New variational principle for dynamical low-complexity approximations for the time-dependent Schrödinger equation

Mi-Song Dupuy³, Virginie Ehrlacher^{1,2}, Clément Guillot^{1,2}

1CERMICS, Ecole des Ponts ParisTech 2MATHERIALS team-project, INRIA Paris

 3 LJLL, Sorbonne Université

European Research Council

Established by the European Commission

K ロ ▶ K 御 ▶ K 君 ▶ K 君

SMAI-SIGMA, CIRM, 29th October 2024

 Ω

¹ [Aim and motivation](#page-2-0)

2 Variational formulation of the time-dependent Schrödinger equation

3 Application to the many-body electronic Schrödinger problem

⁴ [Dynamical low complexity approximations](#page-80-0)

 299

¹ [Aim and motivation](#page-2-0)

² Variational formulation of the time-dependent Schrödinger equation

(3) Application to the many-body electronic Schrödinger problem

⁴ [Dynamical low complexity approximations](#page-80-0)

 299

Motivation: electronic structure calculation for molecules

Computation of the evolution in time of the state of the set of electrons in a molecule: electrical, magnetical, optical properties...

 299

イロト イ御 トイ ヨ トイ ヨ)

 299

Many-body Schrödinger model

For the sake of simplicity, atomic units will be used and the influence of spin will be neglected.

Born-Oppenheimer approximation:

 299

Many-body Schrödinger model

For the sake of simplicity, atomic units will be used and the influence of spin will be neglected.

Born-Oppenheimer approximation:

Let us consider a physical system composed of

 299

Born-Oppenheimer approximation:

Let us consider a physical system composed of

 \bullet M nuclei, that are assumed to be (fixed) classical point charges, whose positions and electric charges are denoted by $R_1, \ldots, R_M \in \mathbb{R}^3$ and $Z_1, \ldots, Z_M \in \mathbb{N}^*$ respectively;

 Ω

Born-Oppenheimer approximation:

Let us consider a physical system composed of

- \bullet M nuclei, that are assumed to be (fixed) classical point charges, whose positions and electric charges are denoted by $R_1, \ldots, R_M \in \mathbb{R}^3$ and $Z_1, \ldots, Z_M \in \mathbb{N}^*$ respectively;
- \bullet N electrons, considered as quantum particles: at time $t \in \mathbb{R}$, the state of the electrons is represented by a complex-valued function $\psi(t) : \mathbb{R}^{3N} \to \mathbb{C}$. The function $\psi(t)$ is called the wavefunction of the system of electrons at time $t \in \mathbb{R}$.

 Ω

Born-Oppenheimer approximation:

Let us consider a physical system composed of

- \bullet M nuclei, that are assumed to be (fixed) classical point charges, whose positions and electric charges are denoted by $R_1, \ldots, R_M \in \mathbb{R}^3$ and $Z_1, \ldots, Z_M \in \mathbb{N}^*$ respectively;
- \bullet N electrons, considered as quantum particles: at time $t \in \mathbb{R}$, the state of the electrons is represented by a complex-valued function $\psi(t) : \mathbb{R}^{3N} \to \mathbb{C}$. The function $\psi(t)$ is called the wavefunction of the system of electrons at time $t \in \mathbb{R}$.

Physical interpretation of the wavefunction:

For $x_1, \ldots, x_N \in \mathbb{R}^3$, the quantity $|\psi(t, x_1, \ldots, x_N)|^2$ represents the probability density at time t of the positions x_1, \ldots, x_N of the N electrons.

For $B \subset \mathbb{R}^{3N}$. $|\psi(t, \cdot)|^2$: probability that the electrons are located in the set B at time t.

 QQ

メロトメ 御 トメ 差 トメ 差 トー 差

$$
\begin{cases}\ni\partial_t\psi(t) - H\psi(t) = 0, & t \in (0, T) \\
\psi(0) = \psi_0\n\end{cases}
$$
\n(1)

where the operator

 $H = H_0 + A$

is a self-adjoint operator on $\mathcal{H}=L^2(\mathbb{R}^{3N})$ with domain $D(H)=H^2(\mathbb{R}^{3N})$ called the ${\sf Hamiltonian}$ of the system of electrons and is given by

 $H_0 = -\Delta_{x_1,...,x_N}$ (kinetic energy)

and

$$
A = V(x_1, ..., x_N) = \sum_{k=1}^{M} \sum_{i=1}^{N} \frac{-Z_k}{|x_i - R_k|} + \sum_{1 \leq i < j \leq N} \frac{1}{|x_i - x_j|} \quad \text{(coulombic energy)}
$$

 $2Q$

メロメメ 倒 メメ きょくきょう

$$
\begin{cases}\ni\partial_t\psi(t) - H\psi(t) = 0, & t \in (0, T) \\
\psi(0) = \psi_0\n\end{cases}
$$
\n(1)

where the operator

 $H = H_0 + A$

is a self-adjoint operator on $\mathcal{H}=L^2(\mathbb{R}^{3N})$ with domain $D(H)=H^2(\mathbb{R}^{3N})$ called the ${\sf Hamiltonian}$ of the system of electrons and is given by

 $H_0 = -\Delta_{x_1,...,x_N}$ (kinetic energy)

and

$$
A = V(x_1, ..., x_N) = \sum_{k=1}^{M} \sum_{i=1}^{N} \frac{-Z_k}{|x_i - R_k|} + \sum_{1 \leq i < j \leq N} \frac{1}{|x_i - x_j|} \quad \text{(coulombic energy)}
$$

 $2Q$

Dynamical low complexity approximation

Question: What can we do when N, the number of electrons is large?

 299

Let $\Sigma\subset \mathcal{H}=L^2(\mathbb{R}^{3N})$ be a subset of functions of x_1,\ldots,x_N which can be represented with low complexity.

 299

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

Let $\Sigma\subset \mathcal{H}=L^2(\mathbb{R}^{3N})$ be a subset of functions of x_1,\ldots,x_N which can be represented with low complexity.

Examples:

4 Low-rank tensor formats:

 299

 $(1 - 1)$ $(1 - 1)$ $(1 - 1)$ $(1 - 1)$ $(1 - 1)$ $(1 - 1)$ $(1 - 1)$ $(1 - 1)$ $(1 - 1)$

Let $\Sigma\subset \mathcal{H}=L^2(\mathbb{R}^{3N})$ be a subset of functions of x_1,\ldots,x_N which can be represented with low complexity.

Examples:

- **4** Low-rank tensor formats:
	- Pure tensor products: $\Sigma = \{r_1(x_1) \dots r_N(x_N), \quad r_1, \dots, r_N \in L^2(\mathbb{R}^3)\}$ (with antisymmetry: set of Slater determinants)

 QQ

メロメメ 御 メメ きょくきょう

Let $\Sigma\subset \mathcal{H}=L^2(\mathbb{R}^{3N})$ be a subset of functions of x_1,\ldots,x_N which can be represented with low complexity.

Examples:

- **4** Low-rank tensor formats:
	- Pure tensor products: $\Sigma = \{r_1(x_1) \dots r_N(x_N), \quad r_1, \dots, r_N \in L^2(\mathbb{R}^3)\}$ (with antisymmetry: set of Slater determinants)
	- Tucker format (with antisymmetry: Multi Configuration Self Consistent Field)
	- Tensor Train format, Hierarchical Tree format

Bachmayr, Billaud-Friess, Dolgov, Falco, Grigori, Hackbusch, Kressner, Khoromskij, Lombardi, Lubich, Nouy, Oseledets, Schneider, Uschmajew, Vandereycken...

 QQ

メロメメ 御 メメ きょく ミメー

Let $\Sigma\subset \mathcal{H}=L^2(\mathbb{R}^{3N})$ be a subset of functions of x_1,\ldots,x_N which can be represented with low complexity.

Examples:

- **4** Low-rank tensor formats:
	- Pure tensor products: $\Sigma = \{r_1(x_1) \dots r_N(x_N), \quad r_1, \dots, r_N \in L^2(\mathbb{R}^3)\}$ (with antisymmetry: set of Slater determinants)
	- Tucker format (with antisymmetry: Multi Configuration Self Consistent Field)
	- Tensor Train format, Hierarchical Tree format

Bachmayr, Billaud-Friess, Dolgov, Falco, Grigori, Hackbusch, Kressner, Khoromskij, Lombardi, Lubich, Nouy, Oseledets, Schneider, Uschmajew, Vandereycken...

² Gaussian functions Lasser, Lubich...

 QQ

メロメメ 御 メメ きょく ミメー

Let $\Sigma\subset \mathcal{H}=L^2(\mathbb{R}^{3N})$ be a subset of functions of x_1,\ldots,x_N which can be represented with low complexity.

Examples:

- **4** Low-rank tensor formats:
	- Pure tensor products: $\Sigma = \{r_1(x_1) \dots r_N(x_N), \quad r_1, \dots, r_N \in L^2(\mathbb{R}^3)\}$ (with antisymmetry: set of Slater determinants)
	- Tucker format (with antisymmetry: Multi Configuration Self Consistent Field)
	- Tensor Train format, Hierarchical Tree format

Bachmayr, Billaud-Friess, Dolgov, Falco, Grigori, Hackbusch, Kressner, Khoromskij, Lombardi, Lubich, Nouy, Oseledets, Schneider, Uschmajew, Vandereycken...

² Gaussian functions Lasser, Lubich...

 QQ

メロメメ 御 メメ きょく ミメー

Let $\Sigma\subset \mathcal{H}=L^2(\mathbb{R}^{3N})$ be a subset of functions of x_1,\ldots,x_N which can be represented with low complexity.

Examples:

- **4** Low-rank tensor formats:
	- Pure tensor products: $\Sigma = \{r_1(x_1) \dots r_N(x_N), \quad r_1, \dots, r_N \in L^2(\mathbb{R}^3)\}$ (with antisymmetry: set of Slater determinants)
	- Tucker format (with antisymmetry: Multi Configuration Self Consistent Field)
	- Tensor Train format, Hierarchical Tree format

Bachmayr, Billaud-Friess, Dolgov, Falco, Grigori, Hackbusch, Kressner, Khoromskij, Lombardi, Lubich, Nouy, Oseledets, Schneider, Uschmajew, Vandereycken...

² Gaussian functions Lasser, Lubich...

Dynamical low-complexity approximation: The aim is to compute an approximation $\tilde{\psi}$ of ψ such that $\psi(t) \in \Sigma$ for all t.

 QQ

K ロ > K @ > K 경 > K 경 > 시 경

 299

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

Koch, Lubich, Schneider, Nouy, Bachmayr, Uschmajew...

Assume that Σ is a regular submanifold of \mathcal{H} .

Dirac-Frenkel variational principle: Find $\tilde{\psi}$ such that for almost all t,

$$
\partial_t \widetilde{\psi}(t) \in \underset{v \in \mathcal{T}_{\widetilde{\psi}(t)}}{\operatorname{argmin}} \left| - iH\widetilde{\psi}(t) - v \right|^2
$$

where $\mathcal{T}_{\widetilde{\psi}(t)}\Sigma$ is the tangent space to Σ at point $\widetilde{\psi}(t).$

 Ω

 $(1 - 1)$ $(1 - 1)$ $(1 - 1)$ $(1 - 1)$ $(1 - 1)$ $(1 - 1)$ $(1 - 1)$ $(1 - 1)$ $(1 - 1)$

Koch, Lubich, Schneider, Nouy, Bachmayr, Uschmajew...

Assume that Σ is a regular submanifold of \mathcal{H} .

Dirac-Frenkel variational principle: Find $\tilde{\psi}$ such that for almost all t,

$$
\partial_t \widetilde{\psi}(t) \in \underset{v \in \mathcal{T}_{\widetilde{\psi}(t)} \Sigma}{\operatorname{argmin}} \mid -iH\widetilde{\psi}(t) - v \mid^2
$$

where $\mathcal{T}_{\widetilde{\psi}(t)}\Sigma$ is the tangent space to Σ at point $\widetilde{\psi}(t).$

$$
\langle (i\partial_t - H)\widetilde{\psi}(t), \delta \widetilde{\psi} \rangle = 0, \quad \forall \delta \widetilde{\psi} \in \mathcal{T}_{\widetilde{\psi}(t)}\Sigma.
$$
 (2)

 Ω

 $(1 - 1)$ $(1 - 1)$ $(1 - 1)$ $(1 - 1)$ $(1 - 1)$ $(1 - 1)$ $(1 - 1)$ $(1 - 1)$ $(1 - 1)$

Koch, Lubich, Schneider, Nouy, Bachmayr, Uschmajew...

Assume that Σ is a regular submanifold of \mathcal{H} .

Dirac-Frenkel variational principle: Find $\tilde{\psi}$ such that for almost all t,

$$
\partial_t \widetilde{\psi}(t) \in \mathop{\rm argmin}_{v \in \mathcal{T}_{\widetilde{\psi}(t)} \Sigma} |-iH\widetilde{\psi}(t) - v|^2
$$

where $\mathcal{T}_{\widetilde{\psi}(t)}\Sigma$ is the tangent space to Σ at point $\widetilde{\psi}(t).$

$$
\langle (i\partial_t - H)\widetilde{\psi}(t), \delta \widetilde{\psi} \rangle = 0, \quad \forall \delta \widetilde{\psi} \in \mathcal{T}_{\widetilde{\psi}(t)}\Sigma.
$$
 (2)

Problem: In general, the low-complexity sets Σ which are used in practice are not regular everywhere. As a consequence, except in some particular situations, one can only obtain the local existence in time of a solution ψ to [\(2\)](#page-20-0).

 QQ

イロト 不優 トメ 差 トメ 差 トー 差

Alternative: quadratic variational formulation of the TD Schrödinger equation

Our aim here is to express equivalently the solution ψ of [\(8\)](#page-10-0) as the solution of a variational problem of the form

 $\forall \varphi \in \mathcal{X}_H$, $a(\psi, \varphi) = b(\varphi)$

with

- \mathcal{X}_H a Hilbert space of functions depending both on the time and space variable;
- $a: \mathcal{X}_H \times \mathcal{X}_H$ a continuous hermitian coercive sesquilinear form
- \bullet $b : \mathcal{X}_H \rightarrow \mathbb{C}$ a continuous linear form

 Ω

Alternative: quadratic variational formulation of the TD Schrödinger equation

Our aim here is to express equivalently the solution ψ of [\(8\)](#page-10-0) as the solution of a variational problem of the form

 $\forall \varphi \in \mathcal{X}_H$, $a(\psi, \varphi) = b(\varphi)$

with

- \mathcal{X}_H a Hilbert space of functions depending both on the time and space variable;
- $a: \mathcal{X}_H \times \mathcal{X}_H$ a continuous hermitian coercive sesquilinear form
- \bullet $b: \mathcal{X}_H \rightarrow \mathbb{C}$ a continuous linear form

so that

$$
\psi = \operatornamewithlimits{argmin}_{\varphi \in \mathcal{X}_H} E(\varphi)
$$

with

$$
\forall \varphi \in \mathcal{X}_H, \quad E(\varphi) = \frac{1}{2} a(\varphi, \varphi) - b(\varphi)
$$

 Ω

Alternative: quadratic variational formulation of the TD Schrödinger equation

Our aim here is to express equivalently the solution ψ of [\(8\)](#page-10-0) as the solution of a variational problem of the form

 $\forall \varphi \in \mathcal{X}_H$, $a(\psi, \varphi) = b(\varphi)$

with

- \mathcal{X}_H a Hilbert space of functions depending both on the time and space variable;
- $a: \mathcal{X}_H \times \mathcal{X}_H$ a continuous hermitian coercive sesquilinear form
- \bullet $b: \mathcal{X}_H \rightarrow \mathbb{C}$ a continuous linear form

so that

$$
\psi = \operatornamewithlimits{argmin}_{\varphi \in \mathcal{X}_H} E(\varphi)
$$

with

$$
\forall \varphi \in \mathcal{X}_H, \quad E(\varphi) = \frac{1}{2} \mathsf{a}(\varphi, \varphi) - \mathsf{b}(\varphi)
$$

There are several ways to do so!

 2990

One would like the previous variational formulation to have the following properties:

 299

K ロ ▶ K 個 ▶ K 君 ▶ K 君 ▶

One would like the previous variational formulation to have the following properties:

• the space \mathcal{X}_H should be easy to characterize;

 299

One would like the previous variational formulation to have the following properties:

- the space \mathcal{X}_H should be easy to characterize;
- \bullet the coercivity and continuity constants of a and b should not depend too strongly on the value of the final time T ;
- the formulation should be convenient to use with dynamical low-complexity approximations of the Schrödinger equation with gaussian functions or low-rank tensor formats

 Ω

One would like the previous variational formulation to have the following properties:

- the space \mathcal{X}_H should be easy to characterize;
- \bullet the coercivity and continuity constants of a and b should not depend too strongly on the value of the final time T ;
- the formulation should be convenient to use with dynamical low-complexity approximations of the Schrödinger equation with gaussian functions or low-rank tensor formats

Main interest/motivation: **Alternative variational principle for dynamical low-complexity** approximations

 Ω

One would like the previous variational formulation to have the following properties:

- the space \mathcal{X}_H should be easy to characterize;
- \bullet the coercivity and continuity constants of a and b should not depend too strongly on the value of the final time T ;
- the formulation should be convenient to use with dynamical low-complexity approximations of the Schrödinger equation with gaussian functions or low-rank tensor formats

Main interest/motivation: **Alternative variational principle for dynamical low-complexity** approximations

• well-defined on the whole time interval $(0, T)$ whatever the value of the final time T

 Ω

One would like the previous variational formulation to have the following properties:

- the space \mathcal{X}_H should be easy to characterize;
- \bullet the coercivity and continuity constants of a and b should not depend too strongly on the value of the final time T ;
- the formulation should be convenient to use with dynamical low-complexity approximations of the Schrödinger equation with gaussian functions or low-rank tensor formats

Main interest/motivation: **Alternative variational principle for dynamical low-complexity** approximations

- well-defined on the whole time interval $(0, T)$ whatever the value of the final time T
- certified a posteriori error estimator

 Ω

[Aim and motivation](#page-2-0)

2 Variational formulation of the time-dependent Schrödinger equation

3 Application to the many-body electronic Schrödinger problem

[Dynamical low complexity approximations](#page-80-0)

 299

Notation and definition of weak solutions

- Let H be a Hilbert space equipped with a scalar product $\langle \cdot, \cdot \rangle$ and associated norm $|\cdot|$
- Let H be a self-adjoint operator on H with domain $D(H)$
- Let $I := (0, T)$ and consider the Bochner space $L^2(I; H)$

 299

- Let H be a Hilbert space equipped with a scalar product $\langle \cdot, \cdot \rangle$ and associated norm $|\cdot|$
- Let H be a self-adjoint operator on H with domain $D(H)$
- Let $I := (0, T)$ and consider the Bochner space $L^2(I; H)$

"

For all $u_0 \in \mathcal{H}$ and $f \in L^2(I; \mathcal{H})$, consider u^* the unique weak solution to

$$
i\partial_t u^\star(t) - Hu^\star(t) = f(t), \quad t \in I,
$$

\n
$$
u^\star(0) = u_0
$$
\n(3)

 $2Q$
- Let H be a Hilbert space equipped with a scalar product $\langle \cdot, \cdot \rangle$ and associated norm $|\cdot|$
- Let H be a self-adjoint operator on H with domain $D(H)$
- Let $I := (0, T)$ and consider the Bochner space $L^2(I; H)$

For all $u_0 \in \mathcal{H}$ and $f \in L^2(I; \mathcal{H})$, consider u^* the unique weak solution to

$$
\begin{cases}\ni\partial_t u^\star(t) - H u^\star(t) = f(t), & t \in I, \\
u^\star(0) = u_0\n\end{cases}
$$
\n(3)

Definition (Notion of weak solutions)

A function $u^{\star} \in L^2(I; \mathcal{H})$ is said to be a weak solution to [\(3\)](#page-34-0) if and only if $(C1) \ \forall v \in C_c^0(I, D(H)) \cap C_c^1(I, H),$

$$
(u^*|(i\partial_t - H)v)_{L^2(I;\mathcal{H})} = (f|v)_{L^2(I;\mathcal{H})}
$$

 $(C2)$ $u^*(0) = u_0$

 QQ

イロト イ部 トイミト イミト

- Let H be a Hilbert space equipped with a scalar product $\langle \cdot, \cdot \rangle$ and associated norm $|\cdot|$
- Let H be a self-adjoint operator on H with domain $D(H)$
- Let $I := (0, T)$ and consider the Bochner space $L^2(I; H)$

For all $u_0 \in \mathcal{H}$ and $f \in L^2(I; \mathcal{H})$, consider u^* the unique weak solution to

$$
\begin{cases}\ni\partial_t u^\star(t) - H u^\star(t) = f(t), & t \in I, \\
u^\star(0) = u_0\n\end{cases}
$$
\n(3)

Definition (Notion of weak solutions)

A function $u^{\star} \in L^2(I; \mathcal{H})$ is said to be a weak solution to [\(3\)](#page-34-0) if and only if $(C1) \ \forall v \in C_c^0(I, D(H)) \cap C_c^1(I, H),$

$$
(u^{\star}|(i\partial_t - H)v)_{L^2(I;\mathcal{H})} = (f|v)_{L^2(I;\mathcal{H})}
$$

 $(C2)$ $u^*(0) = u_0$

Remark: Actually, (C1) implies that $u^* \in C^0(\overline{I}; \mathcal{H})$, which enables to give a meaning to (C2)

 299

イロト イ部 トイミト イミト

A first variational formulation (not useful)

Define

$$
\mathcal{X}_H = \{ u^* \in L^2(I; \mathcal{H}) : \exists (u_0, f) \in \mathcal{H} \times L^2(I; \mathcal{H}) \text{ such that } u^* \text{ solves (3)} \}
$$

 299

K ロ ▶ K 個 ▶ K 君 ▶ K 君 ▶

Define

$$
\mathcal{X}_H = \{ u^* \in L^2(I; \mathcal{H}) : \exists (u_0, f) \in \mathcal{H} \times L^2(I; \mathcal{H}) \text{ such that } u^* \text{ solves (3)} \}
$$

This space is a Hilbert space when equipped with the inner product

$$
\forall u, v \in \mathcal{X}_H, \ (u, v)_{\mathcal{X}_H} = \langle u(0), v(0) \rangle + \mathcal{T}((i\partial_t - H)u)(i\partial_t - H)v)_{L^2(I; \mathcal{H})}
$$
(4)

The associated norm is then denoted by

$$
\forall u \in \mathcal{X}_H, \ \|u\|_{\mathcal{X}_H} = \left(|u(0)|^2 + T \| (i\partial_t - H)u\|_{L^2(I,\mathcal{H})}^2 \right)^{\frac{1}{2}}
$$
(5)

 299

Define

$$
\mathcal{X}_H = \{ u^* \in L^2(I; \mathcal{H}) : \exists (u_0, f) \in \mathcal{H} \times L^2(I; \mathcal{H}) \text{ such that } u^* \text{ solves (3)} \}
$$

This space is a Hilbert space when equipped with the inner product

$$
\forall u, v \in \mathcal{X}_H, \ (u, v)_{\mathcal{X}_H} = \langle u(0), v(0) \rangle + \mathcal{T}((i\partial_t - H)u)(i\partial_t - H)v)_{L^2(I; \mathcal{H})}
$$
(4)

The associated norm is then denoted by

$$
\forall u \in \mathcal{X}_H, \ \|u\|_{\mathcal{X}_H} = \left(|u(0)|^2 + T \| (i\partial_t - H)u\|_{L^2(I,\mathcal{H})}^2 \right)^{\frac{1}{2}}
$$
(5)

Equivalent formulation:

$$
u^* = \underset{u \in \mathcal{X}_H}{\text{argmin}} |u(0) - u_0|^2 + T ||(i\partial_t - H)u - f||^2_{L^2(I, \mathcal{H})}
$$

 299

Define

$$
\mathcal{X}_H = \{ u^* \in L^2(I; \mathcal{H}) : \exists (u_0, f) \in \mathcal{H} \times L^2(I; \mathcal{H}) \text{ such that } u^* \text{ solves (3)} \}
$$

This space is a Hilbert space when equipped with the inner product

$$
\forall u, v \in \mathcal{X}_H, \ (u, v)_{\mathcal{X}_H} = \langle u(0), v(0) \rangle + \mathcal{T}((i\partial_t - H)u)(i\partial_t - H)v)_{L^2(I; \mathcal{H})}
$$
(4)

The associated norm is then denoted by

$$
\forall u \in \mathcal{X}_H, \ \|u\|_{\mathcal{X}_H} = \left(|u(0)|^2 + T \| (i\partial_t - H)u\|_{L^2(I,\mathcal{H})}^2 \right)^{\frac{1}{2}}
$$
(5)

Equivalent formulation:

$$
u^* = \underset{u \in \mathcal{X}_H}{\text{argmin}} |u(0) - u_0|^2 + \mathcal{T} \|(i\partial_t - H)u - f\|_{L^2(I, \mathcal{H})}^2
$$

Problem: what is the space X_H ?

 2990

イロト イ部 トイミト イミト

The application

$$
L^{2}(I; \mathcal{H}) \rightarrow L^{2}(I; \mathcal{H})
$$

\n
$$
u \rightarrow e^{itH}u
$$
\n(6)

defines an isomorphism between \mathcal{X}_H and $H^1(I;\mathcal{H})$.

"

 299

The application

$$
L^{2}(I; \mathcal{H}) \rightarrow L^{2}(I; \mathcal{H})
$$

\n
$$
u \rightarrow e^{itH}u
$$
\n(6)

defines an isomorphism between \mathcal{X}_H and $H^1(I;\mathcal{H})$.

"

In other words,

$$
\mathcal{X}_H = \left\{ e^{-itH} v : v \in H^1(I; \mathcal{H}) \right\}
$$

 299

The application

$$
L^{2}(I; \mathcal{H}) \rightarrow L^{2}(I; \mathcal{H})
$$

\n
$$
u \rightarrow e^{itH}u
$$
\n(6)

defines an isomorphism between \mathcal{X}_H and $H^1(I;\mathcal{H})$.

"

In other words,

$$
\mathcal{X}_H = \left\{ e^{-itH} v : v \in H^1(I; \mathcal{H}) \right\}
$$

Problem again: the evolution group e^{-itH} is not easy to compute/characterize in general

 QQ

Key ingredient: write the operator H as $H = H_0 + A$ for some operators H₀ and A so that

 299

イロト イ部 トイミト イミト

Key ingredient: write the operator H as $H = H_0 + A$ for some operators H_0 and A so that

the space \mathcal{X}_{H_0} can be easily characterized and discretized

 299

Key ingredient: write the operator H as $H = H_0 + A$ for some operators H₀ and A so that

- the space \mathcal{X}_{H_0} can be easily characterized and discretized
- \bullet A is a "small perturbation" of H_0 in some sense

 299

Key ingredient: write the operator H as $H = H_0 + A$ for some operators H_0 and A so that

- the space \mathcal{X}_{H_0} can be easily characterized and discretized
- \bullet A is a "small perturbation" of H_0 in some sense

many-body electronic Schrödinger operator: $H_0 = -\Delta_{x_1,...,x_N}$.

 299

Key ingredient: write the operator H as $H = H_0 + A$ for some operators H_0 and A so that

- the space \mathcal{X}_{H_0} can be easily characterized and discretized
- \bullet A is a "small perturbation" of H_0 in some sense

many-body electronic Schrödinger operator: $H_0 = -\Delta_{x_1,...,x_N}$.

The proofs of the following results rely on Kato's smoothing theory [Reed, Simon, 1978]

 Ω

Assumptions (A):

- (A1) The operator H_0 is a self-adjoint operator on H with domain $D(H_0)$
- (A2) The operator A is a closed symmetric operator on H such that $D(H_0) \subset D(A)$
- (A3) There exists some $\varepsilon > 0$ such that

$$
\sup_{\lambda \in \mathbb{R}} \|A(H_0 - \lambda \pm i\varepsilon)^{-1}\| < 1
$$
 (7)

 299

Assumptions (A):

- (A1) The operator H_0 is a self-adjoint operator on H with domain $D(H_0)$
- (A2) The operator A is a closed symmetric operator on H such that $D(H_0) \subset D(A)$
- (A3) There exists some $\varepsilon > 0$ such that

$$
\sup_{\lambda \in \mathbb{R}} \|A(H_0 - \lambda \pm i\varepsilon)^{-1}\| < 1
$$
 (7)

Theorem

Let H_0 and A be operators on H satisfying the set of assumptions (A).

 Ω

Assumptions (A):

- (A1) The operator H_0 is a self-adjoint operator on H with domain $D(H_0)$
- (A2) The operator A is a closed symmetric operator on H such that $D(H_0) \subset D(A)$
- (A3) There exists some $\varepsilon > 0$ such that

$$
\sup_{\lambda \in \mathbb{R}} \|A(H_0 - \lambda \pm i\varepsilon)^{-1}\| < 1 \tag{7}
$$

Theorem

Let H_0 and A be operators on H satisfying the set of assumptions (A).

• Then $H = H_0 + A$ defined on $D(H) := D(H_0)$ is self-adjoint.

 Ω

Assumptions (A):

- (A1) The operator H_0 is a self-adjoint operator on H with domain $D(H_0)$
- (A2) The operator A is a closed symmetric operator on H such that $D(H_0) \subset D(A)$
- (A3) There exists some $\varepsilon > 0$ such that

$$
\sup_{\lambda \in \mathbb{R}} \|A(H_0 - \lambda \pm i\varepsilon)^{-1}\| < 1 \tag{7}
$$

Theorem

Let H_0 and A be operators on H satisfying the set of assumptions (A).

- Then $H = H_0 + A$ defined on $D(H) := D(H_0)$ is self-adjoint.
- It holds that $X_H = X_{H_0}$

 Ω

Assumptions (A):

- (A1) The operator H_0 is a self-adjoint operator on H with domain $D(H_0)$
- (A2) The operator A is a closed symmetric operator on H such that $D(H_0) \subset D(A)$
- (A3) There exists some $\varepsilon > 0$ such that

$$
\sup_{\lambda \in \mathbb{R}} \|A(H_0 - \lambda \pm i\varepsilon)^{-1}\| < 1
$$
 (7)

Theorem

Let H_0 and A be operators on H satisfying the set of assumptions (A).

- Then $H = H_0 + A$ defined on $D(H) := D(H_0)$ is self-adjoint.
- It holds that $X_H = X_{H_0}$
- There exist constants α , $C > 0$ independent of T such that

$$
\forall u \in \mathcal{X}_{H_0}, \quad \frac{\alpha}{1+T} \|u\|_{\mathcal{X}_{H_0}} \leq \|u\|_{\mathcal{X}_H} \leq C(1+T) \|u\|_{\mathcal{X}_{H_0}}
$$

 Ω

$$
u^* = \operatorname*{argmin}_{u \in \mathcal{X}_{H_0}} |u(0) - u_0|^2 + ||(i\partial_t - H_0 - A)u - f||^2_{L^2(I; \mathcal{H})}
$$

 299

$$
u^* = \underset{u \in \mathcal{X}_{H_0}}{\text{argmin}} |u(0) - u_0|^2 + ||(i\partial_t - H_0 - A)u - f||^2_{L^2(I; \mathcal{H})}
$$

$$
\mathcal{X}_{H_0} = \left\{ e^{-itH_0} v : v \in H^1(I; \mathcal{H}) \right\}
$$

 299

$$
u^* = \operatorname*{argmin}_{u \in \mathcal{X}_{H_0}} |u(0) - u_0|^2 + ||(i\partial_t - H_0 - A)u - f||^2_{L^2(I; \mathcal{H})}
$$

$$
\mathcal{X}_{H_0} = \left\{ e^{-itH_0} v : v \in H^1(I; \mathcal{H}) \right\}
$$

Let $v^* \in H^1(I; \mathcal{H})$ such that $u^* = e^{-itH_0} v^*$. We then have

 298

$$
u^* = \underset{u \in \mathcal{X}_{H_0}}{\text{argmin}} |u(0) - u_0|^2 + ||(i\partial_t - H_0 - A)u - f||^2_{L^2(I; \mathcal{H})}
$$

$$
\mathcal{X}_{H_0} = \left\{ e^{-itH_0} v : v \in H^1(I; \mathcal{H}) \right\}
$$

Let $v^* \in H^1(I; \mathcal{H})$ such that $u^* = e^{-itH_0} v^*$. We then have

$$
v^* = \underset{v \in H^1(I; \mathcal{H})}{\operatorname{argmin}} |(e^{-itH_0}v)(0) - u_0|^2 + \left\|(i\partial_t - H_0 - A)(e^{-itH_0}v) - f\right\|_{L^2(I; \mathcal{H})}^2
$$

 299

$$
u^* = \operatorname*{argmin}_{u \in \mathcal{X}_{H_0}} |u(0) - u_0|^2 + ||(i\partial_t - H_0 - A)u - f||^2_{L^2(I; \mathcal{H})}
$$

$$
\mathcal{X}_{H_0} = \left\{ e^{-itH_0} v : v \in H^1(I; \mathcal{H}) \right\}
$$

Let $v^* \in H^1(I; \mathcal{H})$ such that $u^* = e^{-itH_0} v^*$. We then have

$$
v^* = \underset{v \in H^1(I; \mathcal{H})}{\text{argmin}} \left\| (e^{-itH_0} v)(0) - u_0 \right\|^2 + \left\| (i\partial_t - H_0 - A)(e^{-itH_0} v) - f \right\|_{L^2(I; \mathcal{H})}^2
$$

 $(e^{-itH_0}v)(0) = v(0)$

 299

$$
u^* = \operatorname*{argmin}_{u \in \mathcal{X}_{H_0}} |u(0) - u_0|^2 + ||(i\partial_t - H_0 - A)u - f||^2_{L^2(I; \mathcal{H})}
$$

$$
\mathcal{X}_{H_0} = \left\{ e^{-itH_0} v : v \in H^1(I; \mathcal{H}) \right\}
$$

Let $v^* \in H^1(I; \mathcal{H})$ such that $u^* = e^{-itH_0} v^*$. We then have

$$
v^* = \underset{v \in H^1(I; \mathcal{H})}{\operatorname{argmin}} \left| (e^{-itH_0}v)(0) - u_0 \right|^2 + \left\| (i\partial_t - H_0 - A)(e^{-itH_0}v) - f \right\|_{L^2(I; \mathcal{H})}^2
$$

 $(e^{-itH_0}v)(0) = v(0)$

since the evolution group e^{itH_0} is a unitary group, it holds that

$$
\left\| (i\partial_t - H_0 - A)(e^{-itH_0}v) - f \right\|_{L^2(I; \mathcal{H})}^2 = \left\| e^{itH_0} (i\partial_t - H_0 - A)(e^{-itH_0}v) - e^{itH_0} f \right\|_{L^2(I; \mathcal{H})}^2
$$

 299

$$
u^* = \operatorname*{argmin}_{u \in \mathcal{X}_{H_0}} |u(0) - u_0|^2 + ||(i\partial_t - H_0 - A)u - f||^2_{L^2(I; \mathcal{H})}
$$

$$
\mathcal{X}_{H_0} = \left\{ e^{-itH_0} v : v \in H^1(I; \mathcal{H}) \right\}
$$

Let $v^* \in H^1(I; \mathcal{H})$ such that $u^* = e^{-itH_0} v^*$. We then have

$$
v^* = \underset{v \in H^1(I; \mathcal{H})}{\operatorname{argmin}} \left| (e^{-itH_0}v)(0) - u_0 \right|^2 + \left\| (i\partial_t - H_0 - A)(e^{-itH_0}v) - f \right\|_{L^2(I; \mathcal{H})}^2
$$

- $(e^{-itH_0}v)(0) = v(0)$
- since the evolution group e^{itH_0} is a unitary group, it holds that

$$
\left\| (i\partial_t - H_0 - A)(e^{-itH_0}v) - f \right\|_{L^2(I; \mathcal{H})}^2 = \left\| e^{itH_0} (i\partial_t - H_0 - A)(e^{-itH_0}v) - e^{itH_0} f \right\|_{L^2(I; \mathcal{H})}^2
$$

for all $v\in H^1(I;\mathcal{H})$, $e^{itH_0}(i\partial_t)e^{-itH_0}v=e^{itH_0}e^{-itH_0}(H_0+i\partial_t)v=(H_0+i\partial_t)v$

 2990

イロト イ部 トイミト イミト

$$
u^* = \operatorname*{argmin}_{u \in \mathcal{X}_{H_0}} |u(0) - u_0|^2 + ||(i\partial_t - H_0 - A)u - f||^2_{L^2(I; \mathcal{H})}
$$

$$
\mathcal{X}_{H_0} = \left\{ e^{-itH_0} v : v \in H^1(I; \mathcal{H}) \right\}
$$

Let $v^* \in H^1(I; \mathcal{H})$ such that $u^* = e^{-itH_0} v^*$. We then have

$$
v^* = \underset{v \in H^1(I; \mathcal{H})}{\operatorname{argmin}} \left| (e^{-itH_0}v)(0) - u_0 \right|^2 + \left\| (i\partial_t - H_0 - A)(e^{-itH_0}v) - f \right\|_{L^2(I; \mathcal{H})}^2
$$

- $(e^{-itH_0}v)(0) = v(0)$
- since the evolution group e^{itH_0} is a unitary group, it holds that

$$
\left\| (i\partial_t - H_0 - A)(e^{-itH_0}v) - f \right\|_{L^2(I; \mathcal{H})}^2 = \left\| e^{itH_0} (i\partial_t - H_0 - A)(e^{-itH_0}v) - e^{itH_0} f \right\|_{L^2(I; \mathcal{H})}^2
$$

for all $v\in H^1(I;\mathcal{H})$, $e^{itH_0}(i\partial_t)e^{-itH_0}v=e^{itH_0}e^{-itH_0}(H_0+i\partial_t)v=(H_0+i\partial_t)v$

and $e^{itH_0}H_0e^{-itH_0}v = e^{itH_0}e^{-itH_0}H_0v$ because H_0 commutes with e^{-itH_0} .

 QQQ

Let H₀ and A be operators on H satisfying (A). Let $u_0 \in \mathcal{H}$ and $f \in L^2(I; \mathcal{H})$.

 299

Let H₀ and A be operators on H satisfying (A). Let $u_0 \in H$ and $f \in L^2(I; H)$. Then, the solution u^{*} to [\(3\)](#page-34-0) is given by $u^* = e^{-itH_0}v^*$ where $v^* \in H^1(I; \mathcal{H})$ is the unique solution to

> $v^* = \text{argmin } F(v)$ $v \in H^1(I; \mathcal{H})$

with

$$
F(v) = |v(0) - u_0|^2 + T \left\| (i\partial_t - e^{itH_0} A e^{-itH_0}) v - e^{itH_0} f \right\|_{L^2(I; \mathcal{H})}
$$

 Ω

Let H₀ and A be operators on H satisfying (A). Let $u_0 \in H$ and $f \in L^2(I; H)$. Then, the solution u^{*} to [\(3\)](#page-34-0) is given by $u^* = e^{-itH_0}v^*$ where $v^* \in H^1(I; \mathcal{H})$ is the unique solution to

$$
v^* = \operatorname*{argmin}_{v \in H^1(I; \mathcal{H})} F(v)
$$

with

$$
F(v) = |v(0) - u_0|^2 + T \left\| (i\partial_t - e^{itH_0} A e^{-itH_0}) v - e^{itH_0} f \right\|_{L^2(I; \mathcal{H})}
$$

Moreover, there exists α , $C > 0$ independent on T such that

$$
\forall v \in H^1(I; \mathcal{H}), \quad \frac{\alpha}{1+T} \|v - v^\star\|_{H^1(I; \mathcal{H})} \leqslant \sqrt{F(v)} \leqslant C(1+T) \|v - v^\star\|_{H^1(I; \mathcal{H})}
$$

 Ω

Let H₀ and A be operators on H satisfying (A). Let $u_0 \in H$ and $f \in L^2(I; H)$. Then, the solution u^{*} to [\(3\)](#page-34-0) is given by $u^* = e^{-itH_0}v^*$ where $v^* \in H^1(I; \mathcal{H})$ is the unique solution to

$$
v^* = \operatorname*{argmin}_{v \in H^1(I; \mathcal{H})} F(v)
$$

with

$$
F(v) = |v(0) - u_0|^2 + T \left\| (i\partial_t - e^{itH_0} A e^{-itH_0}) v - e^{itH_0} f \right\|_{L^2(I; \mathcal{H})}
$$

Moreover, there exists α , $C > 0$ independent on T such that

$$
\forall v \in H^1(I; \mathcal{H}), \quad \frac{\alpha}{1+T} \|v - v^\star\|_{H^1(I; \mathcal{H})} \leqslant \sqrt{F(v)} \leqslant C(1+T) \|v - v^\star\|_{H^1(I; \mathcal{H})}
$$

Remark: We obtain a similar result in the case when u^* is the solution of a time-dependent Schrödinger equation of the form

$$
\begin{cases}\ni\partial_t u^\star(t) - (H_0 + A + B(t))u^\star(t) = f(t), & t \in I, \\
u^\star(0) = u_0\n\end{cases}
$$

where $B : \overline{I} \ni t \mapsto B(t)$ is a strongly continuous family of **bounded** self-adjoint operators on H.

 QQ

[Aim and motivation](#page-2-0)

² Variational formulation of the time-dependent Schrödinger equation

3 Application to the many-body electronic Schrödinger problem

⁴ [Dynamical low complexity approximations](#page-80-0)

 299

$$
\begin{cases}\ni\partial_t\psi(t) - H\psi(t) = 0, & t \in (0, T) \\
\psi(0) = \psi_0\n\end{cases}
$$
\n(8)

$$
H_0 = -\Delta_{x_1,\ldots,x_N} \quad \text{(kinetic energy)}
$$

and

$$
A = V(x_1, ..., x_N) = \sum_{k=1}^{M} \sum_{i=1}^{N} \frac{-Z_k}{|x_i - R_k|} + \sum_{1 \leq i < j \leq N} \frac{1}{|x_i - x_j|} \quad \text{(coulombic energy)}
$$

 299

$$
\begin{cases}\ni\partial_t\psi(t) - H\psi(t) = 0, & t \in (0, T) \\
\psi(0) = \psi_0\n\end{cases}
$$
\n(8)

$$
H_0 = -\Delta_{x_1,\ldots,x_N} \quad \text{(kinetic energy)}
$$

and

$$
A = V(x_1, ..., x_N) = \sum_{k=1}^{M} \sum_{i=1}^{N} \frac{-Z_k}{|x_i - R_k|} + \sum_{1 \leq i < j \leq N} \frac{1}{|x_i - x_j|} \quad \text{(coulombic energy)}
$$

Question: Do H_0 and A satisfy assumptions (A1)-(A2)-(A3)?

 299

$$
\begin{cases}\ni\partial_t\psi(t) - H\psi(t) = 0, & t \in (0, T) \\
\psi(0) = \psi_0\n\end{cases}
$$
\n(8)

$$
H_0 = -\Delta_{x_1,\ldots,x_N} \quad \text{(kinetic energy)}
$$

and

$$
A = V(x_1, ..., x_N) = \sum_{k=1}^{M} \sum_{i=1}^{N} \frac{-Z_k}{|x_i - R_k|} + \sum_{1 \leq i < j \leq N} \frac{1}{|x_i - x_j|} \quad \text{(coulombic energy)}
$$

Question: Do H_0 and A satisfy assumptions $(A1)-(A2)-(A3)$? **YES!!!**

 299

$$
\begin{cases}\ni\partial_t\psi(t) - H\psi(t) = 0, & t \in (0, T) \\
\psi(0) = \psi_0\n\end{cases}
$$
\n(8)

$$
H_0 = -\Delta_{x_1,\ldots,x_N} \quad \text{(kinetic energy)}
$$

and

$$
A = V(x_1, ..., x_N) = \sum_{k=1}^{M} \sum_{i=1}^{N} \frac{-Z_k}{|x_i - R_k|} + \sum_{1 \leq i < j \leq N} \frac{1}{|x_i - x_j|} \quad \text{(coulombic energy)}
$$

Question: Do H_0 and A satisfy assumptions (A1)-(A2)-(A3)? **YES!!!** WHY???

 299
Let H_0 and A be operators on H satisfying (A1)-(A2).

 299

K ロ ▶ K 個 ▶ K 君 ▶ K 君 ▶

Let H_0 and A be operators on H satisfying (A1)-(A2). Then, if

$$
\sup_{\varphi\in\mathcal{H},\ |\varphi|=1}\int_{\mathbb{R}}\,dt|Ae^{-itH_0}\varphi|^2<\infty,
$$

then H_0 and A satisfy (A3).

 299

Let H_0 and A be operators on H satisfying (A1)-(A2). Then, if

$$
\sup_{\varphi\in\mathcal{H},\ |\varphi|=1}\int_{\mathbb{R}}\ dt\vert Ae^{-itH_0}\varphi\vert^2<\infty,
$$

then H_0 and A satisfy (A3).

The operator A is said to be H_0 -smooth.

 299

Let H_0 and A be operators on H satisfying (A1)-(A2). Then, if

$$
\sup_{\varphi\in\mathcal{H},\ |\varphi|=1}\int_{\mathbb{R}}\,dt|Ae^{-itH_0}\varphi|^2<\infty,
$$

then H_0 and A satisfy (A3).

The operator A is said to be H_0 -smooth.

Theorem

$$
\sup_{\varphi \in L^2(\mathbb{R}^{3N}),\ \|\varphi\|_{L^2(\mathbb{R}^{3N})}=1} \int_{\mathbb{R}} dt \left\|Ve^{it\Delta}\varphi\right\|_{L^2(\mathbb{R}^{3N})}^2 \leq 2\sqrt{\frac{2}{\pi}} \left(M \sum_{k=1}^M Z_k + \frac{N(N-1)}{2\sqrt{2}}\right) \tag{9}
$$

 299

イロト イ御 トイ ヨ トイ ヨ)

Let H_0 and A be operators on H satisfying (A1)-(A2). Then, if

$$
\sup_{\varphi\in\mathcal{H},\ |\varphi|=1}\int_{\mathbb{R}}\,dt|Ae^{-itH_0}\varphi|^2<\infty,
$$

then H_0 and A satisfy (A3).

The operator A is said to be H_0 -smooth.

Theorem

$$
\sup_{\varphi \in L^2(\mathbb{R}^{3N}),\ \|\varphi\|_{L^2(\mathbb{R}^{3N})}=1} \int_{\mathbb{R}} dt \left\|Ve^{it\Delta}\varphi\right\|_{L^2(\mathbb{R}^{3N})}^2 \leq 2\sqrt{\frac{2}{\pi}} \left(M \sum_{k=1}^M Z_k + \frac{N(N-1)}{2\sqrt{2}}\right) \tag{9}
$$

stems from Kato-Yajima inequality: [Kato, Yajima, 1989], [Burq, 2004]

 298

Let $\psi_0 \in L^2(\mathbb{R}^{3N})$. Let ψ be the solution to [\(8\)](#page-10-0), and $v^* := e^{-it\Delta}\psi$.

 299

Let $\psi_0 \in L^2(\mathbb{R}^{3N})$. Let ψ be the solution to [\(8\)](#page-10-0), and $v^* := e^{-it\Delta}\psi$. Define for any $v \in H^1(I; L^2(\mathbb{R}^{3N}))$ the functional $F(v) = ||v(0) - \psi_0||^2_{L^2(\mathbb{R}^{3N})} + T$ $\|(i\partial_t - e^{-it\Delta}Ve^{it\Delta})v\|$ \parallel^2 $L^2(I,L^2(\mathbb{R}^{3N}))$ (10)

 Ω

Let $\psi_0 \in L^2(\mathbb{R}^{3N})$. Let ψ be the solution to [\(8\)](#page-10-0), and $v^* := e^{-it\Delta}\psi$. Define for any $v \in H^1(I; L^2(\mathbb{R}^{3N}))$ the functional

$$
F(v) = \|v(0) - \psi_0\|_{L^2(\mathbb{R}^{3N})}^2 + T\left\| (i\partial_t - e^{-it\Delta} V e^{it\Delta}) v \right\|_{L^2(I, L^2(\mathbb{R}^{3N}))}^2.
$$
 (10)

Then, there exist constants $C, \alpha > 0$ such that for any $v \in H^1(I, L^2(\mathbb{R}^{3N}))$,

$$
\frac{\alpha}{1+T} \|\nu - \nu^{\star}\|_{H^1(I, L^2(\mathbb{R}^{3N}))} \leq \sqrt{F(\nu)} \leq C\sqrt{1+T} \|\nu - \nu^{\star}\|_{H^1(I, L^2(\mathbb{R}^{3N}))}
$$
(11)

 QQ

[Aim and motivation](#page-2-0)

² Variational formulation of the time-dependent Schrödinger equation

3 Application to the many-body electronic Schrödinger problem

⁴ [Dynamical low complexity approximations](#page-80-0)

 299

Rather look for $\widetilde{\psi} = e^{it\Delta} \widetilde{v}$ where \widetilde{v} is defined as a solution to

$$
\widetilde{\mathbf{v}} \in \underset{\widetilde{\mathbf{w}} \in H^1(I;\Sigma)}{\text{argmin}} \ F(\widetilde{\mathbf{w}}) \tag{12}
$$

Theorem

Let Σ be a weakly closed subset of $\cal H$. Then, $H^1(I;\Sigma)$ is a weakly closed subset of $H^1(I;\mathcal{H})$. Hence, there always exists at least one solution to [\(12\)](#page-81-0).

 298

Rather look for $\widetilde{\psi} = e^{it\Delta} \widetilde{v}$ where \widetilde{v} is defined as a solution to

$$
\widetilde{v} \in \underset{\widetilde{w} \in H^1(I;\Sigma)}{\text{argmin}} F(\widetilde{w}) \tag{12}
$$

Theorem

Let Σ be a weakly closed subset of $\cal H$. Then, $H^1(I;\Sigma)$ is a weakly closed subset of $H^1(I;\mathcal{H})$. Hence, there always exists at least one solution to [\(12\)](#page-81-0).

e global in time existence of dynamical low-complexity approximations provided that Σ is a weakly closed subset of $\mathcal{H} = L^2(\mathbb{R}^{3N}).$

 Ω

Rather look for $\widetilde{\psi} = e^{it\Delta} \widetilde{v}$ where \widetilde{v} is defined as a solution to

$$
\widetilde{v} \in \underset{\widetilde{w} \in H^1(I;\Sigma)}{\text{argmin}} F(\widetilde{w}) \tag{12}
$$

Theorem

Let Σ be a weakly closed subset of $\cal H$. Then, $H^1(I;\Sigma)$ is a weakly closed subset of $H^1(I;\mathcal{H})$. Hence, there always exists at least one solution to [\(12\)](#page-81-0).

- **e** global in time existence of dynamical low-complexity approximations provided that Σ is a weakly closed subset of $\mathcal{H} = L^2(\mathbb{R}^{3N}).$
- **certified a posteriori error estimate** between the exact solution and its approximation

 Ω

Rather look for $\widetilde{\psi} = e^{it\Delta} \widetilde{v}$ where \widetilde{v} is defined as a solution to

$$
\widetilde{v} \in \underset{\widetilde{w} \in H^1(I;\Sigma)}{\text{argmin}} \ F(\widetilde{w}) \tag{12}
$$

Theorem

Let Σ be a weakly closed subset of $\cal H$. Then, $H^1(I;\Sigma)$ is a weakly closed subset of $H^1(I;\mathcal{H})$. Hence, there always exists at least one solution to [\(12\)](#page-81-0).

- **e** global in time existence of dynamical low-complexity approximations provided that Σ is a weakly closed subset of $\mathcal{H} = L^2(\mathbb{R}^{3N}).$
- **certified a posteriori error estimate** between the exact solution and its approximation

Very nice property for low-complexity approximations:

low-rank tensor formats: $e^{it\Delta}$ is a pure tensor product of operators:

$$
e^{it\Delta_{x_1},\ldots,x_N}=e^{it\Delta_{x_1}}\otimes\ldots\otimes e^{it\Delta_{x_N}}
$$

 \bullet gaussians: $F(\tilde{w})$ can be computed analytically (up to the time discretization)

 Ω

Rather look for $\widetilde{\psi} = e^{it\Delta} \widetilde{v}$ where \widetilde{v} is defined as a solution to

$$
\widetilde{v} \in \underset{\widetilde{w} \in H^1(I;\Sigma)}{\text{argmin}} \ F(\widetilde{w}) \tag{12}
$$

Theorem

Let Σ be a weakly closed subset of $\cal H$. Then, $H^1(I;\Sigma)$ is a weakly closed subset of $H^1(I;\mathcal{H})$. Hence, there always exists at least one solution to [\(12\)](#page-81-0).

- **e** global in time existence of dynamical low-complexity approximations provided that Σ is a weakly closed subset of $\mathcal{H} = L^2(\mathbb{R}^{3N}).$
- **certified a posteriori error estimate** between the exact solution and its approximation

Very nice property for low-complexity approximations:

low-rank tensor formats: $e^{it\Delta}$ is a pure tensor product of operators:

$$
e^{it\Delta_{x_1},\ldots,x_N}=e^{it\Delta_{x_1}}\otimes\ldots\otimes e^{it\Delta_{x_N}}
$$

 \bullet gaussians: $F(\tilde{w})$ can be computed analytically (up to the time discretization)

How does it compare with the dynamical low-complexity approximation given by the **Dirac-Frenkel variational princi[ple](#page-84-0)?**

↓ ロト ← ② ト ← ③ ト ← ③ ト ← ③ ト ← ③ ト ← △

Virginie Ehrlacher (CERMICS) Schrödinger CIRM, 28/10/24 24/31

 2990

Finite-dimensional version of the Schrödinger equation: $n \in \mathbb{N}^*$

$$
\begin{cases}\ni\partial_t\Psi = H\Psi, \\
\Psi(0) = \Psi_0 \in \mathbb{C}^{n \times n},\n\end{cases}
$$
\n(13)

 299

K ロ ▶ K 個 ▶ K 君 ▶ K 君 ▶

Finite-dimensional version of the Schrödinger equation: $n \in \mathbb{N}^*$

$$
\begin{cases}\ni\partial_t\Psi = H\Psi, \\
\Psi(0) = \Psi_0 \in \mathbb{C}^{n \times n},\n\end{cases}
$$
\n(13)

We look for a rank-r approximation $\widetilde{\Psi}$ of Ψ , i.e. for $r \in \mathbb{N}^*$,

$$
\Sigma = \left\{ \widetilde{\Psi} = \underbrace{\Phi_{X}}_{\in \mathbb{C}^{m,r}} \underbrace{\Phi_{Y}^{T}}_{\in \mathbb{C}^{r,n}} \right\}
$$

 $2Q$

イロト イ部 トイミト イミト

Singular value decomposition

For all $t \in [0, T]$, a best approximation of $\Psi(t)$ by an element of Σ is given as a rank-r truncated Singular Value Decomposition of $\Psi(t)$.

 299

Comparison of dynamical low-rank approximations

Errors in $L^{\infty}((0, T); \mathbb{C}^{n \times n})$ between the various dynamical low-rank approximations and the exact solution as a function of the rank r

 Ω

$$
\Sigma = \left\{ e^{-(x-q)^T A(x-q) + i p^T x} : p, q \in \mathbb{R}^{3N}, A = P + iQ \text{ with } P, Q \in \mathbb{R}_{\text{sym}}^{3N \times 3N}, P \text{ definite positive} \right\}.
$$

 299

イロト イ部 トイミト イミト

$$
\Sigma = \left\{ e^{-(x-q)^T A(x-q) + i p^T x} : p, q \in \mathbb{R}^{3N}, A = P + iQ \text{ with } P, Q \in \mathbb{R}_{\text{sym}}^{3N \times 3N}, P \text{ definite positive} \right\}.
$$

The set Σ is weakly closed in $\mathcal{H} = L^2(\mathbb{R}^{3N}).$

 299

$$
\Sigma = \left\{ e^{-(x-q)^T A(x-q) + i p^T x} : p, q \in \mathbb{R}^{3N}, A = P + iQ \text{ with } P, Q \in \mathbb{R}_{\text{sym}}^{3N \times 3N}, P \text{ definite positive} \right\}.
$$

The set Σ is weakly closed in $\mathcal{H} = L^2(\mathbb{R}^{3N}).$

Greedy algorithm for the Schrödinger equation: Construct an approximation of ψ under the form

$$
\psi(t) \approx \sum_{k=1}^K g_k(t), \quad g_k \in H^1(I;\Sigma)
$$

where each term in the sum is computed via an iterative procedure.

 QQ

 $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$

$$
\Sigma = \left\{ e^{-(x-q)^T A(x-q) + i p^T x} : p, q \in \mathbb{R}^{3N}, A = P + iQ \text{ with } P, Q \in \mathbb{R}_{\text{sym}}^{3N \times 3N}, P \text{ definite positive} \right\}.
$$

The set Σ is weakly closed in $\mathcal{H} = L^2(\mathbb{R}^{3N}).$

Greedy algorithm for the Schrödinger equation: Construct an approximation of ψ under the form

$$
\psi(t) \approx \sum_{k=1}^K g_k(t), \quad g_k \in H^1(I;\Sigma)
$$

where each term in the sum is computed via an iterative procedure.

See Clément Guillot's poster on Thursday for more details!

 299

 $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$

[Aim and motivation](#page-2-0)

² Variational formulation of the time-dependent Schrödinger equation

(3) Application to the many-body electronic Schrödinger problem

⁴ [Dynamical low complexity approximations](#page-80-0)

∍

 299

Result: New variational global space-time formulation of the solution of the time-dependent Schrödinger equation: potential with Coulombic singularities and unbounded domains

 299

- Result: New variational global space-time formulation of the solution of the time-dependent Schrödinger equation: potential with Coulombic singularities and unbounded domains
- Main tool: Kato smoothing theory
- Alternative variational principle to Dirac-Frenkel for dynamical low-complexity approximations allowing for global-in-time existence

 QQ

- Result: New variational global space-time formulation of the solution of the time-dependent Schrödinger equation: potential with Coulombic singularities and unbounded domains
- Main tool: Kato smoothing theory
- Alternative variational principle to Dirac-Frenkel for dynamical low-complexity approximations allowing for global-in-time existence
- **Certified a posteriori error estimator** given by the new variational formulation

- Result: New variational global space-time formulation of the solution of the time-dependent Schrödinger equation: potential with Coulombic singularities and unbounded domains
- Main tool: Kato smoothing theory
- Alternative variational principle to Dirac-Frenkel for dynamical low-complexity approximations allowing for global-in-time existence
- **Certified a posteriori error estimator** given by the new variational formulation
- Interesting preliminary numerical results using low-rank tensor formats or Gaussian function approximations.

- Result: New variational global space-time formulation of the solution of the time-dependent Schrödinger equation: potential with Coulombic singularities and unbounded domains
- Main tool: Kato smoothing theory
- Alternative variational principle to Dirac-Frenkel for dynamical low-complexity approximations allowing for **global-in-time existence**
- **Certified a posteriori error estimator** given by the new variational formulation
- Interesting preliminary numerical results using low-rank tensor formats or Gaussian function approximations.
- **Perspectives:**

- Result: New variational global space-time formulation of the solution of the time-dependent Schrödinger equation: potential with Coulombic singularities and unbounded domains
- Main tool: Kato smoothing theory
- Alternative variational principle to Dirac-Frenkel for dynamical low-complexity approximations allowing for **global-in-time existence**
- **Certified a posteriori error estimator** given by the new variational formulation
- \bullet Interesting preliminary numerical results using low-rank tensor formats or Gaussian function approximations.
- **Perspectives:**
	- Collaboration with Loïc Joubert-Doriol to apply these ideas to real molecules

 $\mathbf{A} \sqsubseteq \mathbf{B} \rightarrow \mathbf{A} \boxplus \mathbf{B} \rightarrow \mathbf{A} \boxplus \mathbf{B} \rightarrow \mathbf{A} \boxplus \mathbf{B}$

- Result: New variational global space-time formulation of the solution of the time-dependent Schrödinger equation: potential with Coulombic singularities and unbounded domains
- Main tool: Kato smoothing theory
- Alternative variational principle to Dirac-Frenkel for dynamical low-complexity approximations allowing for **global-in-time existence**
- **Certified a posteriori error estimator** given by the new variational formulation
- Interesting preliminary numerical results using low-rank tensor formats or Gaussian function approximations.
- **Perspectives:**
	- Collaboration with Loïc Joubert-Doriol to apply these ideas to real molecules
	- Open question: how to impose norm conservation in this global space-time formulation? Not completely obvious...

 $\mathbf{A} \equiv \mathbf{A} + \mathbf{A} \mathbf{B} + \mathbf{A} \mathbf{B} + \mathbf{A} \mathbf{B} + \mathbf{A} \mathbf{B}$

Thank you for your attention!

 2990

K ロ ▶ K 個 ▶ K 君 ▶ K 君 ▶