < (III) < (III) < (

Numerical Experiments

= 900

Numerical Experiments

Interpolation of Runges Function

Figure: Benchmark Runge function 3d

CASUS - CENTER FOR ADVANCED SYSTEMS UNDERSTANDING HZDR - HELMHOLTZ-ZENTRUM DRESDEN-ROSSENDORF UNIVERSITY WROCŁAW

amework 0000 ast Full-Tensor Transform

Fast Downward–Closed Transform 00000000 Numerical Experiments

Numerical Experiments

Interpolation of Runges Function

CASUS - CENTER FOR ADVANCED SYSTEMS UNDERSTANDING HZDR - HELMHOLTZ-ZENTRUM DRESDEN-ROSSENDORF UNIVERSITY WROCLAW

Introduction	Framework	Fast Full-Tensor Transform	Fast Downward–Closed Transform	Numerical Experiments
00	00000	00000	00000000	

Numerical Experiments

Interpolation of Runges Function

Figure: Benchmark Runge function 4d

CASUS - CENTER FOR ADVANCED SYSTEMS UNDERSTANDING HZDR - HELMHOLTZ-ZENTRUM DRESDEN-ROSSENDORF UNIVERSITY WROCŁAW

= nar

Introduction 00	Framework 00000	Fast Full-Tensor Transform 00000	Fast Downward–Closed Transform 00000000	Numerical Experiments
What is ne	xt?			

Soon: PyPI Release of *IpFun* providing Fast ℓ^p Transform for *Newton*, *Chebyshev* and *Fourier* basis including spectral ℓ^p differentiation

CASUS - CENTER FOR ADVANCED SYSTEMS UNDERSTANDING HZDR - HELMHOLTZ-ZENTRUM DRESDEN-ROSSENDORF UNIVERSITY WROCLAW

Introduction 00	Framework 00000	Fast Full-Tensor Transform 00000	Fast Downward–Closed Transform	Numerical Experiments
What is ne	×t?			

■ Replace/Extent Numba by C++ (2x - 10x Speedup expected)

CASUS - Center for Advanced Systems Understanding HZDR - Helmholtz-Zentrum Dresden-Rossendorf University Wrocław

Introduction 00	Framework 00000	Fast Full-Tensor Transform 00000	Fast Downward–Closed Transform	Numerical Experiments
What is ne	×t?			

- Replace/Extent Numba by C++ (2x 10x Speedup expected)
- Differential geometry : Spectral l^p methods based on the hierarchical Poincaré-Steklov method – Gentian Zavalani (CASUS) & Dan Fortunato (CCM, Flatiron Institute, NYC)

CASUS – CENTER FOR ADVANCED SYSTEMS UNDERSTANDING HZDR – HELMHOLTZ-ZENTRUM DRESDEN-ROSSENDORF UNIVERSITY WROCLAW

Introduction 00	Framework 00000	Fast Full-Tensor Transform	Fast Downward–Closed Transform	Numerical Experiments
What is nex	xt?			

		1970	
	P Fun		
A package whi	h uses I^p degree polynomials for function approximation and differ	entiation,	

- Replace/Extent Numba by C++ (2x 10x Speedup expected)
- Differential geometry : Spectral l^p methods based on the hierarchical Poincaré-Steklov method – Gentian Zavalani (CASUS) & Dan Fortunato (CCM, Flatiron Institute, NYC)
- Gierer-Meinhardt Reaction Diffusion Model Prof. Grzegorz Plebanek

イロト イヨト イモト イモト モ

E SQA

Introduction 00	Framework 00000	Fast Full-Tensor Transform 00000	Fast Downward–Closed Transform	Numerical Experiments
What is ne	×t?			

	p Fun		
A package w	ch uses i^p degree polynomials for function approximation and diffe	rentiation.	
Authors			

- Replace/Extent Numba by C++ (2x 10x Speedup expected)
- Differential geometry : Spectral l^p methods based on the hierarchical Poincaré-Steklov method – Gentian Zavalani (CASUS) & Dan Fortunato (CCM, Flatiron Institute, NYC)
- Gierer-Meinhardt Reaction Diffusion Model Prof. Grzegorz Plebanek
- 6-7d Fokker-Planck / Kohn-Sham equation Dr. Petr Cagaš (CASUS)

Introduction	Framework	Fast Full-Tensor Transform	Fast Downward–Closed Transform	Numerical Experiments
00	00000	00000	00000000	

Thank you for your attention!

CASUS - CENTER FOR ADVANCED SYSTEMS UNDERSTANDING HZDR - HELMHOLTZ-ZENTRUM DRESDEN-ROSSENDORF UNIVERSITY WROCLAW

213 DQC

イロト イポト イヨト イヨト