New variational principle for dynamical low-complexity approximations for the time-dependent Schrödinger equation

Mi-Song Dupuy³, Virginie Ehrlacher^{1,2}, Clément Guillot^{1,2}

¹CERMICS, Ecole des Ponts ParisTech

²MATHERIALS team-project, INRIA Paris

³LJLL, Sorbonne Université

European Research Council

Established by the European Commission

< □ > < 同 > < 글 > < 글)

SMAI-SIGMA, CIRM, 29th October 2024

Aim and motivation

2 Variational formulation of the time-dependent Schrödinger equation

Application to the many-body electronic Schrödinger problem

Oynamical low complexity approximations

イロン イロン イヨン イヨン

Aim and motivation

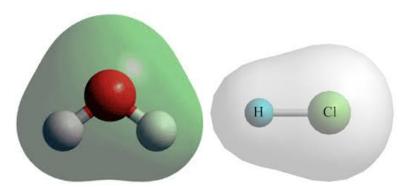
2 Variational formulation of the time-dependent Schrödinger equation

3 Application to the many-body electronic Schrödinger problem

Oynamical low complexity approximations

Summary

Motivation: electronic structure calculation for molecules



Computation of the **evolution in time of the state of the set of electrons** in a molecule: electrical, magnetical, optical properties...

Many-body Schrödinger model

For the sake of simplicity, atomic units will be used and the influence of spin will be neglected.

Born-Oppenheimer approximation:

Many-body Schrödinger model

For the sake of simplicity, atomic units will be used and the influence of spin will be neglected.

Born-Oppenheimer approximation:

Let us consider a physical system composed of

イロン イロン イヨン イヨン

Born-Oppenheimer approximation:

Let us consider a physical system composed of

M nuclei, that are assumed to be (fixed) classical point charges, whose positions and electric charges are denoted by R₁, ..., R_M ∈ ℝ³ and Z₁, ..., Z_M ∈ ℝ* respectively;

Born-Oppenheimer approximation:

Let us consider a physical system composed of

- M nuclei, that are assumed to be (fixed) classical point charges, whose positions and electric charges are denoted by R₁, ..., R_M ∈ ℝ³ and Z₁, ..., Z_M ∈ ℝ* respectively;
- *N* electrons, considered as quantum particles: at time $t \in \mathbb{R}$, the state of the electrons is represented by a complex-valued function $\psi(t) : \mathbb{R}^{3N} \to \mathbb{C}$. The function $\psi(t)$ is called the wavefunction of the system of electrons at time $t \in \mathbb{R}$.

Born-Oppenheimer approximation:

Let us consider a physical system composed of

- M nuclei, that are assumed to be (fixed) classical point charges, whose positions and electric charges are denoted by R₁, ..., R_M ∈ ℝ³ and Z₁, ..., Z_M ∈ ℝ* respectively;
- *N* electrons, considered as quantum particles: at time $t \in \mathbb{R}$, the state of the electrons is represented by a complex-valued function $\psi(t) : \mathbb{R}^{3N} \to \mathbb{C}$. The function $\psi(t)$ is called the wavefunction of the system of electrons at time $t \in \mathbb{R}$.

Physical interpretation of the wavefunction:

For $x_1, \ldots, x_N \in \mathbb{R}^3$, the quantity $|\psi(t, x_1, \ldots, x_N)|^2$ represents the probability density at time t of the positions x_1, \ldots, x_N of the N electrons.

For $B \subset \mathbb{R}^{3N}$,

 $\int_{B}|\psi(t,\cdot)|^{2}:$ probability that the electrons are located in the set B at time t.

イロン イヨン イヨン イヨン 三日

Time-dependent Schrödinger equation

$$i\partial_t \psi(t) - \mathbf{H}\psi(t) = 0, \quad t \in (0, \mathbf{T}) \psi(0) = \psi_0$$
(1)

where the operator

 $H = H_0 + A$

is a self-adjoint operator on $\mathcal{H} = L^2(\mathbb{R}^{3N})$ with domain $D(H) = H^2(\mathbb{R}^{3N})$ called the **Hamiltonian** of the system of electrons and is given by

 $H_0 = -\Delta_{x_1,...,x_N}$ (kinetic energy)

and

$$A = V(x_1, \dots, x_N) = \sum_{k=1}^{M} \sum_{i=1}^{N} \frac{-Z_k}{|x_i - R_k|} + \sum_{1 \le i < j \le N} \frac{1}{|x_i - x_j|} \quad \text{(coulombic energy)}$$

イロン イ団 とく ヨン イヨン

Time-dependent Schrödinger equation

$$i\partial_t \psi(t) - \mathbf{H}\psi(t) = 0, \quad t \in (0, \mathbf{T}) \psi(0) = \psi_0$$
(1)

where the operator

 $H = H_0 + A$

is a self-adjoint operator on $\mathcal{H} = L^2(\mathbb{R}^{3N})$ with domain $D(H) = H^2(\mathbb{R}^{3N})$ called the **Hamiltonian** of the system of electrons and is given by

 $H_0 = -\Delta_{x_1,...,x_N}$ (kinetic energy)

and

$$A = V(x_1, \dots, x_N) = \sum_{k=1}^{M} \sum_{i=1}^{N} \frac{-Z_k}{|x_i - R_k|} + \sum_{1 \leqslant i < j \leqslant N} \frac{1}{|x_i - x_j|} \quad \text{(coulombic energy)}$$

N large \Rightarrow	Curse of dimensionality!
-------------------------	--------------------------

Dynamical low complexity approximation

Question: What can we do when N, the number of electrons is large?

ヘロト ヘロト ヘヨト ヘヨト

Let $\Sigma \subset \mathcal{H} = L^2(\mathbb{R}^{3N})$ be a subset of functions of x_1, \ldots, x_N which can be represented with low complexity.

<ロ> <四> <ヨ> <ヨ>

Let $\Sigma \subset \mathcal{H} = L^2(\mathbb{R}^{3N})$ be a subset of functions of x_1, \ldots, x_N which can be represented with low complexity.

Examples:

Low-rank tensor formats:

Let $\Sigma \subset \mathcal{H} = L^2(\mathbb{R}^{3N})$ be a subset of functions of x_1, \ldots, x_N which can be represented with low complexity.

Examples:

- **1** Low-rank tensor formats:
 - Pure tensor products: $\Sigma = \{r_1(x_1) \dots r_N(x_N), r_1, \dots, r_N \in L^2(\mathbb{R}^3)\}$ (with antisymmetry: set of Slater determinants)

Let $\Sigma \subset \mathcal{H} = L^2(\mathbb{R}^{3N})$ be a subset of functions of x_1, \ldots, x_N which can be represented with low complexity.

Examples:

Low-rank tensor formats:

- Pure tensor products: $\Sigma = \{r_1(x_1) \dots r_N(x_N), r_1, \dots, r_N \in L^2(\mathbb{R}^3)\}$ (with antisymmetry: set of Slater determinants)
- Tucker format (with antisymmetry: Multi Configuration Self Consistent Field)
- Tensor Train format, Hierarchical Tree format

Bachmayr, Billaud-Friess, Dolgov, Falco, Grigori, Hackbusch, Kressner, Khoromskij, Lombardi, Lubich, Nouy, Oseledets, Schneider, Uschmajew, Vandereycken...

Let $\Sigma \subset \mathcal{H} = L^2(\mathbb{R}^{3N})$ be a subset of functions of x_1, \ldots, x_N which can be represented with low complexity.

Examples:

Low-rank tensor formats:

- Pure tensor products: $\Sigma = \{r_1(x_1) \dots r_N(x_N), r_1, \dots, r_N \in L^2(\mathbb{R}^3)\}$ (with antisymmetry: set of Slater determinants)
- Tucker format (with antisymmetry: Multi Configuration Self Consistent Field)
- Tensor Train format, Hierarchical Tree format

Bachmayr, Billaud-Friess, Dolgov, Falco, Grigori, Hackbusch, Kressner, Khoromskij, Lombardi, Lubich, Nouy, Oseledets, Schneider, Uschmajew, Vandereycken...

Gaussian functions

Lasser, Lubich ...

Let $\Sigma \subset \mathcal{H} = L^2(\mathbb{R}^{3N})$ be a subset of functions of x_1, \ldots, x_N which can be represented with low complexity.

Examples:

Low-rank tensor formats:

- Pure tensor products: $\Sigma = \{r_1(x_1) \dots r_N(x_N), r_1, \dots, r_N \in L^2(\mathbb{R}^3)\}$ (with antisymmetry: set of Slater determinants)
- Tucker format (with antisymmetry: Multi Configuration Self Consistent Field)
- Tensor Train format, Hierarchical Tree format

Bachmayr, Billaud-Friess, Dolgov, Falco, Grigori, Hackbusch, Kressner, Khoromskij, Lombardi, Lubich, Nouy, Oseledets, Schneider, Uschmajew, Vandereycken...

Gaussian functions

Lasser, Lubich ...

Let $\Sigma \subset \mathcal{H} = L^2(\mathbb{R}^{3N})$ be a subset of functions of x_1, \ldots, x_N which can be represented with low complexity.

Examples:

Low-rank tensor formats:

- Pure tensor products: $\Sigma = \{r_1(x_1) \dots r_N(x_N), r_1, \dots, r_N \in L^2(\mathbb{R}^3)\}$ (with antisymmetry: set of Slater determinants)
- Tucker format (with antisymmetry: Multi Configuration Self Consistent Field)
- Tensor Train format, Hierarchical Tree format

Bachmayr, Billaud-Friess, Dolgov, Falco, Grigori, Hackbusch, Kressner, Khoromskij, Lombardi, Lubich, Nouy, Oseledets, Schneider, Uschmajew, Vandereycken...

Gaussian functions

Lasser, Lubich ...

Dynamical low-complexity approximation: The aim is to compute an approximation $\tilde{\psi}$ of ψ such that $\tilde{\psi}(t) \in \Sigma$ for all t.

イロト 不得 トイヨト イヨト 二日

Koch, Lubich, Schneider, Nouy, Bachmayr, Uschmajew... Assume that Σ is a regular submanifold of \mathcal{H} .

Dirac-Frenkel variational principle: Find $\tilde{\psi}$ such that for almost all t,

$$\partial_t \widetilde{\psi}(t) \in \operatorname*{argmin}_{v \in \mathcal{T}_{\widetilde{\psi}(t)} \Sigma} | - iH \widetilde{\psi}(t) - v|^2$$

where $T_{\tilde{\psi}(t)}\Sigma$ is the tangent space to Σ at point $\tilde{\psi}(t)$.

イロン イロン イヨン イヨン

Koch, Lubich, Schneider, Nouy, Bachmayr, Uschmajew... Assume that Σ is a regular submanifold of \mathcal{H} .

Dirac-Frenkel variational principle: Find $\tilde{\psi}$ such that for almost all t,

$$\partial_t \widetilde{\psi}(t) \in \operatorname*{argmin}_{v \in \mathcal{T}_{\widetilde{\psi}(t)} \Sigma} | - iH \widetilde{\psi}(t) - v|^2$$

where $T_{\widetilde{\psi}(t)}\Sigma$ is the tangent space to Σ at point $\widetilde{\psi}(t)$.

$$\langle (i\partial_t - H)\widetilde{\psi}(t), \delta\widetilde{\psi} \rangle = 0, \quad \forall \delta\widetilde{\psi} \in T_{\widetilde{\psi}(t)} \Sigma.$$
(2)

イロン イロン イヨン イヨン

Koch, Lubich, Schneider, Nouy, Bachmayr, Uschmajew...

Assume that Σ is a **regular submanifold** of \mathcal{H} .

Dirac-Frenkel variational principle: Find $\tilde{\psi}$ such that for almost all t,

$$\frac{\partial_t \widetilde{\psi}(t)}{v \in \mathcal{T}_{\widetilde{\psi}(t)} \Sigma} | - iH \widetilde{\psi}(t) - v|^2$$

where $T_{\tilde{\psi}(t)}\Sigma$ is the tangent space to Σ at point $\tilde{\psi}(t)$.

$$\langle (i\partial_t - H)\widetilde{\psi}(t), \delta\widetilde{\psi} \rangle = 0, \quad \forall \delta\widetilde{\psi} \in \mathcal{T}_{\widetilde{\psi}(t)} \Sigma.$$
(2)

Problem: In general, the low-complexity sets Σ which are used in practice are not regular everywhere. As a consequence, except in some particular situations, one can only obtain the local existence in time of a solution $\tilde{\psi}$ to (2).

Virginie Ehrlacher (CE	-RMIC:	5)
------------------------	--------	----

・ロト ・ 日 ト ・ 日 ト ・ 日 ト ・

Alternative: quadratic variational formulation of the TD Schrödinger equation

Our aim here is to express equivalently the solution ψ of (8) as the solution of a variational problem of the form

 $\forall \varphi \in \mathcal{X}_{H}, \quad \mathbf{a}(\psi, \varphi) = \mathbf{b}(\varphi)$

with

- χ_H a Hilbert space of functions depending both on the time and space variable;
- $a: \mathcal{X}_H \times \mathcal{X}_H$ a continuous hermitian coercive sesquilinear form
- $b: \mathcal{X}_H \to \mathbb{C}$ a continuous linear form

Alternative: quadratic variational formulation of the TD Schrödinger equation

Our aim here is to express equivalently the solution ψ of (8) as the solution of a variational problem of the form

 $\forall \varphi \in \mathcal{X}_{H}, \quad \mathbf{a}(\psi, \varphi) = \mathbf{b}(\varphi)$

with

- χ_H a Hilbert space of functions depending both on the time and space variable;
- $a: \mathcal{X}_H \times \mathcal{X}_H$ a continuous hermitian coercive sesquilinear form
- $b: \mathcal{X}_H \to \mathbb{C}$ a continuous linear form

so that

$$\psi = \operatorname*{argmin}_{\varphi \in \mathcal{X}_{H}} \mathsf{E}(\varphi)$$

with

$$\forall \varphi \in \mathcal{X}_{H}, \quad \boldsymbol{E}(\varphi) = \frac{1}{2}\boldsymbol{a}(\varphi,\varphi) - \boldsymbol{b}(\varphi)$$

Alternative: quadratic variational formulation of the TD Schrödinger equation

Our aim here is to express equivalently the solution ψ of (8) as the solution of a variational problem of the form

 $\forall \varphi \in \mathcal{X}_{H}, \quad \mathbf{a}(\psi, \varphi) = \mathbf{b}(\varphi)$

with

- χ_H a Hilbert space of functions depending both on the time and space variable;
- $a: \mathcal{X}_H \times \mathcal{X}_H$ a continuous hermitian coercive sesquilinear form
- $b: \mathcal{X}_H \to \mathbb{C}$ a continuous linear form

so that

$$\psi = \operatorname*{argmin}_{\varphi \in \mathcal{X}_{H}} \mathsf{E}(\varphi)$$

with

$$\forall \varphi \in \mathcal{X}_{H}, \quad \boldsymbol{E}(\varphi) = \frac{1}{2}\boldsymbol{a}(\varphi,\varphi) - \boldsymbol{b}(\varphi)$$

There are several ways to do so!

One would like the previous variational formulation to have the following properties:

ヘロト ヘロト ヘヨト ヘヨト

One would like the previous variational formulation to have the following properties:

• the space \mathcal{X}_H should be easy to characterize;

One would like the previous variational formulation to have the following properties:

- the space \mathcal{X}_H should be easy to characterize;
- the coercivity and continuity constants of *a* and *b* should not depend too strongly on the value of the final time *T*;
- the formulation should be convenient to use with dynamical low-complexity approximations of the Schrödinger equation with gaussian functions or low-rank tensor formats

One would like the previous variational formulation to have the following properties:

- the space \mathcal{X}_H should be easy to characterize;
- the coercivity and continuity constants of *a* and *b* should not depend too strongly on the value of the final time *T*;
- the formulation should be convenient to use with dynamical low-complexity approximations of the Schrödinger equation with gaussian functions or low-rank tensor formats

Main interest/motivation: Alternative variational principle for dynamical low-complexity approximations

One would like the previous variational formulation to have the following properties:

- the space \mathcal{X}_H should be easy to characterize;
- the coercivity and continuity constants of *a* and *b* should not depend too strongly on the value of the final time *T*;
- the formulation should be convenient to use with dynamical low-complexity approximations of the Schrödinger equation with gaussian functions or low-rank tensor formats

Main interest/motivation: Alternative variational principle for dynamical low-complexity approximations

• well-defined on the whole time interval (0, T) whatever the value of the final time T

One would like the previous variational formulation to have the following properties:

- the space \mathcal{X}_H should be easy to characterize;
- the coercivity and continuity constants of *a* and *b* should not depend too strongly on the value of the final time *T*;
- the formulation should be convenient to use with dynamical low-complexity approximations of the Schrödinger equation with gaussian functions or low-rank tensor formats

Main interest/motivation: Alternative variational principle for dynamical low-complexity approximations

- \bullet well-defined on the whole time interval (0, T) whatever the value of the final time T
- certified a posteriori error estimator

1 Aim and motivation

2 Variational formulation of the time-dependent Schrödinger equation

3 Application to the many-body electronic Schrödinger problem

Oynamical low complexity approximations

Summary

Notation and definition of weak solutions

- Let $\mathcal H$ be a Hilbert space equipped with a scalar product $\langle\cdot,\cdot
 angle$ and associated norm $|\cdot|$
- Let H be a self-adjoint operator on \mathcal{H} with domain D(H)
- Let I := (0, T) and consider the Bochner space $L^2(I; H)$

Notation and definition of weak solutions

- Let $\mathcal H$ be a Hilbert space equipped with a scalar product $\langle\cdot,\cdot
 angle$ and associated norm $|\cdot|$
- Let H be a self-adjoint operator on \mathcal{H} with domain D(H)
- Let I := (0, T) and consider the Bochner space $L^2(I; H)$

For all $u_0 \in \mathcal{H}$ and $f \in L^2(I; \mathcal{H})$, consider u^* the unique weak solution to

$$i\partial_t u^*(t) - Hu^*(t) = f(t), \quad t \in I,$$

 $u^*(0) = u_0$ (3)

Notation and definition of weak solutions

- Let $\mathcal H$ be a Hilbert space equipped with a scalar product $\langle\cdot,\cdot\rangle$ and associated norm $|\cdot|$
- Let H be a self-adjoint operator on \mathcal{H} with domain D(H)
- Let I := (0, T) and consider the Bochner space $L^2(I; H)$

For all $u_0 \in \mathcal{H}$ and $f \in L^2(I; \mathcal{H})$, consider u^* the unique weak solution to

$$i\partial_t u^*(t) - Hu^*(t) = f(t), \quad t \in I,$$

 $u^*(0) = u_0$ (3)

Definition (Notion of weak solutions)

A function $u^* \in L^2(I; \mathcal{H})$ is said to be a weak solution to (3) if and only if (C1) $\forall v \in C^0_c(I, D(H)) \cap C^1_c(I, \mathcal{H})$,

$$(u^{\star}|(i\partial_t - H)v)_{L^2(I;\mathcal{H})} = (f|v)_{L^2(I;\mathcal{H})}$$

(C2) $u^{\star}(0) = u_0$

Notation and definition of weak solutions

- Let $\mathcal H$ be a Hilbert space equipped with a scalar product $\langle\cdot,\cdot\rangle$ and associated norm $|\cdot|$
- Let H be a self-adjoint operator on \mathcal{H} with domain D(H)
- Let I := (0, T) and consider the Bochner space $L^2(I; H)$

For all $u_0 \in \mathcal{H}$ and $f \in L^2(I; \mathcal{H})$, consider u^* the unique weak solution to

$$i\partial_t u^*(t) - Hu^*(t) = f(t), \quad t \in I,$$

 $u^*(0) = u_0$ (3)

Definition (Notion of weak solutions)

A function $u^* \in L^2(I; \mathcal{H})$ is said to be a weak solution to (3) if and only if (C1) $\forall v \in C_c^0(I, D(H)) \cap C_c^1(I, \mathcal{H})$,

$$(u^{\star}|(i\partial_t - H)v)_{L^2(I;\mathcal{H})} = (f|v)_{L^2(I;\mathcal{H})}$$

(C2) $u^{\star}(0) = u_0$

Remark: Actually, (C1) implies that $u^* \in C^0(\overline{I}; \mathcal{H})$, which enables to give a meaning to (C2)

A first variational formulation (not useful)

Define

$$\mathcal{X}_{H} = \left\{ u^{\star} \in L^{2}(I; \mathcal{H}) : \exists (u_{0}, f) \in \mathcal{H} \times L^{2}(I; \mathcal{H}) \text{ such that } u^{\star} \text{ solves (3)} \right\}$$

Define

$$\mathcal{X}_{H} = \left\{ u^{\star} \in L^{2}(I; \mathcal{H}) : \exists (u_{0}, f) \in \mathcal{H} \times L^{2}(I; \mathcal{H}) \text{ such that } u^{\star} \text{ solves (3)} \right\}$$

This space is a Hilbert space when equipped with the inner product

$$\forall u, v \in \mathcal{X}_{H}, \ (u, v)_{\mathcal{X}_{H}} = \langle u(0), v(0) \rangle + T((i\partial_{t} - H)u|(i\partial_{t} - H)v)_{L^{2}(I;\mathcal{H})}$$
(4)

The associated norm is then denoted by

$$\forall u \in \mathcal{X}_{H}, \ \|u\|_{\mathcal{X}_{H}} = \left(|u(0)|^{2} + T\|(i\partial_{t} - H)u\|_{L^{2}(I,\mathcal{H})}^{2}\right)^{\frac{1}{2}}$$
(5)

Define

$$\mathcal{X}_{H} = \left\{ u^{\star} \in L^{2}(I; \mathcal{H}) : \exists (u_{0}, f) \in \mathcal{H} \times L^{2}(I; \mathcal{H}) \text{ such that } u^{\star} \text{ solves (3)} \right\}$$

This space is a Hilbert space when equipped with the inner product

$$\forall u, v \in \mathcal{X}_{H}, \ (u, v)_{\mathcal{X}_{H}} = \langle u(0), v(0) \rangle + T((i\partial_{t} - H)u|(i\partial_{t} - H)v)_{L^{2}(I;\mathcal{H})}$$
(4)

The associated norm is then denoted by

$$\forall u \in \mathcal{X}_{H}, \ \|u\|_{\mathcal{X}_{H}} = \left(|u(0)|^{2} + T\|(i\partial_{t} - H)u\|_{L^{2}(I,\mathcal{H})}^{2}\right)^{\frac{1}{2}}$$
(5)

Equivalent formulation:

$$u^{\star} = \operatorname*{argmin}_{u \in \mathcal{X}_{H}} |u(0) - u_{0}|^{2} + T ||(i\partial_{t} - H)u - f||_{L^{2}(I, \mathcal{H})}^{2}$$

Define

$$\mathcal{X}_{\mathcal{H}} = \left\{ u^{\star} \in L^{2}(I; \mathcal{H}) : \exists (u_{0}, f) \in \mathcal{H} \times L^{2}(I; \mathcal{H}) \text{ such that } u^{\star} \text{ solves (3)} \right\}$$

This space is a Hilbert space when equipped with the inner product

$$\forall u, v \in \mathcal{X}_{H}, \ (u, v)_{\mathcal{X}_{H}} = \langle u(0), v(0) \rangle + T((i\partial_{t} - H)u|(i\partial_{t} - H)v)_{L^{2}(I;\mathcal{H})}$$
(4)

The associated norm is then denoted by

$$\forall u \in \mathcal{X}_{H}, \ \|u\|_{\mathcal{X}_{H}} = \left(|u(0)|^{2} + T\|(i\partial_{t} - H)u\|_{L^{2}(I,\mathcal{H})}^{2}\right)^{\frac{1}{2}}$$
(5)

Equivalent formulation:

$$u^{\star} = \operatorname*{argmin}_{u \in \mathcal{X}_{H}} |u(0) - u_{0}|^{2} + T \| (i\partial_{t} - H)u - f \|_{L^{2}(I,\mathcal{H})}^{2}$$

Problem: what is the space \mathcal{X}_H ?

The application

$$\begin{array}{ccc} L^2(I;\mathcal{H}) & \to & L^2(I;\mathcal{H}) \\ u & \mapsto & e^{itH}u \end{array}$$
(6)

defines an isomorphism between \mathcal{X}_{H} and $H^{1}(I; \mathcal{H})$.

The application

$$\begin{array}{ccc} L^2(I;\mathcal{H}) & \to & L^2(I;\mathcal{H}) \\ u & \mapsto & e^{itH}u \end{array}$$
(6)

defines an isomorphism between \mathcal{X}_{H} and $H^{1}(I;\mathcal{H}).$

In other words,

$$\mathcal{X}_{H} = \left\{ e^{-itH} v : v \in H^{1}(I; \mathcal{H}) \right\}$$

The application

$$\begin{array}{ccc} L^2(I;\mathcal{H}) & \to & L^2(I;\mathcal{H}) \\ u & \mapsto & e^{itH}u \end{array}$$
(6)

defines an isomorphism between \mathcal{X}_H and $H^1(I; \mathcal{H})$.

In other words,

$$\mathcal{X}_{H} = \left\{ e^{-itH} v : v \in H^{1}(I; \mathcal{H}) \right\}$$

Problem again: the evolution group e^{-itH} is not easy to compute/characterize in general

• the space \mathcal{X}_{H_0} can be easily characterized and discretized

- the space \mathcal{X}_{H_0} can be easily characterized and discretized
- A is a "small perturbation" of H_0 in some sense

- the space \mathcal{X}_{H_0} can be easily characterized and discretized
- A is a "small perturbation" of H_0 in some sense

many-body electronic Schrödinger operator: $H_0 = -\Delta_{x_1,...,x_N}$.

- \bullet the space \mathcal{X}_{H_0} can be easily characterized and discretized
- A is a "small perturbation" of H_0 in some sense

many-body electronic Schrödinger operator: $H_0 = -\Delta_{x_1,...,x_N}$.

The proofs of the following results rely on Kato's smoothing theory [Reed, Simon, 1978]

Assumptions (A):

- (A1) The operator H_0 is a self-adjoint operator on \mathcal{H} with domain $D(H_0)$
- (A2) The operator A is a closed symmetric operator on \mathcal{H} such that $D(\mathcal{H}_0) \subset D(A)$
- (A3) There exists some $\varepsilon > 0$ such that

$$\sup_{\lambda \in \mathbb{R}} \|A(H_0 - \lambda \pm i\varepsilon)^{-1}\| < 1$$
(7)

Assumptions (A):

- (A1) The operator H_0 is a self-adjoint operator on \mathcal{H} with domain $D(H_0)$
- (A2) The operator A is a closed symmetric operator on \mathcal{H} such that $D(\mathcal{H}_0) \subset D(A)$
- (A3) There exists some $\varepsilon > 0$ such that

$$\sup_{\lambda \in \mathbb{R}} \|A(H_0 - \lambda \pm i\varepsilon)^{-1}\| < 1$$
(7)

Theorem

Let H_0 and A be operators on \mathcal{H} satisfying the set of assumptions (A).

Assumptions (A):

- (A1) The operator H_0 is a self-adjoint operator on \mathcal{H} with domain $D(H_0)$
- (A2) The operator A is a closed symmetric operator on \mathcal{H} such that $D(\mathcal{H}_0) \subset D(A)$
- (A3) There exists some $\varepsilon > 0$ such that

$$\sup_{\lambda \in \mathbb{R}} \left\| A(H_0 - \lambda \pm i\varepsilon)^{-1} \right\| < 1$$
(7)

Theorem

Let H_0 and A be operators on \mathcal{H} satisfying the set of assumptions (A).

• Then $H = H_0 + A$ defined on $D(H) := D(H_0)$ is self-adjoint.

Assumptions (A):

- (A1) The operator H_0 is a self-adjoint operator on \mathcal{H} with domain $D(H_0)$
- (A2) The operator A is a closed symmetric operator on \mathcal{H} such that $D(\mathcal{H}_0) \subset D(A)$
- (A3) There exists some $\varepsilon > 0$ such that

$$\sup_{\lambda \in \mathbb{R}} \|A(H_0 - \lambda \pm i\varepsilon)^{-1}\| < 1$$
(7)

Theorem

Let H_0 and A be operators on \mathcal{H} satisfying the set of assumptions (A).

- Then $H = H_0 + A$ defined on $D(H) := D(H_0)$ is self-adjoint.
- It holds that $\mathcal{X}_H = \mathcal{X}_{H_0}$

Assumptions (A):

- (A1) The operator H_0 is a self-adjoint operator on \mathcal{H} with domain $D(H_0)$
- (A2) The operator A is a closed symmetric operator on \mathcal{H} such that $D(\mathcal{H}_0) \subset D(A)$
- (A3) There exists some $\varepsilon > 0$ such that

$$\sup_{\lambda \in \mathbb{R}} \|A(H_0 - \lambda \pm i\varepsilon)^{-1}\| < 1$$
(7)

Theorem

Let H_0 and A be operators on \mathcal{H} satisfying the set of assumptions (A).

- Then $H = H_0 + A$ defined on $D(H) := D(H_0)$ is self-adjoint.
- It holds that $\mathcal{X}_H = \mathcal{X}_{H_0}$
- There exist constants α , C > 0 independent of T such that

$$\forall u \in \mathcal{X}_{\mathcal{H}_0}, \quad \frac{\alpha}{1+\mathcal{T}} \|u\|_{\mathcal{X}_{\mathcal{H}_0}} \leq \|u\|_{\mathcal{X}_{\mathcal{H}}} \leq C(1+\mathcal{T}) \|u\|_{\mathcal{X}_{\mathcal{H}_0}}$$

Virginie Ehrlacher	(CERMICS)
--------------------	-----------

$$u^{\star} = \underset{u \in \mathcal{X}_{H_0}}{\operatorname{argmin}} |u(0) - u_0|^2 + \|(i\partial_t - H_0 - A)u - f\|_{L^2(I;\mathcal{H})}^2$$

$$\begin{split} u^{\star} &= \operatorname*{argmin}_{u \in \mathcal{X}_{H_{0}}} |u(0) - u_{0}|^{2} + \| (i\partial_{t} - H_{0} - A)u - f \|_{L^{2}(I;\mathcal{H})}^{2} \\ &\mathcal{X}_{H_{0}} = \left\{ e^{-itH_{0}}v : \ v \in H^{1}(I;\mathcal{H}) \right\} \end{split}$$

$$\begin{split} u^{\star} &= \operatorname*{argmin}_{u \in \mathcal{X}_{H_{0}}} |u(0) - u_{0}|^{2} + \| (i\partial_{t} - H_{0} - A)u - f \|_{L^{2}(I;\mathcal{H})}^{2} \\ &\mathcal{X}_{H_{0}} = \left\{ e^{-itH_{0}}v : \ v \in H^{1}(I;\mathcal{H}) \right\} \end{split}$$

Let $v^{\star} \in H^1(I; \mathcal{H})$ such that $u^{\star} = e^{-itH_0}v^{\star}$. We then have

ヘロト ヘロト ヘヨト ヘヨト

$$\begin{split} u^{*} &= \operatorname*{argmin}_{u \in \mathcal{X}_{H_{0}}} |u(0) - u_{0}|^{2} + \| (i\partial_{t} - H_{0} - A)u - f\|_{L^{2}(I;\mathcal{H})}^{2} \\ &\mathcal{X}_{H_{0}} = \left\{ e^{-itH_{0}}v : \ v \in H^{1}(I;\mathcal{H}) \right\} \end{split}$$

Let $v^* \in H^1(I; \mathcal{H})$ such that $u^* = e^{-itH_0}v^*$. We then have

$$v^{\star} = \underset{v \in H^{1}(I;\mathcal{H})}{\operatorname{argmin}} |(e^{-itH_{0}}v)(0) - u_{0}|^{2} + \left\| (i\partial_{t} - H_{0} - A)(e^{-itH_{0}}v) - f \right\|_{L^{2}(I;\mathcal{H})}^{2}$$

$$\begin{split} u^{*} &= \operatorname*{argmin}_{u \in \mathcal{X}_{H_{0}}} |u(0) - u_{0}|^{2} + \|(i\partial_{t} - H_{0} - A)u - f\|_{L^{2}(I;\mathcal{H})}^{2} \\ &\mathcal{X}_{H_{0}} = \left\{ e^{-itH_{0}}v : \ v \in H^{1}(I;\mathcal{H}) \right\} \end{split}$$

Let $v^* \in H^1(I; \mathcal{H})$ such that $u^* = e^{-itH_0}v^*$. We then have

$$v^{*} = \underset{v \in H^{1}(I;\mathcal{H})}{\operatorname{argmin}} \left| (e^{-itH_{0}}v)(0) - u_{0} \right|^{2} + \left\| (i\partial_{t} - H_{0} - A)(e^{-itH_{0}}v) - f \right\|_{L^{2}(I;\mathcal{H})}^{2}$$
• $(e^{-itH_{0}}v)(0) = v(0)$

ヘロト ヘロト ヘヨト ヘヨト

$$\begin{split} u^{*} &= \operatorname*{argmin}_{u \in \mathcal{X}_{H_{0}}} |u(0) - u_{0}|^{2} + \|(i\partial_{t} - H_{0} - A)u - f\|_{L^{2}(I;\mathcal{H})}^{2} \\ &\mathcal{X}_{H_{0}} = \left\{ e^{-itH_{0}}v : \ v \in H^{1}(I;\mathcal{H}) \right\} \end{split}$$

Let $v^* \in H^1(I; \mathcal{H})$ such that $u^* = e^{-itH_0}v^*$. We then have

$$v^{\star} = \underset{v \in H^{1}(I;\mathcal{H})}{\operatorname{argmin}} |(e^{-itH_{0}}v)(0) - u_{0}|^{2} + \left\| (i\partial_{t} - H_{0} - A)(e^{-itH_{0}}v) - f \right\|_{L^{2}(I;\mathcal{H})}^{2}$$

- $(e^{-itH_0}v)(0) = v(0)$
- since the evolution group e^{itH_0} is a unitary group, it holds that

$$\left\| (i\partial_t - H_0 - A)(e^{-itH_0}v) - f \right\|_{L^2(I;\mathcal{H})}^2 = \left\| e^{itH_0}(i\partial_t - H_0 - A)(e^{-itH_0}v) - e^{itH_0}f \right\|_{L^2(I;\mathcal{H})}^2$$

$$\begin{split} u^{*} &= \operatorname*{argmin}_{u \in \mathcal{X}_{H_{0}}} |u(0) - u_{0}|^{2} + \|(i\partial_{t} - H_{0} - A)u - f\|_{L^{2}(I;\mathcal{H})}^{2} \\ &\mathcal{X}_{H_{0}} = \left\{ e^{-itH_{0}}v : \ v \in H^{1}(I;\mathcal{H}) \right\} \end{split}$$

Let $v^* \in H^1(I; \mathcal{H})$ such that $u^* = e^{-itH_0}v^*$. We then have

$$v^{\star} = \underset{v \in H^{1}(I;\mathcal{H})}{\operatorname{argmin}} |(e^{-itH_{0}}v)(0) - u_{0}|^{2} + \left\| (i\partial_{t} - H_{0} - A)(e^{-itH_{0}}v) - f \right\|_{L^{2}(I;\mathcal{H})}^{2}$$

- $(e^{-itH_0}v)(0) = v(0)$
- since the evolution group e^{itH_0} is a unitary group, it holds that

$$\left| (i\partial_t - H_0 - A)(e^{-itH_0}v) - f \right|_{L^2(I;\mathcal{H})}^2 = \left\| e^{itH_0}(i\partial_t - H_0 - A)(e^{-itH_0}v) - e^{itH_0}f \right\|_{L^2(I;\mathcal{H})}^2$$

• for all $v \in H^1(I; \mathcal{H})$, $e^{itH_0}(i\partial_t)e^{-itH_0}v = e^{itH_0}e^{-itH_0}(H_0 + i\partial_t)v = (H_0 + i\partial_t)v$

Virginie Ehrlacher (CERMICS)

▶ ▲ 볼 ▶ 볼 ∽ ९ ୯ CIRM, 28/10/24 17/31

$$\begin{split} u^{*} &= \operatorname*{argmin}_{u \in \mathcal{X}_{H_{0}}} |u(0) - u_{0}|^{2} + \|(i\partial_{t} - H_{0} - A)u - f\|_{L^{2}(I;\mathcal{H})}^{2} \\ &\mathcal{X}_{H_{0}} = \left\{ e^{-itH_{0}}v : \ v \in H^{1}(I;\mathcal{H}) \right\} \end{split}$$

Let $v^* \in H^1(I; \mathcal{H})$ such that $u^* = e^{-itH_0}v^*$. We then have

$$v^{\star} = \underset{v \in H^{1}(I;\mathcal{H})}{\operatorname{argmin}} |(e^{-itH_{0}}v)(0) - u_{0}|^{2} + \left\| (i\partial_{t} - H_{0} - A)(e^{-itH_{0}}v) - f \right\|_{L^{2}(I;\mathcal{H})}^{2}$$

- $(e^{-itH_0}v)(0) = v(0)$
- since the evolution group e^{itH_0} is a unitary group, it holds that

$$\left| (i\partial_t - H_0 - A)(e^{-itH_0}v) - f \right|_{L^2(I;\mathcal{H})}^2 = \left\| e^{itH_0}(i\partial_t - H_0 - A)(e^{-itH_0}v) - e^{itH_0}f \right\|_{L^2(I;\mathcal{H})}^2$$

• for all $v \in H^1(I; \mathcal{H})$, $e^{itH_0}(i\partial_t)e^{-itH_0}v = e^{itH_0}e^{-itH_0}(H_0 + i\partial_t)v = (H_0 + i\partial_t)v$

and $e^{itH_0}H_0e^{-itH_0}v = e^{itH_0}e^{-itH_0}H_0v$ because H_0 commutes with e^{-itH_0} .

Let H_0 and A be operators on \mathcal{H} satisfying (A). Let $u_0 \in \mathcal{H}$ and $f \in L^2(I; \mathcal{H})$.

Let H_0 and A be operators on \mathcal{H} satisfying (A). Let $u_0 \in \mathcal{H}$ and $f \in L^2(I; \mathcal{H})$. Then, the solution u^* to (3) is given by $u^* = e^{-itH_0}v^*$ where $v^* \in H^1(I; \mathcal{H})$ is the unique solution to

 $v^{\star} = \operatorname*{argmin}_{v \in H^{1}(I;\mathcal{H})} F(v)$

with

$$F(v) = |v(0) - u_0|^2 + T \left\| (i\partial_t - e^{itH_0}Ae^{-itH_0})v - e^{itH_0}f \right\|_{L^2(I;\mathcal{H})}$$

Let H_0 and A be operators on \mathcal{H} satisfying (A). Let $u_0 \in \mathcal{H}$ and $f \in L^2(I; \mathcal{H})$. Then, the solution u^* to (3) is given by $u^* = e^{-itH_0}v^*$ where $v^* \in H^1(I; \mathcal{H})$ is the unique solution to

$$v^{\star} = \operatorname*{argmin}_{v \in H^{1}(I;\mathcal{H})} F(v)$$

with

$$F(v) = |v(0) - u_0|^2 + T \left\| (i\partial_t - e^{itH_0}Ae^{-itH_0})v - e^{itH_0}f \right\|_{L^2(I;\mathcal{H})}$$

Moreover, there exists α , C > 0 independent on T such that

$$\forall v \in H^1(I; \mathcal{H}), \quad \frac{\alpha}{1+T} \|v - v^\star\|_{H^1(I; \mathcal{H})} \leq \sqrt{F(v)} \leq C(1+T) \|v - v^\star\|_{H^1(I; \mathcal{H})}$$

Let H_0 and A be operators on \mathcal{H} satisfying (A). Let $u_0 \in \mathcal{H}$ and $f \in L^2(I; \mathcal{H})$. Then, the solution u^* to (3) is given by $u^* = e^{-itH_0}v^*$ where $v^* \in H^1(I; \mathcal{H})$ is the unique solution to

$$v^{\star} = \operatorname*{argmin}_{v \in H^{1}(I;\mathcal{H})} F(v)$$

with

$$F(v) = |v(0) - u_0|^2 + T \left\| (i\partial_t - e^{itH_0}Ae^{-itH_0})v - e^{itH_0}f \right\|_{L^2(I;\mathcal{H})}$$

Moreover, there exists α , C > 0 independent on T such that

$$\forall v \in H^1(I;\mathcal{H}), \quad \frac{\alpha}{1+T} \|v - v^\star\|_{H^1(I;\mathcal{H})} \leq \sqrt{F(v)} \leq C(1+T) \|v - v^\star\|_{H^1(I;\mathcal{H})}$$

Remark: We obtain a similar result in the case when u^* is the solution of a time-dependent Schrödinger equation of the form

$$\begin{cases} i\partial_t u^{\star}(t) - (H_0 + A + B(t))u^{\star}(t) = f(t), \quad t \in I, \\ u^{\star}(0) = u_0 \end{cases}$$

where $B: \overline{I} \ni t \mapsto B(t)$ is a strongly continuous family of **bounded** self-adjoint operators on \mathcal{H} .

Aim and motivation

2 Variational formulation of the time-dependent Schrödinger equation

Application to the many-body electronic Schrödinger problem

Dynamical low complexity approximations

Summary

$$\begin{cases} i\partial_t \psi(t) - H\psi(t) = 0, \quad t \in (0, T) \\ \psi(0) = \psi_0 \end{cases}$$
(8)

$$H_0 = -\Delta_{x_1,...,x_N}$$
 (kinetic energy)

and

$$A = V(x_1, \dots, x_N) = \sum_{k=1}^{M} \sum_{i=1}^{N} \frac{-Z_k}{|x_i - R_k|} + \sum_{1 \le i < j \le N} \frac{1}{|x_i - x_j|} \quad \text{(coulombic energy)}$$

$$\begin{cases} i\partial_t \psi(t) - H\psi(t) = 0, \quad t \in (0, T) \\ \psi(0) = \psi_0 \end{cases}$$
(8)

$$H_0 = -\Delta_{x_1,...,x_N}$$
 (kinetic energy)

and

$$A = V(x_1, \dots, x_N) = \sum_{k=1}^M \sum_{i=1}^N \frac{-Z_k}{|x_i - R_k|} + \sum_{1 \le i < j \le N} \frac{1}{|x_i - x_j|} \quad \text{(coulombic energy)}$$

Question: Do H_0 and A satisfy assumptions (A1)-(A2)-(A3)?

$$\begin{cases} i\partial_t \psi(t) - H\psi(t) = 0, \quad t \in (0, T) \\ \psi(0) = \psi_0 \end{cases}$$
(8)

$$H_0 = -\Delta_{x_1,...,x_N}$$
 (kinetic energy)

and

$$A = V(x_1, \dots, x_N) = \sum_{k=1}^M \sum_{i=1}^N \frac{-Z_k}{|x_i - R_k|} + \sum_{1 \le i < j \le N} \frac{1}{|x_i - x_j|} \quad \text{(coulombic energy)}$$

Question: Do H₀ and A satisfy assumptions (A1)-(A2)-(A3)? YES!!!

Virginie	Ehrlacher	(CERMICS)
----------	-----------	-----------

$$\begin{cases} i\partial_t \psi(t) - H\psi(t) = 0, \quad t \in (0, T) \\ \psi(0) = \psi_0 \end{cases}$$
(8)

$$H_0 = -\Delta_{x_1,...,x_N}$$
 (kinetic energy)

and

$$A = V(x_1, \dots, x_N) = \sum_{k=1}^M \sum_{i=1}^N \frac{-Z_k}{|x_i - R_k|} + \sum_{1 \le i < j \le N} \frac{1}{|x_i - x_j|} \quad \text{(coulombic energy)}$$

Question: Do H₀ and A satisfy assumptions (A1)-(A2)-(A3)? YES!!! WHY???

Let H_0 and A be operators on \mathcal{H} satisfying (A1)-(A2).

Let H_0 and A be operators on \mathcal{H} satisfying (A1)-(A2). Then, if

$$\sup_{\varphi\in\mathcal{H}, \ |\varphi|=1}\int_{\mathbb{R}} dt |Ae^{-itH_0}\varphi|^2 < \infty,$$

then H_0 and A satisfy (A3).

Let H_0 and A be operators on \mathcal{H} satisfying (A1)-(A2). Then, if

$$\sup_{\varphi\in\mathcal{H}, \ |\varphi|=1}\int_{\mathbb{R}} dt |Ae^{-itH_0}\varphi|^2 < \infty,$$

then H_0 and A satisfy (A3).

The operator A is said to be H_0 -smooth.

Let H_0 and A be operators on \mathcal{H} satisfying (A1)-(A2). Then, if

$$\sup_{\varphi\in\mathcal{H},\ |\varphi|=1}\int_{\mathbb{R}}dt|Ae^{-itH_0}\varphi|^2<\infty,$$

then H_0 and A satisfy (A3).

The operator A is said to be H_0 -smooth.

Theorem

$$\sup_{\varphi \in L^2(\mathbb{R}^{3N}), \|\varphi\|_{L^2(\mathbb{R}^{3N})} = 1} \int_{\mathbb{R}} dt \left\| V e^{it\Delta} \varphi \right\|_{L^2(\mathbb{R}^{3N})}^2 \leq 2\sqrt{\frac{2}{\pi}} \left(N \sum_{k=1}^M Z_k + \frac{N(N-1)}{2\sqrt{2}} \right)$$
(9)

Let H_0 and A be operators on \mathcal{H} satisfying (A1)-(A2). Then, if

$$\sup_{\varphi\in\mathcal{H},\ |\varphi|=1}\int_{\mathbb{R}}dt|Ae^{-itH_0}\varphi|^2<\infty,$$

then H_0 and A satisfy (A3).

The operator A is said to be H_0 -smooth.

Theorem

$$\sup_{\varphi \in L^2(\mathbb{R}^{3N}), \|\varphi\|_{L^2(\mathbb{R}^{3N})} = 1} \int_{\mathbb{R}} dt \left\| V e^{it\Delta} \varphi \right\|_{L^2(\mathbb{R}^{3N})}^2 \leq 2\sqrt{\frac{2}{\pi}} \left(N \sum_{k=1}^M Z_k + \frac{N(N-1)}{2\sqrt{2}} \right)$$
(9)

stems from Kato-Yajima inequality: [Kato, Yajima, 1989], [Burq, 2004]

Virginie Ehrlacher	(CERMICS)
--------------------	-----------

Let $\psi_0 \in L^2(\mathbb{R}^{3N})$. Let ψ be the solution to (8), and $v^* := e^{-it\Delta}\psi$.

Let $\psi_0 \in L^2(\mathbb{R}^{3N})$. Let ψ be the solution to (8), and $v^* := e^{-it\Delta}\psi$. Define for any $v \in H^1(I; L^2(\mathbb{R}^{3N}))$ the functional $F(v) = \|v(0) - \psi_0\|_{L^2(\mathbb{R}^{3N})}^2 + T \left\| (i\partial_t - e^{-it\Delta} V e^{it\Delta}) v \right\|_{L^2(L^2(\mathbb{R}^{3N}))}^2.$ (10)

Let $\psi_0 \in L^2(\mathbb{R}^{3N})$. Let ψ be the solution to (8), and $v^* := e^{-it\Delta}\psi$. Define for any $v \in H^1(I; L^2(\mathbb{R}^{3N}))$ the functional

$$F(v) = \|v(0) - \psi_0\|_{L^2(\mathbb{R}^{3N})}^2 + T \left\| (i\partial_t - e^{-it\Delta} V e^{it\Delta}) v \right\|_{L^2(I,L^2(\mathbb{R}^{3N}))}^2.$$
(10)

Then, there exist constants $C, \alpha > 0$ such that for any $v \in H^1(I, L^2(\mathbb{R}^{3N}))$,

$$\frac{\alpha}{1+T} \|v - v^{\star}\|_{H^{1}(I,L^{2}(\mathbb{R}^{3N}))} \leq \sqrt{F(v)} \leq C\sqrt{1+T} \|v - v^{\star}\|_{H^{1}(I,L^{2}(\mathbb{R}^{3N}))}$$
(11)

Aim and motivation

2 Variational formulation of the time-dependent Schrödinger equation

3 Application to the many-body electronic Schrödinger problem

Oynamical low complexity approximations

Summary

Rather look for $\widetilde{\psi} = e^{it\Delta}\widetilde{v}$ where \widetilde{v} is defined as a solution to

$$\widetilde{\mathbf{v}} \in \underset{\widetilde{\mathbf{w}} \in \mathcal{H}^1(I; \Sigma)}{\operatorname{argmin}} F(\widetilde{\mathbf{w}})$$
(12)

Theorem

Let Σ be a weakly closed subset of \mathcal{H} . Then, $H^1(I; \Sigma)$ is a weakly closed subset of $H^1(I; \mathcal{H})$. Hence, there always exists at least one solution to (12).

Rather look for $\widetilde{\psi} = e^{it\Delta}\widetilde{v}$ where \widetilde{v} is defined as a solution to

$$\widetilde{\mathbf{v}} \in \underset{\widetilde{\mathbf{w}} \in H^1(I; \Sigma)}{\operatorname{argmin}} F(\widetilde{\mathbf{w}}) \tag{12}$$

Theorem

Let Σ be a weakly closed subset of \mathcal{H} . Then, $H^1(I; \Sigma)$ is a weakly closed subset of $H^1(I; \mathcal{H})$. Hence, there always exists at least one solution to (12).

• global in time existence of dynamical low-complexity approximations provided that Σ is a weakly closed subset of $\mathcal{H} = L^2(\mathbb{R}^{3N})$.

Rather look for $\widetilde{\psi} = e^{it\Delta}\widetilde{v}$ where \widetilde{v} is defined as a solution to

$$\widetilde{\mathbf{v}} \in \underset{\widetilde{\mathbf{w}} \in H^1(I; \Sigma)}{\operatorname{argmin}} F(\widetilde{\mathbf{w}}) \tag{12}$$

Theorem

Let Σ be a weakly closed subset of \mathcal{H} . Then, $H^1(I; \Sigma)$ is a weakly closed subset of $H^1(I; \mathcal{H})$. Hence, there always exists at least one solution to (12).

- global in time existence of dynamical low-complexity approximations provided that Σ is a weakly closed subset of $\mathcal{H} = L^2(\mathbb{R}^{3N})$.
- certified a posteriori error estimate between the exact solution and its approximation

Rather look for $\widetilde{\psi} = e^{it\Delta}\widetilde{v}$ where \widetilde{v} is defined as a solution to

$$\widetilde{\mathbf{v}} \in \underset{\widetilde{\mathbf{w}} \in H^1(I; \Sigma)}{\operatorname{argmin}} F(\widetilde{\mathbf{w}})$$
(12)

Theorem

Let Σ be a weakly closed subset of \mathcal{H} . Then, $H^1(I; \Sigma)$ is a weakly closed subset of $H^1(I; \mathcal{H})$. Hence, there always exists at least one solution to (12).

- global in time existence of dynamical low-complexity approximations provided that Σ is a weakly closed subset of $\mathcal{H} = L^2(\mathbb{R}^{3N})$.
- certified a posteriori error estimate between the exact solution and its approximation

Very nice property for low-complexity approximations:

• low-rank tensor formats: $e^{it\Delta}$ is a pure tensor product of operators:

$$e^{it\Delta_{x_1},\ldots,x_N} = e^{it\Delta_{x_1}}\otimes\ldots\otimes e^{it\Delta_{x_N}}$$

• gaussians: $F(\tilde{w})$ can be computed analytically (up to the time discretization)

イロト イヨト イヨト イヨト

Rather look for $\widetilde{\psi} = e^{it\Delta}\widetilde{v}$ where \widetilde{v} is defined as a solution to

$$\widetilde{\mathbf{v}} \in \underset{\widetilde{w} \in H^1(I; \Sigma)}{\operatorname{argmin}} F(\widetilde{w})$$
(12)

Theorem

Let Σ be a weakly closed subset of \mathcal{H} . Then, $H^1(I; \Sigma)$ is a weakly closed subset of $H^1(I; \mathcal{H})$. Hence, there always exists at least one solution to (12).

- global in time existence of dynamical low-complexity approximations provided that Σ is a weakly closed subset of $\mathcal{H} = L^2(\mathbb{R}^{3N})$.
- certified a posteriori error estimate between the exact solution and its approximation

Very nice property for low-complexity approximations:

• low-rank tensor formats: $e^{it\Delta}$ is a pure tensor product of operators:

$$e^{it\Delta_{x_1},\ldots,x_N} = e^{it\Delta_{x_1}}\otimes\ldots\otimes e^{it\Delta_{x_N}}$$

• gaussians: $F(\tilde{w})$ can be computed analytically (up to the time discretization)

How does it compare with the dynamical low-complexity approximation given by the Dirac-Frenkel variational principle?

Virginie	Ehrlacher	(CERMICS)
----------	-----------	-----------

Finite-dimensional version of the Schrödinger equation: $n \in \mathbb{N}^*$

$$\begin{cases} i\partial_t \Psi = H\Psi, \\ \Psi(0) = \Psi_0 \in \mathbb{C}^{n \times n}, \end{cases}$$
(13)

イロト イヨト イヨト イヨト

Finite-dimensional version of the Schrödinger equation: $n \in \mathbb{N}^*$

$$\begin{cases} i\partial_t \Psi = H\Psi, \\ \Psi(0) = \Psi_0 \in \mathbb{C}^{n \times n}, \end{cases}$$
(13)

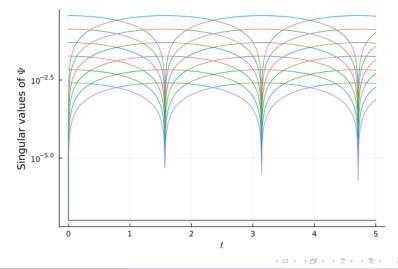
We look for a rank-*r* approximation $\widetilde{\Psi}$ of Ψ , i.e. for $r \in \mathbb{N}^*$,

$$\boldsymbol{\Sigma} = \left\{ \widetilde{\boldsymbol{\Psi}} = \underbrace{\boldsymbol{\Phi}_{\boldsymbol{X}}}_{\in \mathbb{C}^{m,r}} \underbrace{\boldsymbol{\Phi}_{\boldsymbol{Y}}^{T}}_{\in \mathbb{C}^{r,n}} \right\}$$

Virginie	Ehrlacher	(CERMICS)
----------	-----------	-----------

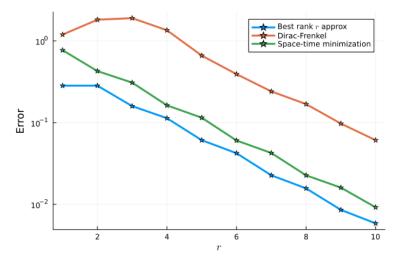
Singular value decomposition

For all $t \in [0, T]$, a best approximation of $\Psi(t)$ by an element of Σ is given as a rank-*r* truncated Singular Value Decomposition of $\Psi(t)$.



Comparison of dynamical low-rank approximations

Errors in $L^{\infty}((0, T); \mathbb{C}^{n \times n})$ between the various dynamical low-rank approximations and the exact solution as a function of the rank r



・ロト ・日下・ ・ ヨト・

Dynamical approximations with gaussian functions

$$\boldsymbol{\Sigma} = \left\{ e^{-(x-q)^T A(x-q) + i p^T x} : p, q \in \mathbb{R}^{3N}, A = P + i Q \text{ with } P, Q \in \mathbb{R}^{3N \times 3N}_{\text{sym}}, P \text{ definite positive} \right\}.$$

Dynamical approximations with gaussian functions

$$\boldsymbol{\Sigma} = \left\{ e^{-(x-q)^T A(x-q) + ip^T x} : \ \boldsymbol{p}, \boldsymbol{q} \in \mathbb{R}^{3N}, \ \boldsymbol{A} = \boldsymbol{P} + i\boldsymbol{Q} \text{ with } \boldsymbol{P}, \boldsymbol{Q} \in \mathbb{R}^{3N \times 3N}_{\mathrm{sym}}, \ \boldsymbol{P} \text{ definite positive} \right\}.$$

The set Σ is weakly closed in $\mathcal{H} = L^2(\mathbb{R}^{3N})$.

$$\boldsymbol{\Sigma} = \left\{ e^{-(x-q)^T A(x-q) + ip^T x} : \ \boldsymbol{p}, \boldsymbol{q} \in \mathbb{R}^{3N}, \ \boldsymbol{A} = \boldsymbol{P} + iQ \text{ with } \boldsymbol{P}, \boldsymbol{Q} \in \mathbb{R}^{3N \times 3N}_{\text{sym}}, \ \boldsymbol{P} \text{ definite positive} \right\}.$$

The set Σ is weakly closed in $\mathcal{H} = L^2(\mathbb{R}^{3N})$.

Greedy algorithm for the Schrödinger equation: Construct an approximation of ψ under the form

$$\psi(t) \approx \sum_{k=1}^{K} \mathbf{g}_{k}(t), \quad \mathbf{g}_{k} \in H^{1}(I; \Sigma)$$

where each term in the sum is computed via an iterative procedure.

$$\boldsymbol{\Sigma} = \left\{ e^{-(x-q)^T A(x-q) + ip^T x} : \ \boldsymbol{p}, \boldsymbol{q} \in \mathbb{R}^{3N}, \ \boldsymbol{A} = \boldsymbol{P} + iQ \text{ with } \boldsymbol{P}, \boldsymbol{Q} \in \mathbb{R}^{3N \times 3N}_{\text{sym}}, \ \boldsymbol{P} \text{ definite positive} \right\}.$$

The set Σ is weakly closed in $\mathcal{H} = L^2(\mathbb{R}^{3N})$.

Greedy algorithm for the Schrödinger equation: Construct an approximation of ψ under the form

$$\psi(t) \approx \sum_{k=1}^{K} \mathbf{g}_k(t), \quad \mathbf{g}_k \in H^1(I; \Sigma)$$

where each term in the sum is computed via an iterative procedure.

See Clément Guillot's poster on Thursday for more details!

Virginie Ehrlacher (CERMICS)
----------------------	----------

Aim and motivation

Variational formulation of the time-dependent Schrödinger equation

3 Application to the many-body electronic Schrödinger problem

Dynamical low complexity approximations

• **Result**: New variational global space-time formulation of the solution of the time-dependent Schrödinger equation: potential with Coulombic singularities and unbounded domains

- **Result**: New variational global space-time formulation of the solution of the time-dependent Schrödinger equation: potential with Coulombic singularities and unbounded domains
- Main tool: Kato smoothing theory
- Alternative variational principle to Dirac-Frenkel for dynamical low-complexity approximations allowing for global-in-time existence

- **Result**: New variational global space-time formulation of the solution of the time-dependent Schrödinger equation: potential with Coulombic singularities and unbounded domains
- Main tool: Kato smoothing theory
- Alternative variational principle to Dirac-Frenkel for dynamical low-complexity approximations allowing for global-in-time existence
- Certified a posteriori error estimator given by the new variational formulation

イロト イヨト イヨト イヨト

- **Result**: New variational global space-time formulation of the solution of the time-dependent Schrödinger equation: potential with Coulombic singularities and unbounded domains
- Main tool: Kato smoothing theory
- Alternative variational principle to Dirac-Frenkel for dynamical low-complexity approximations allowing for global-in-time existence
- Certified a posteriori error estimator given by the new variational formulation
- Interesting preliminary numerical results using low-rank tensor formats or Gaussian function approximations.

イロト イボト イヨト イヨト

- **Result**: New variational global space-time formulation of the solution of the time-dependent Schrödinger equation: potential with Coulombic singularities and unbounded domains
- Main tool: Kato smoothing theory
- Alternative variational principle to Dirac-Frenkel for dynamical low-complexity approximations allowing for global-in-time existence
- Certified a posteriori error estimator given by the new variational formulation
- Interesting preliminary numerical results using low-rank tensor formats or Gaussian function approximations.
- Perspectives:

イロト イボト イヨト イヨト

- **Result**: New variational global space-time formulation of the solution of the time-dependent Schrödinger equation: potential with Coulombic singularities and unbounded domains
- Main tool: Kato smoothing theory
- Alternative variational principle to Dirac-Frenkel for dynamical low-complexity approximations allowing for global-in-time existence
- Certified a posteriori error estimator given by the new variational formulation
- Interesting preliminary numerical results using low-rank tensor formats or Gaussian function approximations.
- Perspectives:
 - · Collaboration with Loïc Joubert-Doriol to apply these ideas to real molecules

イロト イボト イヨト イヨト

- **Result**: New variational global space-time formulation of the solution of the time-dependent Schrödinger equation: potential with Coulombic singularities and unbounded domains
- Main tool: Kato smoothing theory
- Alternative variational principle to Dirac-Frenkel for dynamical low-complexity approximations allowing for global-in-time existence
- Certified a posteriori error estimator given by the new variational formulation
- Interesting preliminary numerical results using low-rank tensor formats or Gaussian function approximations.
- Perspectives:
 - · Collaboration with Loïc Joubert-Doriol to apply these ideas to real molecules
 - **Open question**: how to impose norm conservation in this global space-time formulation? Not completely obvious...

イロト 不得 トイヨト イヨト

Thank you for your attention!

・ロト ・四ト ・ヨト ・ヨト