

Learning firmly nonexpansive operators

SIGMA Conference, CIRM

Jonathan Chirinos Rodríguez

Joint work with K. Bredies and E. Naldi (https://arxiv.org/abs/2407.14156)

 $31^{\rm st}$ of October, 2024

Uni**Ge** | dima

Background

Setting and results

Applications

Inverse problems

Let $u^* \in \mathcal{U}$, $x \in \mathcal{X}$ and $A: \mathcal{U} \to \mathcal{X}$ an operator. Consider

 $x = Au^* + \varepsilon$, ε noise.

Inverse problems

Let $u^* \in \mathcal{U}$, $x \in \mathcal{X}$ and $A: \mathcal{U} \to \mathcal{X}$ an operator. Consider

 $x = Au^* + \varepsilon$, ε noise.

Goal: Reconstruct u^* given x.

Inverse problems

Let $u^* \in \mathcal{U}$, $x \in \mathcal{X}$ and $A: \mathcal{U} \to \mathcal{X}$ an operator. Consider

 $x = Au^* + \varepsilon$, ε noise.

Goal: Reconstruct u^* given x.

Examples of *A***:**

- \rightsquigarrow Denoising: A = Id identity map
- \rightsquigarrow Deblurring: $Au = \kappa * u$ convolution operator
- \rightsquigarrow Phase Retrieval: $A(u) = |\mathcal{F}u|$ modulus of the Fourier transform

Ill-posedness

Let $u^* \in \mathcal{U}$, $x \in \mathcal{X}$ and $A : \mathcal{U} \to \mathcal{X}$ an operator. Consider

$$x = Au^* + \varepsilon$$
, ε noise.

Goal: Reconstruct u^* given x.

Problem: Ill-posedness!1

¹Engl, H. W. et al., 1996.

Two main approaches

Two main approaches

Model-based

u

$$u_{\lambda} \in \mathop{\arg\min}_{u} \ell(Au, x) + \lambda R(u)$$

Two main approaches

Х

Model-based

$$\lambda \in \operatorname*{arg\,min}_{u} \ell(Au, x) + \lambda R(u)$$

Data-driven

2.- Data-driven approaches

²Arridge et al, 2019.

Find a map

 $((\bar{X}_1, \bar{U}_1), \dots, (\bar{X}_n, \bar{U}_n)) \mapsto \widehat{f}.$

Find a map

 $((\bar{X}_1, \bar{U}_1), \dots, (\bar{X}_n, \bar{U}_n)) \mapsto \widehat{f}.$

 \rightsquigarrow Given a new \bar{X} , $\widehat{f}(\bar{X})\approx \bar{U}^{*}.$

²Arridge et al, 2019.

Find a map

 $((\bar{X}_1, \bar{U}_1), \dots, (\bar{X}_n, \bar{U}_n)) \mapsto \hat{f}.$

 \rightsquigarrow Given a new \bar{X} , $\widehat{f}(\bar{X})\approx\bar{U}^{*}.$

Two types of \widehat{f} : 1. \widehat{f} is agnostic/black-box,

²Arridge et al, 2019.

Find a map

 $((\bar{X}_1, \bar{U}_1), \dots, (\bar{X}_n, \bar{U}_n)) \mapsto \hat{f}.$

 \rightsquigarrow Given a new \bar{X} , $\widehat{f}(\bar{X})\approx\bar{U}^{*}.$

Two types of \hat{f} : 1. \hat{f} is agnostic/black-box, 2. $\hat{f} = \hat{f}(A,...)$.

Find a map

 $((\bar{X}_1, \bar{U}_1), \dots, (\bar{X}_n, \bar{U}_n)) \mapsto \hat{f}.$

 \rightsquigarrow Given a new \bar{X} , $\widehat{f}(\bar{X})\approx\bar{U}^{*}.$

Two types of \widehat{f} : 1. \widehat{f} is agnostic/black-box, 2. $\widehat{f} = \widehat{f}(A, ...)$.

> Great results in practice!! Theory ?

²Arridge et al, 2019.

 \rightsquigarrow Take A =Id (denoising).

\rightsquigarrow Take A = Id (denoising). Learning $R \in \Gamma_0(\mathcal{U})$ is equivalent to learning

$$\bar{U}_R = \underset{u}{\arg\min} \frac{1}{2} ||u - \bar{X}||^2 + R(u) = \operatorname{prox}_R(\bar{X}).$$

 \sim Take A = Id (denoising). Learning $R \in \Gamma_0(\mathcal{U})$ is equivalent to learning $\bar{U}_R = \operatorname*{arg\,min}_u \frac{1}{2} \|u - \bar{X}\|^2 + R(u) = \operatorname{prox}_R(\bar{X}).$

where, for every $x \in \mathcal{X}$,

$$\operatorname{prox}_R(x) := \operatorname*{arg\,min}_{y \in \mathcal{X}} \frac{1}{2} \|x - y\|^2 + R(y).$$

 \rightsquigarrow Given R, we fix, for every $i=1,\ldots,n$,

$$\bar{U}_R^i = \operatorname{prox}_R(\bar{X}_i).$$

 \sim Take A = Id (denoising). Learning $R \in \Gamma_0(\mathcal{U})$ is equivalent to learning $\bar{U}_R = \operatorname*{arg\,min}_u \frac{1}{2} \|u - \bar{X}\|^2 + R(u) = \operatorname{prox}_R(\bar{X}).$

where, for every $x \in \mathcal{X}$,

$$\operatorname{prox}_R(x) := \operatorname*{arg\,min}_{y \in \mathcal{X}} \frac{1}{2} \|x - y\|^2 + R(y).$$

 \rightsquigarrow Given R, we fix, for every $i=1,\ldots,n$,

$$\bar{U}_R^i = \operatorname{prox}_R(\bar{X}_i).$$

 \rightsquigarrow Then, we learn R:

$$\widehat{R} \in \operatorname*{arg\,min}_{R \in \mathcal{R}} \ \frac{1}{2} \sum_{i=1}^{n} \|\overline{U}_{R}^{i} - \overline{U}_{i}\|^{2}.$$

Background

Setting and results

Applications

 \rightsquigarrow Let $\mathcal{X} = \mathcal{U}$ and A = Id. Consider

 $\bar{X} = \bar{U} + \varepsilon,$

where \bar{X} , \bar{U} and ε are random variables.

 \rightsquigarrow Let $\mathcal{X} = \mathcal{U}$ and A = Id. Consider

 $\bar{X} = \bar{U} + \varepsilon,$

where $\bar{X}\text{,}\ensuremath{\bar{U}}$ and ε are random variables.

 \rightsquigarrow We don't have access to the prob. distribution of (\bar{X}, \bar{U}) ,

 \rightsquigarrow Let $\mathcal{X} = \mathcal{U}$ and A = Id. Consider

 $\bar{X} = \bar{U} + \varepsilon,$

where $\bar{X}\text{,}\ensuremath{\bar{U}}$ and ε are random variables.

 \rightsquigarrow We don't have access to the prob. distribution of $(ar{X},ar{U})$,

→ BUT

1. We assume

 $\mathbb{E}[\|\bar{X}\|^2 + \|\bar{U}\|^2] < +\infty.$

 \rightsquigarrow Let $\mathcal{X} = \mathcal{U}$ and A = Id. Consider

$$\bar{X} = \bar{U} + \varepsilon,$$

where $\bar{X}\text{,}\,\bar{U}$ and ε are random variables.

 \rightsquigarrow We don't have access to the prob. distribution of $(ar{X},ar{U})$,

→ BUT

1. We assume

$$\mathbb{E}[\|\bar{X}\|^2 + \|\bar{U}\|^2] < +\infty.$$

2. We have access to *n* independent and identical copies $\{(\bar{X}_i, \bar{U}_i)\}_{i=1}^n$ of (\bar{X}, \bar{U}) .

Bilevel approach

For every
$$i = 1, \ldots, n$$
, fix

$$\bar{U}_R^i = \operatorname{prox}_R(\bar{X}_i).$$

Then, we learn R:

$$\widehat{R} \in \underset{R \in \mathcal{R}}{\operatorname{arg\,min}} \ \frac{1}{2} \sum_{i=1}^{n} \|\overline{U}_{R}^{i} - \overline{U}_{i}\|^{2}.$$

Bilevel approach

For every
$$i = 1, \ldots, n$$
, fix

$$\bar{U}_R^i = \operatorname{prox}_R(\bar{X}_i).$$

Then, we learn *R*:

$$\widehat{R} \in \underset{R \in \mathcal{R}}{\operatorname{arg\,min}} \ \frac{1}{2} \sum_{i=1}^{n} \|\overline{U}_{R}^{i} - \overline{U}_{i}\|^{2}.$$

BUT:

1. What is a reasonable choice for \mathcal{R} ?

Bilevel approach

For every
$$i = 1, \ldots, n$$
, fix

$$\bar{U}_R^i = \operatorname{prox}_R(\bar{X}_i).$$

Then, we learn R:

$$\widehat{R} \in \underset{R \in \mathcal{R}}{\operatorname{arg\,min}} \ \frac{1}{2} \sum_{i=1}^{n} \|\overline{U}_{R}^{i} - \overline{U}_{i}\|^{2}.$$

BUT:

- 1. What is a reasonable choice for \mathcal{R} ?
- 2. How to solve the bilevel problem?

Computational intractability

 $\rightsquigarrow \mathcal{R} = \Gamma_0(\mathcal{X})$ unstructured set!

Computational intractability

 $\rightsquigarrow \mathcal{R} = \Gamma_0(\mathcal{X})$ unstructured set!

Possible approaches:

1. Parametrized³
$$R$$
 (e.g. $\widehat{R}(u) = \|\widehat{B}^{-1}(u - \widehat{h})\|^2$),

Computational intractability

 $\rightsquigarrow \mathcal{R} = \Gamma_0(\mathcal{X})$ unstructured set!

Possible approaches:

- 1. Parametrized³ R (e.g. $\widehat{R}(u) = \|\widehat{B}^{-1}(u \widehat{h})\|^2$),
- 2. "Relaxation" of $prox_R$:

 $\{\operatorname{prox}_R \mid R \in \Gamma_0(\mathcal{X})\} \subset \mathcal{N} := \{N : \mathcal{X} \to \mathcal{X} \mid N \text{ is nonexpansive}\}$

Expected/Empirical Risk Minimization

For every
$$i=1,\ldots,n$$
, fix $ar{U}_R(ar{X}_i):=N(ar{X}_i).$

Then, we learn N:

$$N_n^* \in \underset{N \in \mathcal{N}}{\operatorname{arg\,min}} \ L_n(N) := \frac{1}{n} \sum_{i=1}^n \|N(\bar{X}_i) - \bar{U}_i\|^2.$$

Expected/Empirical Risk Minimization

For every
$$i=1,\ldots,n$$
, fix $ar{U}_R(ar{X}_i):=N(ar{X}_i).$

Then, we learn N:

$$N_n^* \in \underset{N \in \mathcal{N}}{\arg\min} \ L_n(N) := \frac{1}{n} \sum_{i=1}^n \|N(\bar{X}_i) - \bar{U}_i\|^2.$$
 (EP)

QUESTION: Given

$$N^* \in \underset{N \in \mathcal{N}}{\operatorname{arg\,min}} L(N) := \mathbb{E}[\|N(\bar{X}) - \bar{U}\|^2],$$

Expected/Empirical Risk Minimization

For every
$$i=1,\ldots,n$$
, fix $ar{U}_R(ar{X}_i):=N(ar{X}_i).$

Then, we learn N:

$$N_n^* \in \underset{N \in \mathcal{N}}{\arg\min} \ L_n(N) := \frac{1}{n} \sum_{i=1}^n \|N(\bar{X}_i) - \bar{U}_i\|^2.$$
(EP)

QUESTION: Given

$$N^* \in \underset{N \in \mathcal{N}}{\operatorname{arg\,min}} L(N) := \mathbb{E}[\|N(\bar{X}) - \bar{U}\|^2], \tag{CP}$$

can we show that N_n^* is a good approximation of N^* ?

Expected/Empirical Risk Minimization

For every
$$i=1,\ldots,n$$
, fix $ar{U}_R(ar{X}_i):=N(ar{X}_i).$

Then, we learn N:

$$N_n^* \in \underset{N \in \mathcal{N}}{\arg\min} \ L_n(N) := \frac{1}{n} \sum_{i=1}^n \|N(\bar{X}_i) - \bar{U}_i\|^2.$$
(EP)

QUESTION: Given

$$N^* \in \underset{N \in \mathcal{N}}{\operatorname{arg\,min}} L(N) := \mathbb{E}[\|N(\bar{X}) - \bar{U}\|^2], \tag{CP}$$

can we show that N_n^* is a good approximation of N^* ?

(NOTE: $\mathbb{E}[\|\bar{X}\|^2 + \|\bar{U}\|^2] < +\infty \implies N^*$ exists!)

A Gamma convergence result

Theorem (Bredies, CR, Naldi)

 L_n Γ -converges to L almost surely as $n \to \infty$.

A Gamma convergence result

Theorem (Bredies, CR, Naldi)

 L_n Γ -converges to L almost surely as $n \to \infty$.

Corollary

Let $(N_n^*)_{n \in \mathbb{N}}$, be the sequence of minimizers of L_n for every $n \in \mathbb{N}$. Then, there exists a minimizer N^* of L such that, up to subsequences,

 $N_n^* \stackrel{*}{\rightharpoonup} N^*$, a.s., as $n \to \infty$.

RECALL: prox_R , $R \in \Gamma_0(\mathcal{X})$, is a firmly nonexpansive (FNE) operator.

RECALL: prox_R , $R \in \Gamma_0(\mathcal{X})$, is a firmly nonexpansive (FNE) operator.

FACT: For every $T: \mathcal{X} \to \mathcal{X}$ FNE, there exists $N: \mathcal{X} \to \mathcal{X}$ NE such that

$$T = \frac{1}{2}\mathrm{Id} + \frac{1}{2}N,$$

and viceversa.

RECALL: prox_R , $R \in \Gamma_0(\mathcal{X})$, is a firmly nonexpansive (FNE) operator. **FACT:** For every $T: \mathcal{X} \to \mathcal{X}$ FNE, there exists $N: \mathcal{X} \to \mathcal{X}$ NE such that

$$T = \frac{1}{2}\mathrm{Id} + \frac{1}{2}N,$$

and viceversa. Therefore, with $ar{U}_i':=rac{1}{2}(ar{U}_i+ar{X}_i)$,

$$\mathop{\mathrm{arg\,min}}_{N\in\mathcal{N}} \ \frac{1}{n}\sum_{i=1}^n \|N(\bar{X}_i) - \bar{U}_i\|^2 \quad \text{ and } \quad \mathop{\mathrm{arg\,min}}_{T \text{ is FNE}} \ \frac{1}{n}\sum_{i=1}^n \|T(\bar{X}_i) - \bar{U}_i'\|^2$$

are equivalent!

(Note: $\arg \min_T ||T(x) - u'||^2 \equiv \arg \min_T 4 ||T(x) - u'||^2 \equiv \arg \min_N ||N(x) - u||^2$).

$$\rightsquigarrow$$
 Fix $\mathcal{X} = \mathbb{R}^d$, $d \geq 2$,

 \rightsquigarrow Fix $\mathcal{X} = \mathbb{R}^d$, $d \ge 2$, consider finitely many samples $(\bar{x}_1, \bar{u}_1), \dots, (\bar{x}_n, \bar{u}_n)$,

 \rightsquigarrow Fix $\mathcal{X} = \mathbb{R}^d$, $d \ge 2$, consider finitely many samples $(\bar{x}_1, \bar{u}_1), \dots, (\bar{x}_n, \bar{u}_n)$, and solve

$$\widehat{N} \in \operatorname*{arg\,min}_{N \in \mathcal{N}} \widehat{L}(N) := \frac{1}{n} \sum_{i=1}^{n} \|N(\bar{x}_i) - \bar{u}_i\|^2.$$

 \rightsquigarrow Fix $\mathcal{X} = \mathbb{R}^d$, $d \ge 2$, consider finitely many samples $(\bar{x}_1, \bar{u}_1), \dots, (\bar{x}_n, \bar{u}_n)$, and solve

$$\widehat{N} \in \operatorname*{arg\,min}_{N \in \mathcal{N}} \widehat{L}(N) := \frac{1}{n} \sum_{i=1}^{n} \|N(\bar{x}_i) - \bar{u}_i\|^2. \tag{DP}$$

 \rightsquigarrow BUT: $\mathcal N$ is infinite-dimensional \rightsquigarrow We need to discretize it.

Simplicial partitions

Construct a "piecewise affine" approximation of \mathcal{N} .

Step 1. Given $D := \{x_1, \dots, x_m\}$, $x_i \in \mathbb{R}^d$, $m \ge d + 1$, let \mathfrak{T} be a simplicial partition of $\operatorname{conv}(D)$ such that

Piecewise affine operators: part I

Step 2. Denote $\mathfrak{T} := \{S_1, \dots, S_\ell\}, \ell \in \mathbb{N}$, and consider $\lambda_1, \dots, \lambda_m \colon \mathsf{conv}(D) \to [0, 1]$

the Lagrange elements of order 1 associated with $\ensuremath{\mathfrak{T}}$; i.e. such that

(i) $\lambda_i(x_j) = \delta_{ij}$, for i, j = 1, ..., m, δ_{ij} Kronecker delta,

(ii) $\lambda_i|_{S_t}$ is a polynomial of degree ≤ 1 for each $i = 1, \ldots, m$ and $t = 1, \ldots, \ell$.

For every $t = 1, ..., \ell$, denote $i_0, ..., i_d$ the indices of the vertices that form S_t . We have

$$\sum_{j=0}^{d} \lambda_{i_j}(x) = 1, \quad \sum_{j=0}^{d} \lambda_{i_j}(x) x_{i_j} = x.$$

Finally, for any $x \in \operatorname{conv}(D)$,

$$\sum_{i=1}^m \lambda_i = \chi_{\operatorname{conv}(D)}, \quad \text{and} \ \sum_{i=1}^m \lambda_i x_i = \operatorname{Id}|_{\operatorname{conv}(D)}.$$

Piecewise affine operators: part II

Step 3. Given $D' = \{u_1, \ldots, u_m\}$, define

$$\widetilde{N}$$
: conv $(D) \to \mathbb{R}^d$; $\widetilde{N}(x) := \sum_{i=1}^m \lambda_i(x) u_i$.

Then, $N := \tilde{N} \circ \pi_{\operatorname{conv}(D)} \colon \mathbb{R}^d \to \mathbb{R}^d$. Note: N is nonexpansive!

The piecewise affine problem

Step 4: Define

$$\mathrm{PA}(\mathfrak{T}) := \left\{ N : \mathbb{R}^d \to \mathbb{R}^d \, | \, N := \tilde{N} \circ \pi_{\mathsf{conv}(D)} \right\}.$$

Finally,

$$\min_{N \in \mathcal{N} \cap \mathrm{PA}(\mathfrak{T})} \frac{1}{n} \sum_{i=1}^{n} \|N(\bar{x}_i) - \bar{u}_i\|^2.$$

The piecewise affine problem

Step 4: Define

$$\mathrm{PA}(\mathfrak{T}) := \left\{ N : \mathbb{R}^d \to \mathbb{R}^d \, | \, N := \tilde{N} \circ \pi_{\mathsf{conv}(D)} \right\}.$$

Finally,

$$\min_{N \in \mathcal{N} \cap \text{PA}(\mathfrak{T})} \frac{1}{n} \sum_{i=1}^{n} \|N(\bar{x}_i) - \bar{u}_i\|^2.$$
 (PAP)

(We provide a computational-friendly formulation for (PAP) !!)

A convergence result: (PAP) to (DP)

Theorem (Bredies, CR, Naldi)

Let $(\mathfrak{T}_k)_k$ be a sequence of "regular" simplicial partitions for conv(D).

A convergence result: (PAP) to (DP)

Theorem (Bredies, CR, Naldi)

Let $(\mathfrak{T}_k)_k$ be a sequence of "regular" simplicial partitions for $\operatorname{conv}(D)$. If we define

$$\widehat{N}_k \in \operatorname*{arg\,min}_{N \in \mathrm{PA}(\mathfrak{T}_k) \cap \mathcal{N}} \frac{1}{n} \sum_{i=1}^n \|N(\bar{x}_i) - \bar{u}_i\|^2,$$

A convergence result: (PAP) to (DP)

Theorem (Bredies, CR, Naldi)

Let $(\mathfrak{T}_k)_k$ be a sequence of "regular" simplicial partitions for $\operatorname{conv}(D)$. If we define

$$\widehat{N}_k \in \operatorname*{arg\,min}_{N \in \mathrm{PA}(\mathfrak{T}_k) \cap \mathcal{N}} \ \frac{1}{n} \sum_{i=1}^n \|N(\bar{x}_i) - \bar{u}_i\|^2,$$

then, up to subsequences, $\widehat{N}_k \stackrel{*}{\rightharpoonup} \widehat{N}$, being

$$\widehat{N} \in \underset{N \in \mathcal{N}}{\operatorname{arg\,min}} \ \frac{1}{n} \sum_{i=1}^{n} \|N(\bar{x}_i) - \bar{u}_i\|^2.$$

Background

Setting and results

Applications

An application

Let $A \colon \mathcal{U} \to \mathcal{X}$ be a linear operator. Consider

 $x = Au^* + \varepsilon.$

An application

Let $A \colon \mathcal{U} \to \mathcal{X}$ be a linear operator. Consider

$$x = Au^* + \varepsilon.$$

The Forward-Backward iteration of

$$\min_{u} \frac{1}{2} \|Au - x\|^2 + R(u)$$
 (var)

reads as

$$u_{k+1} = \operatorname{prox}_R(u_k - \tau A^*(Au_k - x)),$$

for some stepsize $\tau > 0$.

PnP methods: Substitute $prox_R$ with P acting as a denoiser:

$$u_{k+1} = P(u_k - \tau A^*(Au_k - x)).$$

⁴Venkatakrishnan et al., 2013; Ryu, E. et al.,2019; Terris et al., 2021; Hertrich et al. 2021.

PnP methods: Substitute $prox_R$ with P acting as a denoiser:

$$u_{k+1} = P(u_k - \tau A^*(Au_k - x)).$$
(1)

→ + algorithms (CP, DR, ADMM,...).

⁴Venkatakrishnan et al., 2013; Ryu, E. et al.,2019; Terris et al., 2021; Hertrich et al. 2021.

PnP methods: Substitute $prox_R$ with P acting as a denoiser:

$$u_{k+1} = P(u_k - \tau A^*(Au_k - x)).$$
(1)

→ + algorithms (CP, DR, ADMM,...).

Few theoretical guarantees: does (1) converge to a solution of (var)/fixed point of P?

⁴Venkatakrishnan et al., 2013; Ryu, E. et al.,2019; Terris et al., 2021; Hertrich et al. 2021.

PnP methods: Substitute $prox_R$ with P acting as a denoiser:

$$u_{k+1} = P(u_k - \tau A^*(Au_k - x)).$$
(1)

→ + algorithms (CP, DR, ADMM,...).

Few theoretical guarantees: does (1) converge to a solution of (var)/fixed point of P? In our case: Substitute prox_R with $\widehat{T} := \frac{1}{2}\operatorname{Id} + \frac{1}{2}\widehat{N}$:

$$u_{k+1} = \widehat{T}(u_k - \tau A^*(Au_k - x)).$$

⁴Venkatakrishnan et al., 2013; Ryu, E. et al., 2019; Terris et al., 2021; Hertrich et al. 2021.

Let $\mathcal{X} = \mathbb{R}^{N \times N}$. Given

$$x = u^* + \varepsilon,$$

with $\varepsilon \sim N(0, \tau^2 \mathrm{Id})$, we search for

$$\underset{u}{\operatorname{arg\,min}} \|u - x\|_F^2 + R(Du).$$

Let $\mathcal{X} = \mathbb{R}^{N \times N}$. Given

 $x = u^* + \varepsilon,$

with $\varepsilon \sim N(0, \tau^2 \mathrm{Id})$, we search for

$$\underset{u}{\operatorname{arg\,min}} \|u - x\|_F^2 + R(Du).$$

We want to learn $prox_R$.

Let $\mathcal{X} = \mathbb{R}^{N \times N}$. Given

$$x = u^* + \varepsilon,$$

with $\varepsilon \sim N(0, \tau^2 \mathrm{Id})$, we search for

$$\underset{u}{\operatorname{arg\,min}} \|u - x\|_F^2 + R(Du).$$

We want to learn $prox_R$. We first suppose

$$R(v) = \sum_{i,j=1}^{N} r(v_{i,j}),$$

where $r: \mathbb{R}^2 \to (-\infty, +\infty]$. With this, we learn $\operatorname{prox}_r: \mathbb{R}^2 \to \mathbb{R}^2$.

Let $\mathcal{X} = \mathbb{R}^{N \times N}$. Given

$$x = u^* + \varepsilon,$$

with $\varepsilon \sim N(0, \tau^2 \mathrm{Id})$, we search for

$$\underset{u}{\operatorname{arg\,min}} \|u - x\|_F^2 + R(Du).$$

We want to learn $prox_R$. We first suppose

$$R(v) = \sum_{i,j=1}^{N} r(v_{i,j}),$$

where $r : \mathbb{R}^2 \to (-\infty, +\infty]$. With this, we learn $\operatorname{prox}_r : \mathbb{R}^2 \to \mathbb{R}^2$. **Example:** If $R = \| \cdot \|_{1,1}$, recall $\|Du\|_{1,1} = \sum_{i,j=1}^N \|(D_v u, D_h u)_{i,j}\|_1$, and so, if $v = (v_1, v_2) \in \mathbb{R}^{2 \times N^2}$,

$$\operatorname{prox}_{\|\cdot\|_{1,1}}(v) = (\operatorname{prox}_{\|\cdot\|_1}(v_{1,i}), \operatorname{prox}_{\|\cdot\|_1}(v_{2,i}))_{i=1}^{N^2}.$$

Results on the circle

30

Conclusions

Contributions:

- ---- Supervised learning framework for learning firmly nonexpansive operators,
- \rightsquigarrow PA approximations to construct fne operators in practice,
- $\rightsquigarrow\,$ Application to image denoising,

Conclusions

Contributions:

- ---- Supervised learning framework for learning firmly nonexpansive operators,
- \rightsquigarrow PA approximations to construct fne operators in practice,
- $\rightsquigarrow\,$ Application to image denoising,

Challenge:

 \rightsquigarrow Computational intractability of

$$\underset{N \in \mathcal{N}}{\operatorname{arg\,min}} \ \frac{1}{n} \sum_{i=1}^{n} \|N(\bar{x}_i) - \bar{u}_i\|^2.$$

Is there a better way to solve it in practice?

¡Muchas gracias!

(contact: jonathanchirinosrodriguez@gmail.com)

