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Outline of the talk

@ Aim and motivation

© Variational formulation of the time-dependent Schrédinger equation

© Application to the many-body electronic Schrddinger problem

e Dynamical low complexity approximations

© Summary
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© Variational formulation of the time-dependent Schrédinger equation
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Motivation: electronic structure calculation for molecules

electrical, magnetical, optical properties...
Virginie Ehrlacher (CERMICS)

Computation of the evolution in time of the state of the set of electrons in a molecule:
Schrédinger
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Many-body Schrodinger model

For the sake of simplicity, atomic units will be used and the influence of spin will be neglected.
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Many-body Schrodinger model

For the sake of simplicity, atomic units will be used and the influence of spin will be neglected.

Born-Oppenheimer approximation:

Let us consider a physical system composed of
o M nuclei, that are assumed to be (fixed) classical point charges, whose positions and electric
charges are denoted by Ry, ..., Ry € R3 and Zy, ..., Zy € N* respectively;
@ N electrons, considered as quantum particles: at time t € R, the state of the electrons is
represented by a complex-valued function % (t) : R3¥ — C. The function 1)(t) is called the
wavefunction of the system of electrons at time t € R.
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Many-body Schrodinger model

For the sake of simplicity, atomic units will be used and the influence of spin will be neglected.

Born-Oppenheimer approximation:

Let us consider a physical system composed of

o M nuclei, that are assumed to be (fixed) classical point charges, whose positions and electric
charges are denoted by Ry, ..., Ry € R3 and Zy, ..., Zy € N* respectively;

@ N electrons, considered as quantum particles: at time t € R, the state of the electrons is
represented by a complex-valued function % (t) : R3¥ — C. The function 1)(t) is called the
wavefunction of the system of electrons at time t € R.

Physical interpretation of the wavefunction:

For x1,...,xy € R3, the quantity |1 (t, x1,...,xy)|? represents the probability density at
time t of the positions xi, ..., xy of the N electrons.
For B c R3N,

f (¢, ~)\2: probability that the electrons are located in the set B at time t.
B
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Time-dependent Schrodinger equation

{ ionp(t) — Hy(t) =0, te(0,T) (1)
¥(0) = o

where the operator
H=Hy+ A

is a self-adjoint operator on H = L2(R3") with domain D(H) = H?(R3V) called the Hamiltonian
of the system of electrons and is given by

Ho = —Ax,....xy (kinetic energy)

and

1 .
A= V(x,...,x Z Z \X: Rk\ Z — (coulombic energy)

k=1i=1 1<i<j<N Ixi = xjl
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Time-dependent Schrodinger equation

{ ionp(t) — Hy(t) =0, te(0,T) (1)
¥(0) = o

where the operator
H=Hy+ A

is a self-adjoint operator on H = L2(R3") with domain D(H) = H?(R3V) called the Hamiltonian
of the system of electrons and is given by

Ho = —Ax,....xy (kinetic energy)

and

1 .
A= V(x,...,x Z Z \X: Rk\ Z — (coulombic energy)

k=1i=1 1<i<j<N Ixi = xjl

‘ N large = Curse of dimensionality! ‘
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Dynamical low complexity approximation

Question: What can we do when N, the number of electrons is large?
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(with antisymmetry: set of Slater determinants)
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Dynamical low complexity approximation

Question: What can we do when N, the number of electrons is large?

Let ¥ < H = L?(R3N) be a subset of functions of xi, ..., xy which can be represented with low
complexity.
Examples:
@ Low-rank tensor formats:
o Pure tensor products: ¥ = {n (x1)...m(xn), ry...,rvE LZ(R3)}
(with antisymmetry: set of Slater determinants)

o Tucker format (with antisymmetry: Multi Configuration Self Consistent Field)
o Tensor Train format, Hierarchical Tree format

Bachmayr, Billaud-Friess, Dolgov, Falco, Grigori, Hackbusch, Kressner, Khoromskij, Lombardi,
Lubich, Nouy, Oseledets, Schneider, Uschmajew, Vandereycken...
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Dynamical low complexity approximation

Question: What can we do when N, the number of electrons is large?

Let ¥ < H = L?(R3N) be a subset of functions of xi, ..., xy which can be represented with low
complexity.
Examples:
@ Low-rank tensor formats:
o Pure tensor products: ¥ = {n (x1)...m(xn), ry...,rvE LZ(R3)}
(with antisymmetry: set of Slater determinants)

o Tucker format (with antisymmetry: Multi Configuration Self Consistent Field)
o Tensor Train format, Hierarchical Tree format

Bachmayr, Billaud-Friess, Dolgov, Falco, Grigori, Hackbusch, Kressner, Khoromskij, Lombardi,
Lubich, Nouy, Oseledets, Schneider, Uschmajew, Vandereycken...

@ Gaussian functions
Lasser, Lubich...

Dynamical low-complexity approximation: The aim is to compute an approximation 1~ of ¢ such
that ¢ (t) € X for all t.
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Dirac-Frenkel variational principle

Let us denote by {-,-> and | - | the scalar product and norm of H = L2(R3N).
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Dirac-Frenkel variational principle

Let us denote by {-,-> and | - | the scalar product and norm of H = L2(R3N).

Koch, Lubich, Schneider, Nouy, Bachmayr, Uschmajew...

Assume that X is a regular submanifold of H.

Dirac-Frenkel variational principle: Find ¢ such that for almost all ¢,

dep(t) € argmin | — iHY(t) — v|?
VET\(t)Z

"

where T15<t)2 is the tangent space to ¥ at point J(t)
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dep(t) € argmin | — iHY(t) — v|?
VET\(t)Z

"

where T15<t)2 is the tangent space to ¥ at point J(t)
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Dirac-Frenkel variational principle

Let us denote by {-,-> and | - | the scalar product and norm of H = L2(R3N).

Koch, Lubich, Schneider, Nouy, Bachmayr, Uschmajew...

Assume that X is a regular submanifold of H.

Dirac-Frenkel variational principle: Find ¢ such that for almost all ¢,

() € argmin | — iHP(t) — v[?

ve Tl; ® X

where T15<t)2 is the tangent space to ¥ at point J(t)

Uior — H)P(t), 80y =0, Vo e Tom = 2)

Y
Problem: In general, the low-complexity sets ¥ which are used in practice are not regular

everywhere. As a consequence, except in some particular situations, one can only obtain the local
existence in time of a solution 7 to (2).
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Alternative: quadratic variational formulation of the TD Schrodinger
equation

Our aim here is to express equivalently the solution 1) of (8) as the solution of a variational
problem of the form
Yoe Xy, a(y,p)=b(p)
with
o Xy a Hilbert space of functions depending both on the time and space variable;
@ a: Xy x Xy a continuous hermitian coercive sesquilinear form

ral

e b: Xy — C a continuous linear form

Virginie Ehrlacher (CERMICS) Schrédinger CIRM, 28/10/24

9/31



Alternative: quadratic variational formulation of the TD Schrodinger
equation

Our aim here is to express equivalently the solution 1) of (8) as the solution of a variational
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Yoe Xy, a(y,p)=b(p)
with
o Xy a Hilbert space of functions depending both on the time and space variable;
@ a: Xy x Xy a continuous hermitian coercive sesquilinear form

e b: Xy — C a continuous linear form

so that

1) = argmin E(p)
pEXY

with 1
Vo€ Xy, E(p) = 7ale,9) = bly)
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Alternative: quadratic variational formulation of the TD Schrodinger
equation

Our aim here is to express equivalently the solution 1) of (8) as the solution of a variational
problem of the form
Yoe Xy, a(y,p)=b(p)
with
o Xy a Hilbert space of functions depending both on the time and space variable;
@ a: Xy x Xy a continuous hermitian coercive sesquilinear form

e b: Xy — C a continuous linear form

so that

1) = argmin E(p)
pEXY

with 1
Vo€ Xy, E(p) = 7ale,9) = bly)

There are several ways to do so!
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Wishlist

One would like the previous variational formulation to have the following properties:
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@ the space Xy should be easy to characterize;
@ the coercivity and continuity constants of a and b should not depend too strongly on the
value of the final time T;

the formulation should be convenient to use with dynamical low-complexity approximations
of the Schrédinger equation with gaussian functions or low-rank tensor formats
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Wishlist

One would like the previous variational formulation to have the following properties:
@ the space Xy should be easy to characterize;

@ the coercivity and continuity constants of a and b should not depend too strongly on the
value of the final time T;

@ the formulation should be convenient to use with dynamical low-complexity approximations
of the Schrédinger equation with gaussian functions or low-rank tensor formats

Main interest/motivation: Alternative variational principle for dynamical low-complexity
approximations

o well-defined on the whole time interval (0, T) whatever the value of the final time T

o certified a posteriori error estimator
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@ Aim and motivation

© Variational formulation of the time-dependent Schrédinger equation

e Application to the many-body electronic Schroédinger problem

o Dynamical low complexity approximations
© Summary
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Notation and definition of weak solutions

o Let H be a Hilbert space equipped with a scalar product {-,-) and associated norm | - |
o Let H be a self-adjoint operator on H with domain D(H)
o Let / := (0, T) and consider the Bochner space L2(/; H)
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Notation and definition of weak solutions

o Let H be a Hilbert space equipped with a scalar product {-,-) and associated norm | - |
o Let H be a self-adjoint operator on H with domain D(H)
o Let / := (0, T) and consider the Bochner space L2(/; H)

For all ugp € H and f € Lz(l; H), consider u* the unique weak solution to

i0cu* (t) — Hu*(t) = f(t), tel,
{ u*(0) = up 3)

Definition (Notion of weak solutions)

A function u* € L2(/;H) is said to be a weak solution to (3) if and only if
(C1) Vv e o1, D(H)) ~ CL(I,H),

(W*[(i0e = H)V) 12130) = (FIV) 2130
(C2) u*(0) = up
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Notation and definition of weak solutions

o Let H be a Hilbert space equipped with a scalar product {-,-) and associated norm | - |
o Let H be a self-adjoint operator on H with domain D(H)
o Let / := (0, T) and consider the Bochner space L2(/; H)

For all ugp € H and f € L2(I; H), consider u* the unique weak solution to

i0cu* (t) — Hu*(t) = f(t), tel,
{ u*(0) = up 3)

Definition (Notion of weak solutions)

A function u* € L2(/;H) is said to be a weak solution to (3) if and only if
(C1) Vv e o1, D(H)) ~ CL(I,H),

(W*[(i0e = H)V) 12130) = (FIV) 2130
(C2) u*(0) = up

Remark: Actually, (C1) implies that u* € C°(; 1), which enables to give a meaning to (C2)
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A first variational formulation (not useful)

Define
Xy ={u" e L2(1;H) = I(ug, F) € H x L%(I; H) such that u* solves (3)}
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A first variational formulation (not useful)

Define
Xy ={u" e L2(1;H) = I(ug, F) € H x L%(I; H) such that u* solves (3)}

This space is a Hilbert space when equipped with the inner product
Yu,v e Xy, (u,v)xy = (u(0),v(0)) + T((i0r — H)u|(ide — H)v) 2. (4)

The associated norm is then denoted by

Nl

Vo e X, Jula, = (6P + T2 = H)ulZ(, 5)) (5)
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Define
Xy ={u" e L2(1;H) = I(ug, F) € H x L%(I; H) such that u* solves (3)}

This space is a Hilbert space when equipped with the inner product
Yu,v e Xy, (u,v)x, =<u(0),v(0)) + T((idr — H)u|(idr — H)V)LZU;H) (4)

The associated norm is then denoted by

Nl

Vo e X, Jula, = (6P + T2 = H)ulZ(, 5)) (5)

Equivalent formulation:

u* = argmin |u(0) — up|? + T|(ide — H)u —

f7
ueXy L20H)
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A first variational formulation (not useful)

Define
Xy ={u" e L2(1;H) = I(ug, F) € H x L%(I; H) such that u* solves (3)}

This space is a Hilbert space when equipped with the inner product
Yu,v e Xy, (u,v)xy = (u(0),v(0)) + T((i0r — H)u|(ide — H)v) 2.

The associated norm is then denoted by

Nl

Vo e X, Jula, = (6P + T2 = H)ulZ(, 5))

Equivalent formulation:

u* = argmin |u(0) — up|? + T|(ide — H)u — f\é(/ )
ueXy !
Problem: what is the space X7
Virginie Ehrlacher (CERMICS) Schrédinger CIRM, 28/10/24
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First characterization of Xy

The application

2(. 12
{Bem = ®

u —

defines an isomorphism between Xy and H(I; H).
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First characterization of Xy

The application

2(. 12
{Bem = ®

u —

defines an isomorphism between Xy and H(I; H).

In other words,
Xy = {efitHv t Ve Hl(I;H)}

Problem again: the evolution group e~/ is not easy to compute/characterize in general

Virginie Ehrlacher (CERMICS) Schrédinger CIRM, 28/10/24 14 /31



Main idea: H = Hp + A

Key ingredient: write the operator H as H = Hy + A for some operators Hyp and A so that
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Main idea: H = Hp + A

Key ingredient: write the operator H as H = Hy + A for some operators Hyp and A so that
@ the space X}y, can be easily characterized and discretized

@ A is a "small perturbation” of Hp in some sense

many-body electronic Schrodinger operator: Hy = —A, ... xy-

The proofs of the following results rely on Kato’s smoothing theory [Reed, Simon, 1978]
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Assumptions on Hp and A

Assumptions (A):

(A1) The operator Hp is a self-adjoint operator on H with domain D(Hp)

(A2) The operator A is a closed symmetric operator on H such that D(Hp) < D(A)
(A3) There exists some € > 0 such that

sup [A(Ho — A +ie) 7t <1 (7
AER
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Let Hy and A be operators on H satisfying the set of assumptions (A).
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Assumptions (A):

(A1) The operator Hp is a self-adjoint operator on H with domain D(Hp)

(A2) The operator A is a closed symmetric operator on H such that D(Hp) < D(A)
(A3) There exists some € > 0 such that

sup [A(Ho — A +ie) 7t <1 (7
AER

Let Hy and A be operators on H satisfying the set of assumptions (A).
o Then H = Hy + A defined on D(H) := D(Hp) is self-adjoint.
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Assumptions on Hp and A

Assumptions (A):

(A1) The operator Hp is a self-adjoint operator on H with domain D(Hp)

(A2) The operator A is a closed symmetric operator on H such that D(Hp) < D(A)
(A3) There exists some € > 0 such that

sup [A(Ho — A +ie) 7t <1 (7
AER

Let Hy and A be operators on H satisfying the set of assumptions (A).
o Then H = Hy + A defined on D(H) := D(Hp) is self-adjoint.
@ It holds that X = X}y,

o There exist constants «, C > 0 independent of T such that

Yue XHO’

«
m“““x,.,o < Julla, < CA+ T)H“HXHO
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Consequence: second variational formulation

u* = argmin [u(0) — uol® + (i9e — Ho — A)u — f[72 1.5
uE(\HO
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Consequence: second variational formulation

u* = argmin [u(0) — uo|* + [ (idc — Ho — A)u — F| 2139,

uE(\’HO

Xhy = {e_itHov T veE Hl(l;’H)}

Let v* € H'(/;H) such that u* = e~ *Hov*. We then have

v* = argmin |(e”™0v)(0) — wp|? +

veHL(I;H)

(idr — Ho — A)(e~"tHoy) — f ?
L2(1;H)

o (e~ tHoy)(0) = v(0)

o since the evolution group et is a unitary group, it holds that

. . . 2
e (idy — Hy — A)(e ™Moy — e/tfof

l(ioe — Ho — A)(e~ o) — £
¢ b ()

2(H) ‘
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Consequence: second variational formulation

u* = argmin [u(0) — uo|* + [ (idc — Ho — A)u — F| 2139,

uE(\’HO
Xhy = {e_itHov D ve Hl(l;’H)}

Let v* € H'(/;H) such that u* = e~ *Hov*. We then have

v* = argmin |(e”™0v)(0) — wp|? +

. 2
(idr — Ho — A)(e~"tHoy) — f
veHL(I;H)

[2(1;H)

o (e~ tHoy)(0) = v(0)

o since the evolution group et is a unitary group, it holds that

|(i0: — Ho — A)(e~™Hov) — ;(:;H) |

; . . 2
itHy (:49. _ —itHp _ LitHp
e (i0r — Hy — A)(e v) —e'tof ()

o for all ve HY(I;H), et (ioy)e~tHoy = eftbe=itho (Hy 4 idy)v = (Ho + id¢)v
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Consequence: second variational formulation

u* = argmin [u(0) — uol® + (i9e — Ho — A)u — f[72 1.5
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veHL(I;H)
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o (e~ tHoy)(0) = v(0)

o since the evolution group et is a unitary group, it holds that

|(i0: — Ho — A)(e~™Hov) — ;(:;H) |

; . . 2
itHy (:49. _ —itHp _ LitHp
e (i0r — Hy — A)(e v) —e'tof ()

o for all ve HY(I;H), et (ioy)e~tHoy = eftbe=itho (Hy 4 idy)v = (Ho + id¢)v

and e'tHo Hye—tHoy = eitHo e —itHo Hyy because Hy commutes with e~ /tHo,
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Consequence: second variational formulation

Let Hy and A be operators on H satisfying (A). Let ug € H and f € L?(1; H).
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Consequence: second variational formulation

Theorem

Let Hy and A be operators on H satisfying (A). Let ug € H and f € L?(1; H).
Then, the solution u* to (3) is given by u* = e~ "™ov* where v* € H(I;H) is the unique
solution to
v* = argmin F(v)
veH(I;H)
with

F(v) = |v(0) — uo|* + T | (id: — e Ae~"tHo)y — efttof

[2(1;H)
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Moreover, there exists o, C > 0 independent on T such that

(e * *
Vv e HY(I; 1), 1+7T”V7 gy S A F(v) < CQ+ Tllv = vy
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Consequence: second variational formulation

Let Hy and A be operators on H satisfying (A). Let ug € H and f € L?(1; H).
Then, the solution u* to (3) is given by u* = e~ "™ov* where v* € H(I;H) is the unique
solution to
v* = argmin F(v)
veH(I;H)
with

F(v) = |v(0) — uo|* + T | (id: — e Ae~"tHo)y — efttof

[2(1;H)

Moreover, there exists o, C > 0 independent on T such that

(e * *
Vv e HY(I; 1), 1+7T”V7 gy S A F(v) < CQ+ Tllv = vy

Remark: We obtain a similar result in the case when u* is the solution of a time-dependent
Schrédinger equation of the form

{ ioru*(t) — (Ho + A+ B(t))u*(t) = f(t), tel,
u*(0) = up

where B : | 5t + B(t) is a strongly continuous family of bounded self-adjoint operators on .
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@ Aim and motivation

e Variational formulation of the time-dependent Schrédinger equation

’ Application to the many-body electronic Schrodinger problem

o Dynamical low complexity approximations

© Summary
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Many-body electronic Schrodinger problem

{ i0e(t) — Hy(t) =0, te(0,T) )
¥(0) = o

where the operator H = Hy + A is a self-adjoint operator on H = L2(R3V) with domain
D(H) = H?(R3M) is given by

Ho = —Ax,...xy (kinetic energy)

and

A=V(xy,...,x Z Z \X: — Rk\ (coulombic energy)

k=1i=1 1<i<j<N Ixi = x|
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Many-body electronic Schrodinger problem

{ idep(t) — HY(t) =0, te(0,T)
¥(0) = o

where the operator H = Hy + A is a self-adjoint operator on H = L2(R3V) with domain
D(H) = H?(R3M) is given by

Ho = —Ax,...xy (kinetic energy)

and

A=V(xy,...,x Z Z \X: — Rk\ (coulombic energy)

k=1i=1 1<i<j<N Ixi = x|

Question: Do Hy and A satisfy assumptions (A1)-(A2)-(A3)?

Virginie Ehrlacher (CERMICS) Schrédinger CIRM, 28/10/24

(®)

20/31



Many-body electronic Schrodinger problem

{ idep(t) — HY(t) =0, te(0,T)
¥(0) = o

where the operator H = Hy + A is a self-adjoint operator on H = L2(R3V) with domain
D(H) = H?(R3M) is given by

Ho = —Ax,...xy (kinetic energy)

and

A=V(xy,...,x Z Z \X: — Rk\ (coulombic energy)

k=1i=1 1<i<j<N Ixi = x|

Question: Do Hy and A satisfy assumptions (A1)-(A2)-(A3)?
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Many-body electronic Schrodinger problem
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k=1i=1 1<i<j<N Ixi = x|

Question: Do Hy and A satisfy assumptions (A1)-(A2)-(A3)?
YES!!
WHY?777?
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Kato smoothing theory

Let Hy and A be operators on H satisfying (A1)-(A2).

Virginie Ehrlacher (CERMICS) Schrédinger CIRM, 28/10/24 21/31



Kato smoothing theory

Let Hy and A be operators on H satisfying (A1)-(A2).
Then, if

sup j dt|Ae~ 0|2 < oo,
PeH, |p|=1JR

then Hy and A satisfy (A3).
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Kato smoothing theory

Let Hy and A be operators on H satisfying (A1)-(A2).
Then, if

sup j dt|Ae~ 0|2 < oo,
PEH, |p|=

then Hy and A satisfy (A3).

The operator A is said to be Hp-smooth.

sup j dt H VeltA

pel2(R3N), el 2 gany =1 R

N(N —
]2 gy < (NEZ s )) ©)
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Kato smoothing theory

Let Hy and A be operators on H satisfying (A1)-(A2).
Then, if

sup j dt|Ae~ 0|2 < oo,
PEH, |p|=

then Hy and A satisfy (A3).

The operator A is said to be Hp-smooth.

sup j dt H VeltA

pel2(R3N), el 2 gany =1 R

N(N —
]2 gy < (NEZ s )) ©)

stems from Kato-Yajima inequality: [Kato, Yajima,1989], [Burq, 2004]
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Variational formulation: many-body electronic Schrodinger case

Let g € L2(R3N). Let %) be the solution to (8), and v* := e84,
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Variational formulation: many-body electronic Schrodinger case

Theorem

Let g € L2(R3N). Let %) be the solution to (8), and v* := e84,
Define for any v € H*(I; L2(R3N)) the functional

(10)

5 h 2
_ 2 : —itAy s itA
F(v) = 1V(0) = olfagany + T (0 = e MV oy
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Variational formulation: many-body electronic Schrodinger case

Theorem

Let g € L2(R3N). Let %) be the solution to (8), and v* := e84,
Define for any v € H*(I; L2(R3N)) the functional

. . 2
F(v) = [(0) = wolaqgany + T |(ide — e "2 Ve 2y

L2(1,L2(R3N)) (10)

Then, there exist constants C,a > 0 such that for any v € H*(I, L?(R3N)),

«

T v = vl 2@snyy < A/F(V) < CVI+T v — v 2@y (11)

<
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@ Aim and motivation

© Variational formulation of the time-dependent Schrédinger equation

© Application to the many-body electronic Schrédinger problem

@ Dynamical low complexity approximations

© Summary
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Alternative to the Dirac-Frenkel variational principle?

Rather look for 73 = etA¥ where ¥ is defined as a solution to
Ve argmin F(w) (12)
WeH(I;X)

Let ¥ be a weakly closed subset of H. Then, H'(I;X) is a weakly closed subset of H'(I; H).
Hence, there always exists at least one solution to (12).
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Alternative to the Dirac-Frenkel variational principle?

Rather look for 77 = etA¥ where ¥ is defined as a solution to
Ve argmin F(w) (12)
WeH(I;X)

Let T be a weakly closed subset of H. Then, H*(I;X) is a weakly closed subset of H(I;H).
Hence, there always exists at least one solution to (12).

o global in time existence of dynamical low-complexity approximations provided that X is a
weakly closed subset of H = L?(R3N).

o certified a posteriori error estimate between the exact solution and its approximation

Very nice property for low-complexity approximations:
o low-rank tensor formats: e*2 is a pure tensor product of operators:
i,y = ™ ® @ etPw

@ gaussians: F(W) can be computed analytically (up to the time discretization)
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Alternative to the Dirac-Frenkel variational principle?

Rather look for 77 = etA¥ where ¥ is defined as a solution to
Ve argmin F(w) (12)
WeH(I;X)

Let T be a weakly closed subset of H. Then, H*(I;X) is a weakly closed subset of H(I;H).
Hence, there always exists at least one solution to (12).

o global in time existence of dynamical low-complexity approximations provided that X is a
weakly closed subset of H = L?(R3N).

o certified a posteriori error estimate between the exact solution and its approximation

Very nice property for low-complexity approximations:
o low-rank tensor formats: e*2 is a pure tensor product of operators:
itDxq,..., XN — eitAx1 ®...Q eitAXN
@ gaussians: F(W) can be computed analytically (up to the time discretization)
How does it compare with the dynamical low-complexity approximation given by the
Dirac-Frenkel variational principle?
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Numerical example in finite dimension: dynamical low-rank approximation

Finite-dimensional version of the Schrédinger equation: n € N*

{ i0:V = HY, (13)

W(0) = Wy e Cnxn,
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Numerical example in finite dimension: dynamical low-rank approximation

Finite-dimensional version of the Schrédinger equation: n € N*

0 = HWY,
W(0) = Wy e Cnxn,

We look for a rank-r approximation U of V, j.e. for r e N*,

Y={VU= o, o]
e —
€C™’  ccrin
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Singular value decomposition

For all t € [0, T], a best approximation of W(t) by an element of X is given as a rank-r truncated
Singular Value Decomposition of W(t).

10—5.0 L

Singular values of ¥

o
-
~
w
S
wm
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Comparison of dynamical low-rank approximations

Errors in L% ((0, T); C"*") between the various dynamical low-rank approximations and the exact
solution as a function of the rank r

e Best rank r approx
==fe— Dirac-Frenkel
==fp— Space-time minimization

Error
[
[=]
T

10°
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Dynamical approximations with gaussian functions

Y= {e—<x—q>TA<X—q>+’PTX : p,ge RN, A= P +iQ with P,Q e R33N, P definite positive} .
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Dynamical approximations with gaussian functions

Y= {e—<x—q>TA<X—q>+’PTX : p,ge RN, A= P +iQ with P,Q e R33N, P definite positive} .

The set ¥ is weakly closed in H = L?(R3V).
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Dynamical approximations with gaussian functions

Y= {e—<x—q>TA<X—q>+’PTX : p,ge RN, A= P +iQ with P,Q e R33N, P definite positive} .

The set ¥ is weakly closed in H = L?(R3V).

Greedy algorithm for the Schrdodinger equation: Construct an approximation of ¢ under the form

K
P(t)~ Y a(t), exe H'(IX)
k=1

where each term in the sum is computed via an iterative procedure.
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Dynamical approximations with gaussian functions

Y= {e—<x—q>TA<X—q>+’PTX : p,ge RN, A= P +iQ with P,Q e R33N, P definite positive} .

The set ¥ is weakly closed in H = L?(R3V).

Greedy algorithm for the Schrdodinger equation: Construct an approximation of ¢ under the form

K
P(t)~ Y a(t), exe H'(IX)
k=1

where each term in the sum is computed via an iterative procedure.

See Clément Guillot’s poster on Thursday for more details!
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Summary and perspectives

@ Result: New variational global space-time formulation of the solution of the time-dependent
Schrédinger equation: potential with Coulombic singularities and unbounded domains
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Summary and perspectives

@ Result: New variational global space-time formulation of the solution of the time-dependent
Schrédinger equation: potential with Coulombic singularities and unbounded domains
o Main tool: Kato smoothing theory

o Alternative variational principle to Dirac-Frenkel for dynamical low-complexity
approximations allowing for global-in-time existence
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Summary and perspectives

@ Result: New variational global space-time formulation of the solution of the time-dependent
Schrédinger equation: potential with Coulombic singularities and unbounded domains

o Main tool: Kato smoothing theory

o Alternative variational principle to Dirac-Frenkel for dynamical low-complexity
approximations allowing for global-in-time existence

o Certified a posteriori error estimator given by the new variational formulation

@ Interesting preliminary numerical results using low-rank tensor formats or Gaussian function
approximations.

o Perspectives:

o Collaboration with Loic Joubert-Doriol to apply these ideas to real molecules
o Open question: how to impose norm conservation in this global space-time formulation? Not
completely obvious...
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Thank you for your attention!
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