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Motivation: electronic structure calculation for molecules

Computation of the evolution in time of the state of the set of electrons in a molecule:
electrical, magnetical, optical properties...
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Many-body Schrödinger model

For the sake of simplicity, atomic units will be used and the influence of spin will be neglected.

Born-Oppenheimer approximation:

Let us consider a physical system composed of

M nuclei, that are assumed to be (fixed) classical point charges, whose positions and electric
charges are denoted by R1, . . . , RM P R3 and Z1, . . . , ZM P N˚ respectively;

N electrons, considered as quantum particles: at time t P R, the state of the electrons is
represented by a complex-valued function ψptq : R3N Ñ C. The function ψptq is called the
wavefunction of the system of electrons at time t P R.

Physical interpretation of the wavefunction:

For x1, . . . , xN P R3, the quantity |ψpt, x1, . . . , xNq|
2 represents the probability density at

time t of the positions x1, . . . , xN of the N electrons.

For B Ă R3N ,
ż

B
|ψpt, ¨q|2: probability that the electrons are located in the set B at time t.
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Time-dependent Schrödinger equation

"

iBtψptq ´ Hψptq “ 0, t P p0,T q
ψp0q “ ψ0

(1)

where the operator
H “ H0 ` A

is a self-adjoint operator on H “ L2pR3Nq with domain DpHq “ H2pR3Nq called the Hamiltonian
of the system of electrons and is given by

H0 “ ´∆x1,...,xN (kinetic energy)

and

A “ V px1, . . . , xNq “
M
ÿ

k“1

N
ÿ

i“1

´Zk

|xi ´ Rk |
`

ÿ

1ďiăjďN

1

|xi ´ xj |
(coulombic energy)

N large ñ Curse of dimensionality!
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Dynamical low complexity approximation

Question: What can we do when N, the number of electrons is large?

Let Σ Ă H “ L2pR3Nq be a subset of functions of x1, . . . , xN which can be represented with low
complexity.

Examples:

1 Low-rank tensor formats:

Pure tensor products: Σ “
 

r1px1q . . . rNpxNq, r1, . . . , rN P L2
pR3
q
(

(with antisymmetry: set of Slater determinants)
Tucker format (with antisymmetry: Multi Configuration Self Consistent Field)
Tensor Train format, Hierarchical Tree format

Bachmayr, Billaud-Friess, Dolgov, Falco, Grigori, Hackbusch, Kressner, Khoromskij, Lombardi,
Lubich, Nouy, Oseledets, Schneider, Uschmajew, Vandereycken...

2 Gaussian functions
Lasser, Lubich...

Dynamical low-complexity approximation: The aim is to compute an approximation rψ of ψ such
that rψptq P Σ for all t.
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Dirac-Frenkel variational principle

Let us denote by x¨, ¨y and | ¨ | the scalar product and norm of H “ L2pR3Nq.

Koch, Lubich, Schneider, Nouy, Bachmayr, Uschmajew...

Assume that Σ is a regular submanifold of H.

Dirac-Frenkel variational principle: Find rψ such that for almost all t,

Bt rψptq P argmin
vPT

rψptq
Σ
| ´ iH rψptq ´ v |2

where T
rψptq

Σ is the tangent space to Σ at point rψptq.

xpiBt ´ Hq rψptq, δ rψy “ 0, @δ rψ P T
rψptq

Σ. (2)

Problem: In general, the low-complexity sets Σ which are used in practice are not regular
everywhere. As a consequence, except in some particular situations, one can only obtain the local
existence in time of a solution rψ to (2).
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Alternative: quadratic variational formulation of the TD Schrödinger
equation

Our aim here is to express equivalently the solution ψ of (8) as the solution of a variational
problem of the form

@ϕ P XH , apψ,ϕq “ bpϕq

with

XH a Hilbert space of functions depending both on the time and space variable;

a : XH ˆ XH a continuous hermitian coercive sesquilinear form

b : XH Ñ C a continuous linear form

so that
ψ “ argmin

ϕPXH

Epϕq

with

@ϕ P XH , Epϕq “
1

2
apϕ,ϕq ´ bpϕq

There are several ways to do so!

Virginie Ehrlacher (CERMICS) Schrödinger CIRM, 28/10/24 9 / 31



Alternative: quadratic variational formulation of the TD Schrödinger
equation

Our aim here is to express equivalently the solution ψ of (8) as the solution of a variational
problem of the form

@ϕ P XH , apψ,ϕq “ bpϕq

with

XH a Hilbert space of functions depending both on the time and space variable;

a : XH ˆ XH a continuous hermitian coercive sesquilinear form

b : XH Ñ C a continuous linear form

so that
ψ “ argmin

ϕPXH

Epϕq

with

@ϕ P XH , Epϕq “
1

2
apϕ,ϕq ´ bpϕq

There are several ways to do so!

Virginie Ehrlacher (CERMICS) Schrödinger CIRM, 28/10/24 9 / 31



Alternative: quadratic variational formulation of the TD Schrödinger
equation

Our aim here is to express equivalently the solution ψ of (8) as the solution of a variational
problem of the form

@ϕ P XH , apψ,ϕq “ bpϕq

with

XH a Hilbert space of functions depending both on the time and space variable;

a : XH ˆ XH a continuous hermitian coercive sesquilinear form

b : XH Ñ C a continuous linear form

so that
ψ “ argmin

ϕPXH

Epϕq

with

@ϕ P XH , Epϕq “
1

2
apϕ,ϕq ´ bpϕq

There are several ways to do so!

Virginie Ehrlacher (CERMICS) Schrödinger CIRM, 28/10/24 9 / 31



Wishlist

One would like the previous variational formulation to have the following properties:

the space XH should be easy to characterize;

the coercivity and continuity constants of a and b should not depend too strongly on the
value of the final time T ;

the formulation should be convenient to use with dynamical low-complexity approximations
of the Schrödinger equation with gaussian functions or low-rank tensor formats

Main interest/motivation: Alternative variational principle for dynamical low-complexity
approximations

well-defined on the whole time interval p0,T q whatever the value of the final time T

certified a posteriori error estimator
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Notation and definition of weak solutions

Let H be a Hilbert space equipped with a scalar product x¨, ¨y and associated norm | ¨ |

Let H be a self-adjoint operator on H with domain DpHq

Let I :“ p0,T q and consider the Bochner space L2pI ;Hq

For all u0 P H and f P L2pI ;Hq, consider u‹ the unique weak solution to

"

iBtu‹ptq ´ Hu‹ptq “ f ptq, t P I ,
u‹p0q “ u0

(3)

Definition (Notion of weak solutions)

A function u‹ P L2pI ;Hq is said to be a weak solution to (3) if and only if

(C1) @v P C0
c pI ,DpHqq X C1

c pI ,Hq,

pu‹|piBt ´ HqvqL2pI ;Hq “ pf |vqL2pI ;Hq

(C2) u‹p0q “ u0

Remark: Actually, (C1) implies that u‹ P C0pI ;Hq, which enables to give a meaning to (C2)
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A first variational formulation (not useful)

Define
XH “

 

u‹ P L2pI ;Hq : Dpu0, f q P Hˆ L2pI ;Hq such that u‹ solves (3)
(

This space is a Hilbert space when equipped with the inner product

@u, v P XH , pu, vqXH
“ xup0q, vp0qy ` T ppiBt ´ Hqu|piBt ´ HqvqL2pI ;Hq (4)

The associated norm is then denoted by

@u P XH , }u}XH
“

´

|up0q|2 ` T}piBt ´ Hqu}2
L2pI ,Hq

¯ 1
2

(5)

Equivalent formulation:

u‹ “ argmin
uPXH

|up0q ´ u0|
2 ` T}piBt ´ Hqu ´ f }2

L2pI ,Hq

Problem: what is the space XH?
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First characterization of XH

Theorem

The application
"

L2pI ;Hq Ñ L2pI ;Hq
u ÞÑ e itHu

(6)

defines an isomorphism between XH and H1pI ;Hq.

In other words,

XH “

!

e´itHv : v P H1pI ;Hq
)

Problem again: the evolution group e´itH is not easy to compute/characterize in general
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Main idea: H “ H0 ` A

Key ingredient: write the operator H as H “ H0 ` A for some operators H0 and A so that

the space XH0
can be easily characterized and discretized

A is a ”small perturbation” of H0 in some sense

many-body electronic Schrödinger operator: H0 “ ´∆x1,...,xN .

The proofs of the following results rely on Kato’s smoothing theory [Reed, Simon, 1978]
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Assumptions on H0 and A

Assumptions (A):

(A1) The operator H0 is a self-adjoint operator on H with domain DpH0q

(A2) The operator A is a closed symmetric operator on H such that DpH0q Ă DpAq

(A3) There exists some ε ą 0 such that

sup
λPR

›

›ApH0 ´ λ˘ iεq´1
›

› ă 1 (7)

Theorem

Let H0 and A be operators on H satisfying the set of assumptions (A).

Then H “ H0 ` A defined on DpHq :“ DpH0q is self-adjoint.

It holds that XH “ XH0

There exist constants α,C ą 0 independent of T such that

@u P XH0
,

α

1` T
}u}XH0

ď }u}XH
ď Cp1` T q}u}XH0
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Consequence: second variational formulation

u‹ “ argmin
uPXH0

|up0q ´ u0|
2 ` }piBt ´ H0 ´ Aqu ´ f }2L2pI ;Hq

XH0
“

!

e´itH0v : v P H1pI ;Hq
)

Let v‹ P H1pI ;Hq such that u‹ “ e´itH0v‹. We then have

v‹ “ argmin
vPH1pI ;Hq

|pe´itH0vqp0q ´ u0|
2 `

›

›

›
piBt ´ H0 ´ Aqpe´itH0vq ´ f

›

›

›

2

L2pI ;Hq

pe´itH0vqp0q “ vp0q

since the evolution group e itH0 is a unitary group, it holds that

›

›

›
piBt ´ H0 ´ Aqpe´itH0vq ´ f

›

›

›

2

L2pI ;Hq
“

›

›

›
e itH0 piBt ´ H0 ´ Aqpe´itH0vq ´ e itH0 f

›

›

›

2

L2pI ;Hq

for all v P H1pI ;Hq, e itH0 piBtqe´itH0v “ e itH0e´itH0 pH0 ` iBtqv “ pH0 ` iBtqv

and e itH0H0e´itH0v “ e itH0e´itH0H0v because H0 commutes with e´itH0 .
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e´itH0v : v P H1pI ;Hq
)

Let v‹ P H1pI ;Hq such that u‹ “ e´itH0v‹. We then have

v‹ “ argmin
vPH1pI ;Hq

|pe´itH0vqp0q ´ u0|
2 `

›

›

›
piBt ´ H0 ´ Aqpe´itH0vq ´ f

›

›

›

2

L2pI ;Hq

pe´itH0vqp0q “ vp0q

since the evolution group e itH0 is a unitary group, it holds that

›

›

›
piBt ´ H0 ´ Aqpe´itH0vq ´ f

›

›

›

2

L2pI ;Hq
“

›

›

›
e itH0 piBt ´ H0 ´ Aqpe´itH0vq ´ e itH0 f

›

›

›

2

L2pI ;Hq

for all v P H1pI ;Hq, e itH0 piBtqe´itH0v “ e itH0e´itH0 pH0 ` iBtqv “ pH0 ` iBtqv

and e itH0H0e´itH0v “ e itH0e´itH0H0v because H0 commutes with e´itH0 .
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Consequence: second variational formulation

Theorem

Let H0 and A be operators on H satisfying (A). Let u0 P H and f P L2pI ;Hq.

Then, the solution u‹ to (3) is given by u‹ “ e´itH0v‹ where v‹ P H1pI ;Hq is the unique
solution to

v‹ “ argmin
vPH1pI ;Hq

F pvq

with
F pvq “ |vp0q ´ u0|

2 ` T
›

›

›
piBt ´ e itH0Ae´itH0 qv ´ e itH0 f

›

›

›

L2pI ;Hq

Moreover, there exists α,C ą 0 independent on T such that

@v P H1pI ;Hq,
α

1` T
}v ´ v‹}H1pI ;Hq ď

b

F pvq ď Cp1` T q}v ´ v‹}H1pI ;Hq

Remark: We obtain a similar result in the case when u‹ is the solution of a time-dependent
Schrödinger equation of the form

"

iBtu‹ptq ´ pH0 ` A` Bptqqu‹ptq “ f ptq, t P I ,
u‹p0q “ u0

where B : I Q t ÞÑ Bptq is a strongly continuous family of bounded self-adjoint operators on H.
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Outline of the talk

1 Aim and motivation

2 Variational formulation of the time-dependent Schrödinger equation

3 Application to the many-body electronic Schrödinger problem

4 Dynamical low complexity approximations

5 Summary
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Many-body electronic Schrödinger problem

"

iBtψptq ´ Hψptq “ 0, t P p0,T q
ψp0q “ ψ0

(8)

where the operator H “ H0 ` A is a self-adjoint operator on H “ L2pR3Nq with domain
DpHq “ H2pR3Nq is given by

H0 “ ´∆x1,...,xN (kinetic energy)

and

A “ V px1, . . . , xNq “
M
ÿ

k“1

N
ÿ

i“1

´Zk

|xi ´ Rk |
`

ÿ

1ďiăjďN

1

|xi ´ xj |
(coulombic energy)

Question: Do H0 and A satisfy assumptions (A1)-(A2)-(A3)?
YES!!!

WHY???
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Kato smoothing theory

Theorem

Let H0 and A be operators on H satisfying (A1)-(A2).

Then, if

sup
ϕPH, |ϕ|“1

ż

R
dt|Ae´itH0ϕ|2 ă 8,

then H0 and A satisfy (A3).

The operator A is said to be H0-smooth.

Theorem

sup
ϕPL2pR3N q, }ϕ}

L2pR3N q
“1

ż

R
dt

›

›

›
Ve it∆ϕ

›

›

›

2

L2pR3N q
ď 2

c

2

π

˜

N
M
ÿ

k“1

Zk `
NpN ´ 1q

2
?

2

¸

(9)

stems from Kato-Yajima inequality: [Kato,Yajima,1989], [Burq, 2004]
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Variational formulation: many-body electronic Schrödinger case

Theorem

Let ψ0 P L2pR3Nq. Let ψ be the solution to (8), and v‹ :“ e´it∆ψ.

Define for any v P H1pI ; L2pR3Nqq the functional

F pvq “ }vp0q ´ ψ0}
2
L2pR3N q

` T
›

›

›
piBt ´ e´it∆Ve it∆qv

›

›

›

2

L2pI ,L2pR3N qq
. (10)

Then, there exist constants C , α ą 0 such that for any v P H1pI , L2pR3Nqq,

α

1` T
}v ´ v‹}H1pI ,L2pR3N qq ď

b

F pvq ď C
?

1` T }v ´ v‹}H1pI ,L2pR3N qq (11)
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Alternative to the Dirac-Frenkel variational principle?

Rather look for rψ “ e it∆
rv where rv is defined as a solution to

rv P argmin
rwPH1pI ;Σq

F p rwq (12)

Theorem

Let Σ be a weakly closed subset of H. Then, H1pI ; Σq is a weakly closed subset of H1pI ;Hq.
Hence, there always exists at least one solution to (12).

global in time existence of dynamical low-complexity approximations provided that Σ is a
weakly closed subset of H “ L2pR3Nq.

certified a posteriori error estimate between the exact solution and its approximation

Very nice property for low-complexity approximations:

low-rank tensor formats: e it∆ is a pure tensor product of operators:

e it∆x1,...,xN “ e it∆x1 b . . .b e it∆xN

gaussians: F p rwq can be computed analytically (up to the time discretization)

How does it compare with the dynamical low-complexity approximation given by the
Dirac-Frenkel variational principle?
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Numerical example in finite dimension: dynamical low-rank approximation

Finite-dimensional version of the Schrödinger equation: n P N˚

"

iBtΨ “ HΨ,
Ψp0q “ Ψ0 P Cnˆn,

(13)

We look for a rank-r approximation rΨ of Ψ, i.e. for r P N˚,

Σ “

$

’

&

’

%

rΨ “ Φx
loomoon

PCm,r

ΦT
y

loomoon

PCr,n

,

/

.

/

-
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Singular value decomposition

For all t P r0,T s, a best approximation of Ψptq by an element of Σ is given as a rank-r truncated
Singular Value Decomposition of Ψptq.
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Comparison of dynamical low-rank approximations

Errors in L8pp0,T q;Cnˆnq between the various dynamical low-rank approximations and the exact
solution as a function of the rank r
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Dynamical approximations with gaussian functions

Σ “
!

e´px´qqTApx´qq`ipT x : p, q P R3N , A “ P ` iQ with P,Q P R3Nˆ3N
sym , P definite positive

)

.

The set Σ is weakly closed in H “ L2pR3Nq.

Greedy algorithm for the Schrödinger equation: Construct an approximation of ψ under the form

ψptq «
K
ÿ

k“1

gk ptq, gk P H1pI ; Σq

where each term in the sum is computed via an iterative procedure.

See Clément Guillot’s poster on Thursday for more details!
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Outline of the talk

1 Aim and motivation

2 Variational formulation of the time-dependent Schrödinger equation

3 Application to the many-body electronic Schrödinger problem

4 Dynamical low complexity approximations

5 Summary
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Summary and perspectives

Result: New variational global space-time formulation of the solution of the time-dependent
Schrödinger equation: potential with Coulombic singularities and unbounded domains

Main tool: Kato smoothing theory

Alternative variational principle to Dirac-Frenkel for dynamical low-complexity
approximations allowing for global-in-time existence

Certified a posteriori error estimator given by the new variational formulation

Interesting preliminary numerical results using low-rank tensor formats or Gaussian function
approximations.

Perspectives:
Collaboration with Löıc Joubert-Doriol to apply these ideas to real molecules
Open question: how to impose norm conservation in this global space-time formulation? Not
completely obvious...
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Collaboration with Löıc Joubert-Doriol to apply these ideas to real molecules
Open question: how to impose norm conservation in this global space-time formulation? Not
completely obvious...

Virginie Ehrlacher (CERMICS) Schrödinger CIRM, 28/10/24 30 / 31



Summary and perspectives

Result: New variational global space-time formulation of the solution of the time-dependent
Schrödinger equation: potential with Coulombic singularities and unbounded domains

Main tool: Kato smoothing theory

Alternative variational principle to Dirac-Frenkel for dynamical low-complexity
approximations allowing for global-in-time existence

Certified a posteriori error estimator given by the new variational formulation

Interesting preliminary numerical results using low-rank tensor formats or Gaussian function
approximations.

Perspectives:
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Thank you for your attention!
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