

Learning firmly nonexpansive operators

SIGMA Conference, CIRM

Jonathan Chirinos Rodríguez

Joint work with K. Bredies and E. Naldi **(https://arxiv.org/abs/2407.14156)**

31st of October, 2024

[Background](#page-1-0)

[Setting and results](#page-23-0)

[Applications](#page-57-0)

Inverse problems

```
Let u^* \in \mathcal{U}, x \in \mathcal{X} and A: \mathcal{U} \rightarrow \mathcal{X} an
operator. Consider
```
 $x = Au^* + \varepsilon$, ε noise.

Inverse problems

Let $u^* \in \mathcal{U}$, $x \in \mathcal{X}$ and $A: \mathcal{U} \rightarrow \mathcal{X}$ an operator. Consider

 $x = Au^* + \varepsilon$, ε noise.

Goal: Reconstruct u^* given x.

Inverse problems

Let $u^* \in \mathcal{U}$, $x \in \mathcal{X}$ and $A: \mathcal{U} \rightarrow \mathcal{X}$ an operator. Consider

 $x = Au^* + \varepsilon$, ε noise.

Goal: Reconstruct u^* given x.

Examples of A**:**

- \rightarrow Denoising: $A = Id$ identity map
- \rightarrow Deblurring: $Au = \kappa * u$ convolution operator
- \rightsquigarrow Phase Retrieval: $A(u) = |\mathcal{F}u|$ modulus of the Fourier transform

Ill-posedness

Let $u^* \in \mathcal{U}$, $x \in \mathcal{X}$ and $A: \mathcal{U} \to \mathcal{X}$ an operator. Consider

 $x = Au^* + \varepsilon$, ε noise.

Goal: Reconstruct u^* given x.

Problem: Ill-posedness!¹

¹Engl, H. W. et al., 1996.

Two main approaches

Two main approaches

Model-based

Trape-OPT
\n**TRA**
$$
F(X)
$$
 $F(X)$ $F(X)$

$$
u_{\lambda} \in \argmin_{u} \ell(Au, x) + \lambda R(u)
$$

8

Two main approaches

 $u_{\lambda} \in \arg \min \ell(Au, x) + \lambda R(u)$

 \boldsymbol{u}

Model-based

Table-OPT\n**EXAMPLE 2.4** T1 M 2 A 11 A 22 B 3

\n
$$
0.15
$$
 A 11 B 2 B 13

Data-driven

2.- Data-driven approaches

TraDE-OPT MTA DRIVEN EXPERTS IN OPTIMIZATION **MSCA-ITN 2019**

²Arridge et al, 2019.

Find a map

 $((\bar{X}_1, \bar{U}_1), \ldots, (\bar{X}_n, \bar{U}_n)) \mapsto \hat{f}.$

TraDE-OPT O P T **MIZATION MSCA-ITN 2019**

²Arridge et al, 2019.

Find a map

 $((\bar{X}_1, \bar{U}_1), \ldots, (\bar{X}_n, \bar{U}_n)) \mapsto \hat{f}.$

→ Given a new \bar{X} , $\widehat{f}(\bar{X}) \approx \bar{U}^*$.

Find a map

 $((\bar{X}_1, \bar{U}_1), \ldots, (\bar{X}_n, \bar{U}_n)) \mapsto \hat{f}.$

→ Given a new \bar{X} , $\widehat{f}(\bar{X}) \approx \bar{U}^*$.

Two types of \widehat{f} : 1. \widehat{f} is agnostic/black-box,

²Arridge et al, 2019.

Find a map

 $((\bar{X}_1, \bar{U}_1), \ldots, (\bar{X}_n, \bar{U}_n)) \mapsto \hat{f}.$

→ Given a new \bar{X} , $\widehat{f}(\bar{X}) \approx \bar{U}^*$.

Two types of \widehat{f} : 1. \hat{f} is agnostic/black-box, 2. $\widehat{f} = \widehat{f}(A, \ldots).$

²Arridge et al, 2019.

Find a map

 $((\bar{X}_1, \bar{U}_1), \ldots, (\bar{X}_n, \bar{U}_n)) \mapsto \hat{f}.$

→ Given a new \bar{X} , $\widehat{f}(\bar{X}) \approx \bar{U}^*$.

Two types of \widehat{f} : 1. \hat{f} is agnostic/black-box, 2. $\widehat{f} = \widehat{f}(A, \ldots).$

> **Great** results in practice!! **Theory ?**

²Arridge et al, 2019.

 \rightsquigarrow Take $A = Id$ (denoising).

\rightsquigarrow Take $A =$ Id (denoising). Learning $R \in \Gamma_0(\mathcal{U})$ is **equivalent** to learning 1

$$
\bar{U}_R = \arg\min_u \frac{1}{2} ||u - \bar{X}||^2 + R(u) = \text{prox}_R(\bar{X}).
$$

 \rightsquigarrow Take $A = Id$ (denoising). Learning $R \in \Gamma_0(\mathcal{U})$ is **equivalent** to learning $\bar{U}_R = \argmin_u$ 1 $\frac{1}{2}||u - \bar{X}||^2 + R(u) = \text{prox}_{R}(\bar{X}).$

where, for every $x \in \mathcal{X}$,

$$
{\rm prox}_R(x) := \argmin_{y \in \mathcal{X}} \frac{1}{2} \|x - y\|^2 + R(y).
$$

 \rightsquigarrow Given R, we fix, for every $i = 1, \ldots, n$,

$$
\bar{U}_R^i = \text{prox}_R(\bar{X}_i).
$$

 \rightsquigarrow Take $A = Id$ (denoising). Learning $R \in \Gamma_0(\mathcal{U})$ is **equivalent** to learning $\bar{U}_R = \argmin_u$ 1 $\frac{1}{2}||u - \bar{X}||^2 + R(u) = \text{prox}_{R}(\bar{X}).$

where, for every $x \in \mathcal{X}$,

$$
\operatorname{prox}_R(x):=\mathop{\operatorname{arg\,min}{}}\frac{1}{2}\|x-y\|^2+R(y).
$$

 \rightsquigarrow Given R, we fix, for every $i = 1, \ldots, n$,

$$
\bar{U}_R^i = \text{prox}_R(\bar{X}_i).
$$

 \rightsquigarrow Then, we learn R:

$$
\widehat{R} \in \mathop{\arg\min}\limits_{R \in \mathcal{R}} \, \frac{1}{2} \sum_{i=1}^n \| \bar{U}_R^i - \bar{U}_i \|^2.
$$

[Background](#page-1-0)

[Setting and results](#page-23-0)

[Applications](#page-57-0)

 \rightsquigarrow Let $\mathcal{X} = \mathcal{U}$ and $A = Id$. Consider

 $\bar{X} = \bar{U} + \varepsilon$,

where \bar{X} , \bar{U} and ε are random variables.

 \rightsquigarrow Let $\mathcal{X} = \mathcal{U}$ and $A = Id$. Consider

$$
\bar{X} = \bar{U} + \varepsilon,
$$

where \bar{X} , \bar{U} and ε are random variables.

 \rightsquigarrow We **don't** have access to the prob. distribution of (\bar{X}, \bar{U}) ,

 \rightsquigarrow Let $X = U$ and $A = Id$. Consider

 $\bar{X} = \bar{U} + \varepsilon$,

where \bar{X} , \bar{U} and ε are random variables.

 \rightsquigarrow We **don't** have access to the prob. distribution of (\bar{X}, \bar{U}) ,

⇝ **BUT**

1. We assume

 $\mathbb{E}[\|\bar{X}\|^2 + \|\bar{U}\|^2] < +\infty.$

 \rightarrow Let $\mathcal{X} = \mathcal{U}$ and $A = Id$. Consider

$$
\bar{X} = \bar{U} + \varepsilon,
$$

where \bar{X} , \bar{U} and ε are random variables.

 \rightsquigarrow We **don't** have access to the prob. distribution of (\bar{X}, \bar{U}) ,

⇝ **BUT**

1. We assume

$$
\mathbb{E}[\|\bar{X}\|^2 + \|\bar{U}\|^2] < +\infty.
$$

2. We have access to n independent and identical copies $\{(\bar{X}_i,\bar{U}_i)\}_{i=1}^n$ of $(\bar{X},\bar{U}).$

Bilevel approach

For every
$$
i = 1, \ldots, n
$$
, fix

$$
\bar{U}_R^i = \text{prox}_R(\bar{X}_i).
$$

Then, we learn R :

$$
\widehat{R} \in \mathop{\arg\min}\limits_{R \in \mathcal{R}} \, \frac{1}{2} \sum_{i=1}^n \| \bar{U}_R^i - \bar{U}_i \|^2.
$$

Bilevel approach

For every
$$
i = 1, \ldots, n
$$
, fix

$$
\bar{U}_R^i = \text{prox}_R(\bar{X}_i).
$$

Then, we learn R :

$$
\widehat{R} \in \mathop{\arg\min}\limits_{R \in \mathcal{R}} \; \frac{1}{2} \sum_{i=1}^n \| \bar{U}_R^i - \bar{U}_i \|^2.
$$

BUT:

1. What is a reasonable choice for R ?

Bilevel approach

For every
$$
i = 1, \ldots, n
$$
, fix

$$
\bar{U}_R^i = \text{prox}_R(\bar{X}_i).
$$

Then, we learn R :

$$
\widehat{R} \in \mathop{\arg\min}\limits_{R \in \mathcal{R}} \, \frac{1}{2} \sum_{i=1}^n \| \bar{U}_R^i - \bar{U}_i \|^2.
$$

BUT:

- 1. What is a reasonable choice for R ?
- 2. How to solve the bilevel problem?

Computational intractability

 \rightsquigarrow $\mathcal{R} = \Gamma_0(\mathcal{X})$ unstructured set!

Computational intractability

 \rightsquigarrow $\mathcal{R} = \Gamma_0(\mathcal{X})$ unstructured set!

Possible approaches:

1. Parametrized³
$$
R
$$
 (e.g. $\widehat{R}(u) = ||\widehat{B}^{-1}(u - \widehat{h})||^2$),

³Alberti, De Vito, Lassas, Ratti, Santacesaria, 2021; Pock et al, 2020.

Computational intractability

 \rightsquigarrow $\mathcal{R} = \Gamma_0(\mathcal{X})$ unstructured set!

Possible approaches:

- 1. Parametrized³ R (e.g. $\hat{R}(u) = ||\hat{B}^{-1}(u h)||^2$),
- 2. **"Relaxation"** of $prox_B$:

 $\{\operatorname{prox}_{R} | R \in \Gamma_0(\mathcal{X})\} \subset \mathcal{N} := \{N : \mathcal{X} \to \mathcal{X} | N \text{ is nonexpansive}\}\$

³Alberti, De Vito, Lassas, Ratti, Santacesaria, 2021; Pock et al, 2020.

Expected/Empirical Risk Minimization

For every
$$
i = 1, ..., n
$$
, fix
\n
$$
\bar{U}_R(\bar{X}_i) := N(\bar{X}_i).
$$

Then, we learn N :

$$
N_n^* \in \underset{N \in \mathcal{N}}{\text{arg min }} L_n(N) := \frac{1}{n} \sum_{i=1}^n \|N(\bar{X}_i) - \bar{U}_i\|^2.
$$

Expected/Empirical Risk Minimization

For every
$$
i = 1, ..., n
$$
, fix
\n
$$
\bar{U}_R(\bar{X}_i) := N(\bar{X}_i).
$$

Then, we learn N :

$$
N_n^* \in \underset{N \in \mathcal{N}}{\text{arg min}} \ L_n(N) := \frac{1}{n} \sum_{i=1}^n \|N(\bar{X}_i) - \bar{U}_i\|^2. \tag{EP}
$$

QUESTION: Given

$$
N^* \in \underset{N \in \mathcal{N}}{\text{arg min }} L(N) := \mathbb{E}[\|N(\bar{X}) - \bar{U}\|^2],
$$

Expected/Empirical Risk Minimization

For every
$$
i = 1, ..., n
$$
, fix
\n
$$
\bar{U}_R(\bar{X}_i) := N(\bar{X}_i).
$$

Then, we learn N :

$$
N_n^* \in \underset{N \in \mathcal{N}}{\text{arg min}} \ L_n(N) := \frac{1}{n} \sum_{i=1}^n \|N(\bar{X}_i) - \bar{U}_i\|^2. \tag{EP}
$$

QUESTION: Given

$$
N^* \in \underset{N \in \mathcal{N}}{\text{arg min}} \ L(N) := \mathbb{E}[\|N(\bar{X}) - \bar{U}\|^2],\tag{CP}
$$

can we show that N_n^* is a good approximation of N^* ?

Expected/Empirical Risk Minimization

For every
$$
i = 1, ..., n
$$
, fix
\n
$$
\bar{U}_R(\bar{X}_i) := N(\bar{X}_i).
$$

Then, we learn N :

$$
N_n^* \in \underset{N \in \mathcal{N}}{\text{arg min}} \ L_n(N) := \frac{1}{n} \sum_{i=1}^n \|N(\bar{X}_i) - \bar{U}_i\|^2. \tag{EP}
$$

QUESTION: Given

$$
N^* \in \underset{N \in \mathcal{N}}{\text{arg min}} \ L(N) := \mathbb{E}[\|N(\bar{X}) - \bar{U}\|^2],\tag{CP}
$$

can we show that N_n^* is a good approximation of N^* ?

 ${\sf (NOTE: } \ \mathbb{E}[\|\bar{X}\|^2+\|\bar{U}\|^2] < +\infty \ \implies \ N^* \ \textsf{exists!})$

A Gamma convergence result

Theorem (Bredies, CR, Naldi)

 L_n Γ-converges to L almost surely as $n \to \infty$.

A Gamma convergence result

Theorem (Bredies, CR, Naldi)

```
L_n Γ-converges to L almost surely as n \to \infty.
```
Corollary

Let $(N_n^*)_{n\in\mathbb{N}}$, be the sequence of minimizers of L_n for every $n\in\mathbb{N}.$ Then, there exists a minimizer N^* of L such that, up to subsequences,

 $N_n^* \stackrel{*}{\rightharpoonup} N^*, \quad \text{a.s., as } n \to \infty.$

RECALL: prox_{B} , $R \in \Gamma_0(\mathcal{X})$, is a firmly nonexpansive (FNE) operator.

RECALL: prox_{B} , $R \in \Gamma_0(\mathcal{X})$, is a firmly nonexpansive (FNE) operator.

FACT: For every $T: \mathcal{X} \to \mathcal{X}$ FNE, there exists $N: \mathcal{X} \to \mathcal{X}$ NE such that

$$
T = \frac{1}{2}\text{Id} + \frac{1}{2}N,
$$

and viceversa.

RECALL: prox_{B} , $R \in \Gamma_0(\mathcal{X})$, is a firmly nonexpansive (FNE) operator.

FACT: For every $T: \mathcal{X} \to \mathcal{X}$ FNE, there exists $N: \mathcal{X} \to \mathcal{X}$ NE such that

$$
T = \frac{1}{2}\text{Id} + \frac{1}{2}N,
$$

and viceversa. Therefore, with $\bar{U}_i':=\frac{1}{2}(\bar{U}_i+\bar{X}_i)$,

$$
\mathop{\arg\min}_{N\in\mathcal{N}}\;\frac{1}{n}\sum_{i=1}^n\|N(\bar{X}_i)-\bar{U}_i\|^2\quad\text{ and }\quad \mathop{\arg\min}_{T\text{ is FNE}}\;\frac{1}{n}\sum_{i=1}^n\|T(\bar{X}_i)-\bar{U}_i'\|^2
$$

are equivalent!

(Note: $\arg \min_T ||T(x) - u'||^2 \equiv \arg \min_T 4||T(x) - u'||^2 \equiv \arg \min_N ||N(x) - u||^2$).

$$
\leadsto
$$
 Fix $\mathcal{X} = \mathbb{R}^d, d \ge 2$,

 \rightsquigarrow Fix $\mathcal{X}=\mathbb{R}^d$, $d\geq 2$, consider finitely many samples $(\bar{x}_1,\bar{u}_1),\dots,(\bar{x}_n,\bar{u}_n),$

 $\leadsto~$ **Fix** $\mathcal{X}=\mathbb{R}^d$, $d\geq 2$, consider finitely many samples $(\bar{x}_1,\bar{u}_1),\ldots,(\bar{x}_n,\bar{u}_n)$, and solve

$$
\widehat{N} \in \underset{N \in \mathcal{N}}{\arg \min} \widehat{L}(N) := \frac{1}{n} \sum_{i=1}^{n} \|N(\bar{x}_i) - \bar{u}_i\|^2.
$$

 $\leadsto~$ **Fix** $\mathcal{X}=\mathbb{R}^d$, $d\geq 2$, consider finitely many samples $(\bar{x}_1,\bar{u}_1),\ldots,(\bar{x}_n,\bar{u}_n)$, and solve

$$
\widehat{N} \in \underset{N \in \mathcal{N}}{\arg \min} \widehat{L}(N) := \frac{1}{n} \sum_{i=1}^{n} \|N(\bar{x}_i) - \bar{u}_i\|^2.
$$
 (DP)

→ BUT: N is infinite-dimensional \rightarrow We need to discretize it.

Simplicial partitions

Construct a "piecewise affine" approximation of N .

Step 1. Given $D:=\{x_1,\ldots,x_m\}$, $x_i\in\mathbb{R}^d$, $m\geq d+1$, let $\mathfrak T$ be a simplicial partition of conv (D) such that

Piecewise affine operators: part I

Step 2. Denote $\mathfrak{T} := \{S_1, \ldots, S_\ell\}, \ell \in \mathbb{N}$, and consider $\lambda_1, \ldots, \lambda_m$: conv $(D) \to [0, 1]$

the **Lagrange elements** of order 1 associated with \mathfrak{T} ; i.e. such that

(i) $\lambda_i(x_i) = \delta_{ij}$, for $i, j = 1, \ldots, m$, δ_{ij} Kronecker delta, (ii) $|\lambda_i|_{S_t}$ is a polynomial of degree ≤ 1 for each $i=1,\ldots,m$ and $t=1,\ldots,\ell.$ For every $t = 1, \ldots, \ell$, denote i_0, \ldots, i_d the indices of the vertices that form S_t . We have

$$
\sum_{j=0}^{d} \lambda_{i_j}(x) = 1, \quad \sum_{j=0}^{d} \lambda_{i_j}(x) x_{i_j} = x.
$$

Finally, for any $x \in \text{conv}(D)$,

$$
\sum_{i=1}^m \lambda_i = \chi_{\mathsf{conv}(D)}, \quad \text{and} \ \sum_{i=1}^m \lambda_i x_i = \mathrm{Id}|_{\mathsf{conv}(D)}.
$$

Piecewise affine operators: part II

Step 3. Given $D' = \{u_1, \ldots, u_m\}$, define

$$
\widetilde{N} \colon \mathsf{conv}(D) \to \mathbb{R}^d; \quad \widetilde{N}(x) := \sum_{i=1}^m \lambda_i(x) u_i.
$$

Then, $N:=\tilde{N}\circ \pi_{\mathsf{conv}(D)}\colon \mathbb{R}^d \to \mathbb{R}^d.$ **Note:** N is nonexpansive!

The piecewise affine problem

Step 4: Define
\n
$$
\text{PA}(\mathfrak{T}):=\left\{N:\mathbb{R}^d\to\mathbb{R}^d\,|\,N:=\tilde{N}\circ\pi_{\text{conv}(D)}\right\}.
$$
\nFinally,

$$
\min_{N\in\mathcal{N}\cap\text{PA}(\mathfrak{T})}\frac{1}{n}\sum_{i=1}^n\|N(\bar{x}_i)-\bar{u}_i\|^2.
$$

The piecewise affine problem

Step 4: Define
\n
$$
\text{PA}(\mathfrak{T}) := \left\{ N : \mathbb{R}^d \to \mathbb{R}^d \, | \, N := \tilde{N} \circ \pi_{\text{conv}(D)} \right\}.
$$

Finally,

$$
\min_{N \in \mathcal{N} \cap \text{PA}(\mathfrak{T})} \frac{1}{n} \sum_{i=1}^{n} \|N(\bar{x}_i) - \bar{u}_i\|^2.
$$
 (PAP)

(We provide a computational-friendly formulation for [\(PAP\)](#page-52-0) !!)

A convergence result: [\(PAP\)](#page-52-0) **to** [\(DP\)](#page-44-0)

Theorem (Bredies, CR, Naldi)

Let $(\mathfrak{T}_k)_k$ be a sequence of "regular" simplicial partitions for conv(D).

A convergence result: [\(PAP\)](#page-52-0) **to** [\(DP\)](#page-44-0)

Theorem (Bredies, CR, Naldi)

Let $(\mathfrak{T}_k)_k$ be a sequence of "regular" simplicial partitions for conv(D). If we define

$$
\widehat{N}_k \in \underset{N \in \text{PA}(\mathfrak{T}_k) \cap \mathcal{N}}{\arg \min} \frac{1}{n} \sum_{i=1}^n \|N(\bar{x}_i) - \bar{u}_i\|^2,
$$

A convergence result: [\(PAP\)](#page-52-0) **to** [\(DP\)](#page-44-0)

Theorem (Bredies, CR, Naldi)

Let $(\mathfrak{T}_k)_k$ be a sequence of "regular" simplicial partitions for conv(D). If we define

$$
\widehat{N}_k \in \underset{N \in \text{PA}(\mathfrak{T}_k) \cap \mathcal{N}}{\arg \min} \frac{1}{n} \sum_{i=1}^n \|N(\bar{x}_i) - \bar{u}_i\|^2,
$$

then, up to subsequences, $\widehat{N}_k \overset{*}{\rightharpoonup} \widehat{N}$, being

$$
\widehat{N} \in \underset{N \in \mathcal{N}}{\text{arg min }} \frac{1}{n} \sum_{i=1}^{n} \| N(\bar{x}_i) - \bar{u}_i \|^2.
$$

[Background](#page-1-0)

[Setting and results](#page-23-0)

[Applications](#page-57-0)

An application

Let $A: U \rightarrow X$ be a linear operator. Consider

 $x = Au^* + \varepsilon.$

An application

Let $A: U \rightarrow X$ be a linear operator. Consider

$$
x = Au^* + \varepsilon.
$$

The Forward-Backward iteration of

$$
\min_{u} \frac{1}{2} \|Au - x\|^2 + R(u)
$$
 (var)

reads as

$$
u_{k+1} = \text{prox}_R(u_k - \tau A^*(Au_k - x)),
$$

for some stepsize $\tau > 0$.

PnP methods: Substitute $prox_R$ with P acting as a denoiser:

$$
u_{k+1} = P(u_k - \tau A^*(Au_k - x)).
$$

PnP methods: Substitute $prox_B$ with P acting as a denoiser:

$$
u_{k+1} = P(u_k - \tau A^*(Au_k - x)).
$$
 (1)

 \rightarrow + algorithms (CP, DR, ADMM,...).

PnP methods: Substitute $prox_{B}$ with P acting as a denoiser:

$$
u_{k+1} = P(u_k - \tau A^*(Au_k - x)).
$$
 (1)

 \rightarrow + algorithms (CP, DR, ADMM,...).

Few theoretical guarantees: does [\(1\)](#page-60-0) converge to a solution of [\(var\)](#page-58-0)/fixed point of P ?

PnP methods: Substitute $prox_{B}$ with P acting as a denoiser:

$$
u_{k+1} = P(u_k - \tau A^*(Au_k - x)).
$$
 (1)

 \rightarrow + algorithms (CP, DR, ADMM,...).

Few theoretical guarantees: does [\(1\)](#page-60-0) converge to a solution of [\(var\)](#page-58-0)/fixed point of P ? In our case: Substitute prox_R with $\widehat{T} := \frac{1}{2} \text{Id} + \frac{1}{2} \widehat{N}$:

$$
u_{k+1} = \widehat{T}(u_k - \tau A^*(Au_k - x)).
$$

Let $\mathcal{X} = \mathbb{R}^{N \times N}$. Given

 $x = u^* + \varepsilon,$

with $\varepsilon \sim N(0, \tau^2\mathrm{Id})$, we search for

$$
\underset{u}{\arg\min} \ \|u - x\|_F^2 + R(Du).
$$

Let $\mathcal{X} = \mathbb{R}^{N \times N}$. Given

 $x = u^* + \varepsilon,$

with $\varepsilon \sim N(0, \tau^2\mathrm{Id})$, we search for

$$
\underset{u}{\arg\min} \ \|u - x\|_F^2 + R(Du).
$$

We want to learn prox_R.

Let $\mathcal{X} = \mathbb{R}^{N \times N}$. Given

$$
x = u^* + \varepsilon,
$$

with $\varepsilon \sim N(0, \tau^2\mathrm{Id})$, we search for

$$
\underset{u}{\arg\min} \ \|u - x\|_F^2 + R(Du).
$$

We want to learn prox_p. We first suppose

$$
R(v) = \sum_{i,j=1}^{N} r(v_{i,j}),
$$

where $r:\mathbb{R}^2\to(-\infty,+\infty].$ With this, we learn $\mathrm{prox}_r:\mathbb{R}^2\to\mathbb{R}^2.$

Let $\mathcal{X} = \mathbb{R}^{N \times N}$. Given

$$
x = u^* + \varepsilon,
$$

with $\varepsilon \sim N(0, \tau^2\mathrm{Id})$, we search for

$$
\underset{u}{\arg\min} \ \|u - x\|_F^2 + R(Du).
$$

We want to learn prox_R. We first suppose

$$
R(v) = \sum_{i,j=1}^{N} r(v_{i,j}),
$$

where $r:\mathbb{R}^2\to(-\infty,+\infty].$ With this, we learn $\mathrm{prox}_r:\mathbb{R}^2\to\mathbb{R}^2.$ **Example:** If $R = \|\cdot\|_{1,1}$, recall $\|Du\|_{1,1} = \sum_{i,j=1}^N \|(D_vu,D_hu)_{i,j}\|_1$, and so, if $v = (v_1, v_2) \in \mathbb{R}^{2 \times N^2}$,

$$
\text{prox}_{\|\cdot\|_{1,1}}(v) = (\text{prox}_{\|\cdot\|_{1}}(v_{1,i}), \text{prox}_{\|\cdot\|_{1}}(v_{2,i}))_{i=1}^{N^2}.
$$

Results on the circle

Conclusions

Contributions:

- \rightarrow Supervised learning framework for learning firmly nonexpansive operators,
- \rightarrow PA approximations to construct fne operators in practice,
- \rightarrow Application to image denoising,

Conclusions

Contributions:

- \rightarrow Supervised learning framework for learning firmly nonexpansive operators,
- \rightarrow PA approximations to construct fne operators in practice,
- \rightarrow Application to image denoising,

Challenge:

 \rightsquigarrow Computational intractability of

$$
\underset{N \in \mathcal{N}}{\arg \min} \ \frac{1}{n} \sum_{i=1}^n \|N(\bar{x}_i) - \bar{u}_i\|^2.
$$

Is there a better way to solve it in practice?

¡Muchas gracias!

(**contact:** jonathanchirinosrodriguez@gmail.com)

