
Learning firmly nonexpansive operators

SIGMA Conference, CIRM

Jonathan Chirinos Rodrı́guez

Joint work with K. Bredies and E. Naldi

(https://arxiv.org/abs/2407.14156)

31st of October, 2024

Outline

Background

Setting and results

Applications

2

3

4

5

Inverse problems

Let u∗ ∈ U , x ∈ X and A : U → X an
operator. Consider

x = Au∗ + ε, ε noise.

Goal: Reconstruct u∗ given x.

Examples of A:

⇝ Denoising: A = Id identity map

⇝ Deblurring: Au = κ ∗ u convolution operator

⇝ Phase Retrieval: A(u) = |Fu| modulus of the Fourier transform

6

Inverse problems

Let u∗ ∈ U , x ∈ X and A : U → X an
operator. Consider

x = Au∗ + ε, ε noise.

Goal: Reconstruct u∗ given x.

Examples of A:

⇝ Denoising: A = Id identity map

⇝ Deblurring: Au = κ ∗ u convolution operator

⇝ Phase Retrieval: A(u) = |Fu| modulus of the Fourier transform

6

Inverse problems

Let u∗ ∈ U , x ∈ X and A : U → X an
operator. Consider

x = Au∗ + ε, ε noise.

Goal: Reconstruct u∗ given x.

Examples of A:

⇝ Denoising: A = Id identity map

⇝ Deblurring: Au = κ ∗ u convolution operator

⇝ Phase Retrieval: A(u) = |Fu| modulus of the Fourier transform

6

Ill-posedness

Let u∗ ∈ U , x ∈ X and A : U → X an
operator. Consider

x = Au∗ + ε, ε noise.

Goal: Reconstruct u∗ given x.

Problem: Ill-posedness!1

1Engl, H. W. et al., 1996.

7

Two main approaches

Model-based

uλ ∈ argmin
u

ℓ(Au, x) + λR(u)

Data-driven

8

Two main approaches

Model-based

uλ ∈ argmin
u

ℓ(Au, x) + λR(u)

Data-driven

8

Two main approaches

Model-based

uλ ∈ argmin
u

ℓ(Au, x) + λR(u)

Data-driven

8

2.- Data-driven approaches

9

2.- Data-driven approaches2

Find a map

((X̄1, Ū1), . . . , (X̄n, Ūn)) 7→ f̂ .

⇝ Given a new X̄ , f̂(X̄) ≈ Ū∗.

Two types of f̂ :

1. f̂ is agnostic/black-box,

2. f̂ = f̂(A, . . .).

Great results in practice!!

Theory ?

2Arridge et al, 2019.
10

2.- Data-driven approaches2

Find a map

((X̄1, Ū1), . . . , (X̄n, Ūn)) 7→ f̂ .

⇝ Given a new X̄ , f̂(X̄) ≈ Ū∗.

Two types of f̂ :

1. f̂ is agnostic/black-box,

2. f̂ = f̂(A, . . .).

Great results in practice!!

Theory ?

2Arridge et al, 2019.
10

2.- Data-driven approaches2

Find a map

((X̄1, Ū1), . . . , (X̄n, Ūn)) 7→ f̂ .

⇝ Given a new X̄ , f̂(X̄) ≈ Ū∗.

Two types of f̂ :

1. f̂ is agnostic/black-box,

2. f̂ = f̂(A, . . .).

Great results in practice!!

Theory ?

2Arridge et al, 2019.
10

2.- Data-driven approaches2

Find a map

((X̄1, Ū1), . . . , (X̄n, Ūn)) 7→ f̂ .

⇝ Given a new X̄ , f̂(X̄) ≈ Ū∗.

Two types of f̂ :

1. f̂ is agnostic/black-box,

2. f̂ = f̂(A, . . .).

Great results in practice!!

Theory ?

2Arridge et al, 2019.
10

2.- Data-driven approaches2

Find a map

((X̄1, Ū1), . . . , (X̄n, Ūn)) 7→ f̂ .

⇝ Given a new X̄ , f̂(X̄) ≈ Ū∗.

Two types of f̂ :

1. f̂ is agnostic/black-box,

2. f̂ = f̂(A, . . .).

Great results in practice!!

Theory ?

2Arridge et al, 2019.
10

Today: learning R

⇝ Take A = Id (denoising). Learning R ∈ Γ0(U) is equivalent to learning

ŪR = argmin
u

1

2
∥u− X̄∥2 +R(u) = proxR(X̄).

where, for every x ∈ X ,

proxR(x) := argmin
y∈X

1

2
∥x− y∥2 +R(y).

⇝ Given R, we fix, for every i = 1, . . . , n,

Ū i
R = proxR(X̄i).

⇝ Then, we learn R:

R̂ ∈ argmin
R∈R

1

2

n∑
i=1

∥Ū i
R − Ūi∥2.

11

Today: learning R

⇝ Take A = Id (denoising).

Learning R ∈ Γ0(U) is equivalent to learning

ŪR = argmin
u

1

2
∥u− X̄∥2 +R(u) = proxR(X̄).

where, for every x ∈ X ,

proxR(x) := argmin
y∈X

1

2
∥x− y∥2 +R(y).

⇝ Given R, we fix, for every i = 1, . . . , n,

Ū i
R = proxR(X̄i).

⇝ Then, we learn R:

R̂ ∈ argmin
R∈R

1

2

n∑
i=1

∥Ū i
R − Ūi∥2.

11

Today: learning R

⇝ Take A = Id (denoising). Learning R ∈ Γ0(U) is equivalent to learning

ŪR = argmin
u

1

2
∥u− X̄∥2 +R(u) = proxR(X̄).

where, for every x ∈ X ,

proxR(x) := argmin
y∈X

1

2
∥x− y∥2 +R(y).

⇝ Given R, we fix, for every i = 1, . . . , n,

Ū i
R = proxR(X̄i).

⇝ Then, we learn R:

R̂ ∈ argmin
R∈R

1

2

n∑
i=1

∥Ū i
R − Ūi∥2.

11

Today: learning R

⇝ Take A = Id (denoising). Learning R ∈ Γ0(U) is equivalent to learning

ŪR = argmin
u

1

2
∥u− X̄∥2 +R(u) = proxR(X̄).

where, for every x ∈ X ,

proxR(x) := argmin
y∈X

1

2
∥x− y∥2 +R(y).

⇝ Given R, we fix, for every i = 1, . . . , n,

Ū i
R = proxR(X̄i).

⇝ Then, we learn R:

R̂ ∈ argmin
R∈R

1

2

n∑
i=1

∥Ū i
R − Ūi∥2.

11

Today: learning R

⇝ Take A = Id (denoising). Learning R ∈ Γ0(U) is equivalent to learning

ŪR = argmin
u

1

2
∥u− X̄∥2 +R(u) = proxR(X̄).

where, for every x ∈ X ,

proxR(x) := argmin
y∈X

1

2
∥x− y∥2 +R(y).

⇝ Given R, we fix, for every i = 1, . . . , n,

Ū i
R = proxR(X̄i).

⇝ Then, we learn R:

R̂ ∈ argmin
R∈R

1

2

n∑
i=1

∥Ū i
R − Ūi∥2.

11

Outline

Background

Setting and results

Applications

12

Setting: denoising and supervised learning

⇝ Let X = U and A = Id. Consider

X̄ = Ū + ε,

where X̄ , Ū and ε are random variables.

⇝ We don’t have access to the prob. distribution of (X̄, Ū),

⇝ BUT
1. We assume

E[∥X̄∥2 + ∥Ū∥2] < +∞.

2. We have access to n independent and identical copies {(X̄i, Ūi)}ni=1 of (X̄, Ū).

13

Setting: denoising and supervised learning

⇝ Let X = U and A = Id. Consider

X̄ = Ū + ε,

where X̄ , Ū and ε are random variables.

⇝ We don’t have access to the prob. distribution of (X̄, Ū),

⇝ BUT
1. We assume

E[∥X̄∥2 + ∥Ū∥2] < +∞.

2. We have access to n independent and identical copies {(X̄i, Ūi)}ni=1 of (X̄, Ū).

13

Setting: denoising and supervised learning

⇝ Let X = U and A = Id. Consider

X̄ = Ū + ε,

where X̄ , Ū and ε are random variables.

⇝ We don’t have access to the prob. distribution of (X̄, Ū),

⇝ BUT
1. We assume

E[∥X̄∥2 + ∥Ū∥2] < +∞.

2. We have access to n independent and identical copies {(X̄i, Ūi)}ni=1 of (X̄, Ū).

13

Setting: denoising and supervised learning

⇝ Let X = U and A = Id. Consider

X̄ = Ū + ε,

where X̄ , Ū and ε are random variables.

⇝ We don’t have access to the prob. distribution of (X̄, Ū),

⇝ BUT
1. We assume

E[∥X̄∥2 + ∥Ū∥2] < +∞.

2. We have access to n independent and identical copies {(X̄i, Ūi)}ni=1 of (X̄, Ū).

13

Bilevel approach

For every i = 1, . . . , n, fix
Ū i
R = proxR(X̄i).

Then, we learn R:

R̂ ∈ argmin
R∈R

1

2

n∑
i=1

∥Ū i
R − Ūi∥2.

BUT:
1. What is a reasonable choice for R?

2. How to solve the bilevel problem?

14

Bilevel approach

For every i = 1, . . . , n, fix
Ū i
R = proxR(X̄i).

Then, we learn R:

R̂ ∈ argmin
R∈R

1

2

n∑
i=1

∥Ū i
R − Ūi∥2.

BUT:
1. What is a reasonable choice for R?

2. How to solve the bilevel problem?

14

Bilevel approach

For every i = 1, . . . , n, fix
Ū i
R = proxR(X̄i).

Then, we learn R:

R̂ ∈ argmin
R∈R

1

2

n∑
i=1

∥Ū i
R − Ūi∥2.

BUT:
1. What is a reasonable choice for R?

2. How to solve the bilevel problem?

14

Computational intractability

⇝ R = Γ0(X) unstructured set!

15

Computational intractability

⇝ R = Γ0(X) unstructured set!

Possible approaches:

1. Parametrized3 R (e.g. R̂(u) = ∥B̂−1(u− ĥ)∥2),

2. “Relaxation” of proxR:

{proxR |R ∈ Γ0(X)} ⊂ N := {N : X → X |N is nonexpansive}

3Alberti, De Vito, Lassas, Ratti, Santacesaria, 2021; Pock et al, 2020.

16

Computational intractability

⇝ R = Γ0(X) unstructured set!

Possible approaches:

1. Parametrized3 R (e.g. R̂(u) = ∥B̂−1(u− ĥ)∥2),

2. “Relaxation” of proxR:

{proxR |R ∈ Γ0(X)} ⊂ N := {N : X → X |N is nonexpansive}

3Alberti, De Vito, Lassas, Ratti, Santacesaria, 2021; Pock et al, 2020.

16

Expected/Empirical Risk Minimization

For every i = 1, . . . , n, fix
ŪR(X̄i) := N(X̄i).

Then, we learn N :

N∗
n ∈ argmin

N∈N
Ln(N) :=

1

n

n∑
i=1

∥N(X̄i)− Ūi∥2.

(EP)

QUESTION: Given
N∗ ∈ argmin

N∈N
L(N) := E[∥N(X̄)− Ū∥2], (CP)

can we show that N∗
n is a good approximation of N∗?

(NOTE: E[∥X̄∥2 + ∥Ū∥2] < +∞ =⇒ N∗ exists!)

17

Expected/Empirical Risk Minimization

For every i = 1, . . . , n, fix
ŪR(X̄i) := N(X̄i).

Then, we learn N :

N∗
n ∈ argmin

N∈N
Ln(N) :=

1

n

n∑
i=1

∥N(X̄i)− Ūi∥2. (EP)

QUESTION: Given
N∗ ∈ argmin

N∈N
L(N) := E[∥N(X̄)− Ū∥2],

(CP)

can we show that N∗
n is a good approximation of N∗?

(NOTE: E[∥X̄∥2 + ∥Ū∥2] < +∞ =⇒ N∗ exists!)

17

Expected/Empirical Risk Minimization

For every i = 1, . . . , n, fix
ŪR(X̄i) := N(X̄i).

Then, we learn N :

N∗
n ∈ argmin

N∈N
Ln(N) :=

1

n

n∑
i=1

∥N(X̄i)− Ūi∥2. (EP)

QUESTION: Given
N∗ ∈ argmin

N∈N
L(N) := E[∥N(X̄)− Ū∥2], (CP)

can we show that N∗
n is a good approximation of N∗?

(NOTE: E[∥X̄∥2 + ∥Ū∥2] < +∞ =⇒ N∗ exists!)

17

Expected/Empirical Risk Minimization

For every i = 1, . . . , n, fix
ŪR(X̄i) := N(X̄i).

Then, we learn N :

N∗
n ∈ argmin

N∈N
Ln(N) :=

1

n

n∑
i=1

∥N(X̄i)− Ūi∥2. (EP)

QUESTION: Given
N∗ ∈ argmin

N∈N
L(N) := E[∥N(X̄)− Ū∥2], (CP)

can we show that N∗
n is a good approximation of N∗?

(NOTE: E[∥X̄∥2 + ∥Ū∥2] < +∞ =⇒ N∗ exists!)

17

A Gamma convergence result

Theorem (Bredies, CR, Naldi)

Ln Γ-converges to L almost surely as n → ∞.

Corollary
Let (N∗

n)n∈N, be the sequence of minimizers of Ln for every n ∈ N. Then, there exists a
minimizer N∗ of L such that, up to subsequences,

N∗
n

∗
⇀ N∗, a.s., as n → ∞.

18

A Gamma convergence result

Theorem (Bredies, CR, Naldi)

Ln Γ-converges to L almost surely as n → ∞.

Corollary
Let (N∗

n)n∈N, be the sequence of minimizers of Ln for every n ∈ N. Then, there exists a
minimizer N∗ of L such that, up to subsequences,

N∗
n

∗
⇀ N∗, a.s., as n → ∞.

18

Can we do better?

RECALL: proxR, R ∈ Γ0(X), is a firmly nonexpansive (FNE) operator.

FACT: For every T : X → X FNE, there exists N : X → X NE such that

T =
1

2
Id +

1

2
N,

and viceversa. Therefore, with Ū ′
i :=

1
2 (Ūi + X̄i),

argmin
N∈N

1

n

n∑
i=1

∥N(X̄i)− Ūi∥2 and argmin
T is FNE

1

n

n∑
i=1

∥T (X̄i)− Ū ′
i∥2

are equivalent!

(Note: argminT ∥T (x)− u′∥2 ≡ argminT 4∥T (x)− u′∥2 ≡ argminN ∥N(x)− u∥2).

19

Can we do better?

RECALL: proxR, R ∈ Γ0(X), is a firmly nonexpansive (FNE) operator.

FACT: For every T : X → X FNE, there exists N : X → X NE such that

T =
1

2
Id +

1

2
N,

and viceversa. Therefore, with Ū ′
i :=

1
2 (Ūi + X̄i),

argmin
N∈N

1

n

n∑
i=1

∥N(X̄i)− Ūi∥2 and argmin
T is FNE

1

n

n∑
i=1

∥T (X̄i)− Ū ′
i∥2

are equivalent!

(Note: argminT ∥T (x)− u′∥2 ≡ argminT 4∥T (x)− u′∥2 ≡ argminN ∥N(x)− u∥2).

19

Can we do better?

RECALL: proxR, R ∈ Γ0(X), is a firmly nonexpansive (FNE) operator.

FACT: For every T : X → X FNE, there exists N : X → X NE such that

T =
1

2
Id +

1

2
N,

and viceversa.

Therefore, with Ū ′
i :=

1
2 (Ūi + X̄i),

argmin
N∈N

1

n

n∑
i=1

∥N(X̄i)− Ūi∥2 and argmin
T is FNE

1

n

n∑
i=1

∥T (X̄i)− Ū ′
i∥2

are equivalent!

(Note: argminT ∥T (x)− u′∥2 ≡ argminT 4∥T (x)− u′∥2 ≡ argminN ∥N(x)− u∥2).

19

Can we do better?

RECALL: proxR, R ∈ Γ0(X), is a firmly nonexpansive (FNE) operator.

FACT: For every T : X → X FNE, there exists N : X → X NE such that

T =
1

2
Id +

1

2
N,

and viceversa. Therefore, with Ū ′
i :=

1
2 (Ūi + X̄i),

argmin
N∈N

1

n

n∑
i=1

∥N(X̄i)− Ūi∥2 and argmin
T is FNE

1

n

n∑
i=1

∥T (X̄i)− Ū ′
i∥2

are equivalent!

(Note: argminT ∥T (x)− u′∥2 ≡ argminT 4∥T (x)− u′∥2 ≡ argminN ∥N(x)− u∥2).

19

How to solve (EP) in practice?

⇝ Fix X = Rd, d ≥ 2, consider finitely many samples (x̄1, ū1), . . . , (x̄n, ūn), and solve

N̂ ∈ argmin
N∈N

L̂(N) :=
1

n

n∑
i=1

∥N(x̄i)− ūi∥2. (DP)

⇝ BUT: N is infinite-dimensional⇝ We need to discretize it.

20

How to solve (EP) in practice?

⇝ Fix X = Rd, d ≥ 2,

consider finitely many samples (x̄1, ū1), . . . , (x̄n, ūn), and solve

N̂ ∈ argmin
N∈N

L̂(N) :=
1

n

n∑
i=1

∥N(x̄i)− ūi∥2. (DP)

⇝ BUT: N is infinite-dimensional⇝ We need to discretize it.

20

How to solve (EP) in practice?

⇝ Fix X = Rd, d ≥ 2, consider finitely many samples (x̄1, ū1), . . . , (x̄n, ūn),

and solve

N̂ ∈ argmin
N∈N

L̂(N) :=
1

n

n∑
i=1

∥N(x̄i)− ūi∥2. (DP)

⇝ BUT: N is infinite-dimensional⇝ We need to discretize it.

20

How to solve (EP) in practice?

⇝ Fix X = Rd, d ≥ 2, consider finitely many samples (x̄1, ū1), . . . , (x̄n, ūn), and solve

N̂ ∈ argmin
N∈N

L̂(N) :=
1

n

n∑
i=1

∥N(x̄i)− ūi∥2.

(DP)

⇝ BUT: N is infinite-dimensional⇝ We need to discretize it.

20

How to solve (EP) in practice?

⇝ Fix X = Rd, d ≥ 2, consider finitely many samples (x̄1, ū1), . . . , (x̄n, ūn), and solve

N̂ ∈ argmin
N∈N

L̂(N) :=
1

n

n∑
i=1

∥N(x̄i)− ūi∥2. (DP)

⇝ BUT: N is infinite-dimensional⇝ We need to discretize it.

20

Simplicial partitions

Construct a “piecewise affine” approximation of N .

Step 1. Given D := {x1, . . . , xm}, xi ∈ Rd, m ≥ d+ 1, let T be a simplicial partition of
conv(D) such that

21

Piecewise affine operators: part I

Step 2. Denote T := {S1, . . . , Sℓ}, ℓ ∈ N, and consider
λ1, . . . , λm : conv(D) → [0, 1]

the Lagrange elements of order 1 associated with T; i.e. such that

(i) λi(xj) = δij , for i, j = 1, . . . ,m, δij Kronecker delta,

(ii) λi|St
is a polynomial of degree ≤ 1 for each i = 1, . . . ,m and t = 1, . . . , ℓ.

For every t = 1, . . . , ℓ, denote i0, . . . , id the indices of the vertices that form St. We have
d∑

j=0

λij (x) = 1,

d∑
j=0

λij (x)xij = x.

Finally, for any x ∈ conv(D),
m∑
i=1

λi = χconv(D), and
m∑
i=1

λixi = Id|conv(D).

22

Piecewise affine operators: part II

Step 3. Given D′ = {u1, . . . , um}, define

Ñ : conv(D) → Rd; Ñ(x) :=

m∑
i=1

λi(x)ui.

Then, N := Ñ ◦ πconv(D) : Rd → Rd. Note: N is nonexpansive!

23

The piecewise affine problem

Step 4: Define
PA(T) :=

{
N : Rd → Rd |N := Ñ ◦ πconv(D)

}
.

Finally,

min
N∈N∩PA(T)

1

n

n∑
i=1

∥N(x̄i)− ūi∥2.

(PAP)

(We provide a computational-friendly formulation for (PAP) !!)

24

The piecewise affine problem

Step 4: Define
PA(T) :=

{
N : Rd → Rd |N := Ñ ◦ πconv(D)

}
.

Finally,

min
N∈N∩PA(T)

1

n

n∑
i=1

∥N(x̄i)− ūi∥2. (PAP)

(We provide a computational-friendly formulation for (PAP) !!)

24

A convergence result: (PAP) to (DP)

Theorem (Bredies, CR, Naldi)
Let (Tk)k be a sequence of “regular” simplicial partitions for conv(D).

If we define

N̂k ∈ argmin
N∈PA(Tk)∩N

1

n

n∑
i=1

∥N(x̄i)− ūi∥2,

then, up to subsequences, N̂k
∗
⇀ N̂ , being

N̂ ∈ argmin
N∈N

1

n

n∑
i=1

∥N(x̄i)− ūi∥2.

25

A convergence result: (PAP) to (DP)

Theorem (Bredies, CR, Naldi)
Let (Tk)k be a sequence of “regular” simplicial partitions for conv(D). If we define

N̂k ∈ argmin
N∈PA(Tk)∩N

1

n

n∑
i=1

∥N(x̄i)− ūi∥2,

then, up to subsequences, N̂k
∗
⇀ N̂ , being

N̂ ∈ argmin
N∈N

1

n

n∑
i=1

∥N(x̄i)− ūi∥2.

25

A convergence result: (PAP) to (DP)

Theorem (Bredies, CR, Naldi)
Let (Tk)k be a sequence of “regular” simplicial partitions for conv(D). If we define

N̂k ∈ argmin
N∈PA(Tk)∩N

1

n

n∑
i=1

∥N(x̄i)− ūi∥2,

then, up to subsequences, N̂k
∗
⇀ N̂ , being

N̂ ∈ argmin
N∈N

1

n

n∑
i=1

∥N(x̄i)− ūi∥2.

25

Outline

Background

Setting and results

Applications

26

An application

Let A : U → X be a linear operator. Consider

x = Au∗ + ε.

The Forward-Backward iteration of

min
u

1

2
∥Au− x∥2 +R(u) (var)

reads as
uk+1 = proxR(uk − τA∗(Auk − x)),

for some stepsize τ > 0.

27

An application

Let A : U → X be a linear operator. Consider

x = Au∗ + ε.

The Forward-Backward iteration of

min
u

1

2
∥Au− x∥2 +R(u) (var)

reads as
uk+1 = proxR(uk − τA∗(Auk − x)),

for some stepsize τ > 0.

27

PnP methods4

PnP methods: Substitute proxR with P acting as a denoiser:

uk+1 = P (uk − τA∗(Auk − x)).

(1)

⇝ + algorithms (CP, DR, ADMM,...).

Few theoretical guarantees: does (1) converge to a solution of (var)/fixed point of P ?

In our case: Substitute proxR with T̂ := 1
2 Id + 1

2N̂ :

uk+1 = T̂ (uk − τA∗(Auk − x)).

4Venkatakrishnan et al., 2013; Ryu, E. et al.,2019; Terris et al., 2021; Hertrich et al. 2021.

28

PnP methods4

PnP methods: Substitute proxR with P acting as a denoiser:

uk+1 = P (uk − τA∗(Auk − x)). (1)

⇝ + algorithms (CP, DR, ADMM,...).

Few theoretical guarantees: does (1) converge to a solution of (var)/fixed point of P ?

In our case: Substitute proxR with T̂ := 1
2 Id + 1

2N̂ :

uk+1 = T̂ (uk − τA∗(Auk − x)).

4Venkatakrishnan et al., 2013; Ryu, E. et al.,2019; Terris et al., 2021; Hertrich et al. 2021.

28

PnP methods4

PnP methods: Substitute proxR with P acting as a denoiser:

uk+1 = P (uk − τA∗(Auk − x)). (1)

⇝ + algorithms (CP, DR, ADMM,...).

Few theoretical guarantees: does (1) converge to a solution of (var)/fixed point of P ?

In our case: Substitute proxR with T̂ := 1
2 Id + 1

2N̂ :

uk+1 = T̂ (uk − τA∗(Auk − x)).

4Venkatakrishnan et al., 2013; Ryu, E. et al.,2019; Terris et al., 2021; Hertrich et al. 2021.

28

PnP methods4

PnP methods: Substitute proxR with P acting as a denoiser:

uk+1 = P (uk − τA∗(Auk − x)). (1)

⇝ + algorithms (CP, DR, ADMM,...).

Few theoretical guarantees: does (1) converge to a solution of (var)/fixed point of P ?

In our case: Substitute proxR with T̂ := 1
2 Id + 1

2N̂ :

uk+1 = T̂ (uk − τA∗(Auk − x)).

4Venkatakrishnan et al., 2013; Ryu, E. et al.,2019; Terris et al., 2021; Hertrich et al. 2021.

28

PnP for image denoising

Let X = RN×N . Given
x = u∗ + ε,

with ε ∼ N(0, τ2Id), we search for
argmin

u
∥u− x∥2F +R(Du).

We want to learn proxR. We first suppose

R(v) =
N∑

i,j=1

r(vi,j),

where r : R2 → (−∞,+∞]. With this, we learn proxr : R2 → R2.

Example: If R = ∥ · ∥1,1, recall ∥Du∥1,1 =
∑N

i,j=1 ∥(Dvu,Dhu)i,j∥1, and so, if
v = (v1, v2) ∈ R2×N2 ,

prox∥·∥1,1
(v) = (prox∥·∥1

(v1,i),prox∥·∥1
(v2,i))

N2

i=1.

29

PnP for image denoising

Let X = RN×N . Given
x = u∗ + ε,

with ε ∼ N(0, τ2Id), we search for
argmin

u
∥u− x∥2F +R(Du).

We want to learn proxR.

We first suppose

R(v) =
N∑

i,j=1

r(vi,j),

where r : R2 → (−∞,+∞]. With this, we learn proxr : R2 → R2.

Example: If R = ∥ · ∥1,1, recall ∥Du∥1,1 =
∑N

i,j=1 ∥(Dvu,Dhu)i,j∥1, and so, if
v = (v1, v2) ∈ R2×N2 ,

prox∥·∥1,1
(v) = (prox∥·∥1

(v1,i),prox∥·∥1
(v2,i))

N2

i=1.

29

PnP for image denoising

Let X = RN×N . Given
x = u∗ + ε,

with ε ∼ N(0, τ2Id), we search for
argmin

u
∥u− x∥2F +R(Du).

We want to learn proxR. We first suppose

R(v) =

N∑
i,j=1

r(vi,j),

where r : R2 → (−∞,+∞]. With this, we learn proxr : R2 → R2.

Example: If R = ∥ · ∥1,1, recall ∥Du∥1,1 =
∑N

i,j=1 ∥(Dvu,Dhu)i,j∥1, and so, if
v = (v1, v2) ∈ R2×N2 ,

prox∥·∥1,1
(v) = (prox∥·∥1

(v1,i),prox∥·∥1
(v2,i))

N2

i=1.

29

PnP for image denoising

Let X = RN×N . Given
x = u∗ + ε,

with ε ∼ N(0, τ2Id), we search for
argmin

u
∥u− x∥2F +R(Du).

We want to learn proxR. We first suppose

R(v) =

N∑
i,j=1

r(vi,j),

where r : R2 → (−∞,+∞]. With this, we learn proxr : R2 → R2.

Example: If R = ∥ · ∥1,1, recall ∥Du∥1,1 =
∑N

i,j=1 ∥(Dvu,Dhu)i,j∥1, and so, if
v = (v1, v2) ∈ R2×N2 ,

prox∥·∥1,1
(v) = (prox∥·∥1

(v1,i),prox∥·∥1
(v2,i))

N2

i=1.

29

Results on the circle

Figure: Classic regularizers compared to ours with noise level τ = 30 ≈ 10%. 30

Conclusions

Contributions:

⇝ Supervised learning framework for learning firmly nonexpansive operators,

⇝ PA approximations to construct fne operators in practice,

⇝ Application to image denoising,

Challenge:

⇝ Computational intractability of

argmin
N∈N

1

n

n∑
i=1

∥N(x̄i)− ūi∥2.

Is there a better way to solve it in practice?

31

Conclusions

Contributions:

⇝ Supervised learning framework for learning firmly nonexpansive operators,

⇝ PA approximations to construct fne operators in practice,

⇝ Application to image denoising,

Challenge:

⇝ Computational intractability of

argmin
N∈N

1

n

n∑
i=1

∥N(x̄i)− ūi∥2.

Is there a better way to solve it in practice?

31

¡Muchas gracias!
(contact: jonathanchirinosrodriguez@gmail.com)

32

	Background
	Setting and results
	Applications

