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1 ResNets and Neural ODEs
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Residual Neural Networks

Figure: The ResNet-34 architecture (He et al., '16)
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Residual Neural Networks

ResNet-34

Figure: The ResNet-34 architecture (He et al., '16)

F:0 x R? — R% is a Neural Network (the residual).

Definition (Residual Neural Network (ResNet))

skip connection A
P residual

2 For parameterization 6 = (6(1),...,0(S)) € ©° and input z € R%:

E z(0) = =z

E 1

; ResNetg(z) := z(S) with z(s+1) = z(s) + 5Fos+1)(2(s))
& ~— S
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Neural ODEs

We consider the infinite depth limit S — +oo:
Definition (Neural ODE (Chen et al.’18))
For parameterization 8 € O and input z € R%:

z(0)
La(s) = Fo(z(s))

Il
8

NODEy(x) := x(1) with {
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Neural ODEs

We consider the infinite depth limit S — +o0:
Definition (Neural ODE (Chen et al.’18))
For parameterization 8 € O and input z € R%:

z(0)
%x(s) = Fo)(z(s))

|
8

NODEy(x) := x(1) with {

® "~ (1)
./\. z(1
o/\.
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Neural ODEs

We consider the infinite depth limit S — +o0:
Definition (Neural ODE (Chen et al.’18))
For parameterization 8 € O and input z € R%:

z(0)
%x(s) = Fo)(z(s))

|
8

NODEy(x) := x(1) with {

- x(ol/_\ 2(1)
'/.\‘\.xs ./\o
°\‘\‘#‘ o .\/0

— several results about time discretization (Marion, Wu et al. '23)
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Supervised learning problem

(unregularized) Empirical Risk:
Let (2%, y)1<i<n € (R? x RY)Y be training data samples:

N
. 12
Vo €O, £(6) = 5 S [NODE(a') — o'
i=1
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Supervised learning problem

(unregularized) Empirical Risk:
Let (2%, y)1<i<n € (R? x RY)Y be training data samples:

N
. 12
Vo €O, £(6) = 5 S [NODE(a') — o'
i=1

Gradient Flow (GF)
For initialization 6y € ©: 6, = —VL(6;)
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Supervised learning problem

(unregularized) Empirical Risk:
Let (z°,y")1<i<n € (R x RY)N be training data samples:

N
. 12
vo €0l £(0) = s > [NODE (') —
i=1

Gradient Flow (GF)
For initialization 6y € ©: 26, = —VL(6:)

Does GF find 6" € arg min £(6) ?
6eelo1]

— minimization of a non-convex and non-coercive loss in high dimension.
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Outline

2 Mean Fiels limits of Neural Networks
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Mean-field NNs

> Q= {(u,w,b) € R? x R* x R} is the space of weights,

> 0:R — R is a non-linear activation
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Mean-field NNs

> Q= {(u,w,b) € R? x R* x R} is the space of weights,
> 0 :R — R is a non-linear activation
A Single Hidden Layer (SHL) Perceptron of width M is defined as:

M
1
F{(“i»wi»bi)}i]\i1(x) = Zuicr(wjx +b;)

i=1
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Mean-field NNs

> Q= {(u,w,b) € R? x R* x R} is the space of weights,
> 0 :R — R is a non-linear activation
A Single Hidden Layer (SHL) Perceptron of width M is defined as:

M
1
F{(“i»wi»bi)}i]\i1(x) = Zuicr(wjx +b;)

i=1

T N N 1
= b)d b = — s bi)-
/Qua(w x4+ b)do(u, w,b), ¥ Y E Oy wi,bi)
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Mean-field NNs

> Q= {(u,w,b) € R? x R* x R} is the space of weights,
> 0 :R — R is a non-linear activation
A Single Hidden Layer (SHL) Perceptron of width M is defined as:

M
1
F{(“i»wi»bi)}i]\i1(x) = Zuicr(wjx +b;)

=1
T N N 1
= b)d b = — Cwibi)
/Qua(w x4+ b)do(u, w,b), ¥ Y E Oy wi,bi)
We consider arbitrarily wide NNs:

Definition (Mean-Field Neural Network (Chizat’18, Mei’19))

For every v in the space P(Q2) of probability measures over €:

Fo(z) = /Qua(w—rx + b)dv(u, w, b).
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Mean-field NODEs

Parameters are measures over [0, 1] x £ with uniform marginal on [0, 1]:
PER([0,1] x Q) = { € Pa((0,1] x @), s.t. (m,) s = Leb([0, 1))}

then for ds-a.e. s € [0,1], u(.|s) € P2(Q).
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Mean-field NODEs

Parameters are measures over [0, 1] x £ with uniform marginal on [0, 1]:
PER([0,1] x Q) = { € Pa((0,1] x @), s.t. (m,) s = Leb([0, 1))}
then for ds-a.e. s € [0,1], u(.|s) € P2(Q).

Definition (Mean-field NODEs)
For every uu € P¥°([0,1] x Q) and every input 2 € R%:

._ Iu(O) z
NODE,(z) = o, (1), {ims) = P (@a(s)
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Supervised learning problem

(unregularized) Empirical Risk:
Let (%, y)1<i<n € (R? x RY)Y be training data samples:

N
e 1 7 i2
Vu € PEP(0,1] x Q). L{n) = 5o > [NODE, (') —y
1=1

Does GF find p* € argmin £ ?
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Outline

3 Training with Conditional Wasserstein Gradient Flow
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Conditional Optimal Transport

Conditional Optimal Transport distance, for p, i’ € P¥*([0,1] x Q):

DT i) = [ Waluls)on (1)

= min w—w [|[“dvy(s,w,w
'ye”PLeb(leQ2 // | H 7 )

() ET (u(-]9),n" (-]5))
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Conditional Optimal Transport

Conditional Optimal Transport distance, for p, i’ € P¥*([0,1] x Q):

DEOT (4, )2 = / Wa(u(.Js), 1/ (|s)2ds

= min w—w [|“dvy(s, w,w
~ePYP([0,1]x0Q2) / / | H (s, )
() ET (u(-]9),n" (-]5))

Proposition (Characterization of AC curves (analogous to the 1V, case))

(ut)e>0 is an absolutely continuous curve in (P5<®([0, 1] x Q), DCOT) iff:
8,:/% + divy, (/,Lt’l)t) = 0, with v € LQ(/,Lt)
— various applications: evolution PDEs with heterogeneities (Peszek&Poyato

22), bayesian flow matching (Chemseddine et al. '24), conditional generative
modeling (Kerrigan et al. '24), ...
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Conditional Wasserstein GF

Numerically, backpropagation algorithm computes the adjoint gradient (Chen et
'18) for every s € [0,1] and every (u,w,b) €

N U(waL(s) +b)p,.(s) _
VL[u](s, (u,w,b)) Z wTacL(s )+ b)(u' ph(s))zh(s) €N

with the adjoint adjoint states:
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Conditional Wasserstein GF

Numerically, backpropagation algorithm computes the adjoint gradient (Chen et
'18) for every s € [0,1] and every (u,w,b) €

N U(waL(s) +b)p,.(s) _
VL[u](s, (u,w,b)) Z wTa:L(s )+ b)(u' ph(s))zh(s) €N

with the adjoint adjoint states:

Theorem (Conditional Wasserstein GF)

For any initialization 110 € P3°*([0,1] x Q) the equation:
O — dive, (e VL)) =0 (Conditional WGF)

is well-posed and is a (metric) gradient flow for L.
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Outline

4 Convergence analysis
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Polyak-tojasiewicz inequality

Definition (Polyak-tojasiewicz inequality)

L satisfies a (R, m)-P-t inequality around po € P3°([0,1] x Q) if:

Vi € B(uo, R), [IVLW|[Z2(,) = mL(1),
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Polyak-tojasiewicz inequality

Definition (Polyak-tojasiewicz inequality)

L satisfies a (R, m)-P-t inequality around po € P3°([0,1] x Q) if:

VN € B(:U’OaR)v ||V['[N]||i2(p‘) > mE’(:“’)?

Proposition (Hauer, Mazon '19, Dello Schiavo et al.’23)

Assume L satisfies a (R, m)-P-L inequality around po and L(po) < mTR2. Then if

(ut)¢>0 Is the Conditional WGF for L:
Vit Z 0, ﬁ(/tt) S [,(/Jo)@imt.

and moreover (i — e € PYP([0,1] x Q).

Proof.

d t
{2V 4 v [ IV Elellio, | <0
0
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Polyak-tojasiewicz inequality

For the empirical risk £ : PF°*([0,1] x ) — R-:

( o(w' z,(s)
waL (s)+b)

IVLIlz2 ) = _ _))IZ(S))
o' (w 'y (s) + b)(u"pL(s))

dp(u, w, b|s)d

15/18
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Polyak-tojasiewicz inequality

For the empirical risk £ : PF°*([0,1] x ) — R-:
o(w' z,(s) + )pj.(s)
(w ', (s) + ) (u" pj,(s))a}(s)
o' (w " (s) + b)(u" plu(s))

N2 ; Z (P ()" Kpu1o) (@u(8), /() pli(s)ds,
1<i,j<N

2

||VE[MH|2L2(M) = dp(u, w, b|s)d

kernel depending on p(.|s)

15/18



Polyak-tojasiewicz inequality

For the empirical risk £ : PF°*([0,1] x ) — R-:

2

o(w i (5) + DY (s)
VLI 22 = / / w(g( >( ! )(Z)T(pyi)gx):s(s) du(u, w, bls)d
w' x,,(s u pu(s

- / S () Ko (#5(9), 7 () pl(s)ds,

1<i,5<N

kernel depending on p(.|s)

where for v € P(Q):
K, (z,z") = / o(w'z+b)o(w' 2’ + b)dv(u,w,b).
Q

— quantitative bounds on the conditioning of K, for specific choices of o and v.
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Local Convergence Result

Theorem (Convergence of Conditional Wasserstein GF)

Assume jio € Py ([0,1] x Q) is s.t.:

1
Do = /O Anin (Ko 10) (o (5), T ()i ) ds > 0,

then if L(po) is “sufficiently small” ps = fioo € Py<P([0,1] x Q) and:

L) < e CPMNL (o)
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Local Convergence Result

Theorem (Convergence of Conditional Wasserstein GF)

Assume jio € Py ([0,1] x Q) is s.t.:

1
Do = /O Anin (Ko 10) (o (5), T ()i ) ds > 0,

then if L(po) is “sufficiently small” ps = fioo € Py<P([0,1] x Q) and:

L) < e CPMNL (o)

Example
For o = cos, and initialization o s.t. at each s € [0, 1]:

un~do, w~p’, b~U([0,7])
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Local Convergence Result

Theorem (Convergence of Conditional Wasserstein GF)

Assume jio € Py ([0,1] x Q) is s.t.:

1
Do = /O Anin (Ko 10) (o (5), T ()i ) ds > 0,

then if L(po) is “sufficiently small” ps = fioo € Py<P([0,1] x Q) and:

L) < e CPMNL (o)

Example
For o = cos, and initialization o s.t. at each s € [0, 1]:

u~do, wep', b~U([0,7])
> Gaussian: 11" (w) o exp(—pllw||?) and £ () < Ce 7

> Heavy-tail: " (w) oc (1 + [[w]|*)~“/**) and L(o) < CN27%/1,

> Random features: 4% = - 3" 0w, with w1, ..., wa ~ p*
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Local Convergence Result

Theorem (Convergence of Conditional Wasserstein GF)

Assume jio € Py ([0,1] x Q) is s.t.:

1
Do = /O Anin (Ko 10) (o (5), T ()i ) ds > 0,

then if L(po) is “sufficiently small” ps = fioo € Py<P([0,1] x Q) and:

L) < e CPMNL (o)

Example
For o = cos, and initialization o s.t. at each s € [0, 1]:

u~bo, W ,U'wa b~ u([07 7T])
> Gaussian: 1" (w) o< exp(—pllw||®) and L(uo) < Ce™ V"',

> Heavy-tail: p*(w) oc (1 + |Jw|?)~ @29 and L) < CN-2797/4)

> Random features: 4% = - 3" 0w, with w1, ..., wa ~ p*
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Local Convergence Result

Theorem (Convergence of Conditional Wasserstein GF)

Assume jio € Py ([0,1] x Q) is s.t.:

1
Do = /O Anin (Ko 10) (o (5), T ()i ) ds > 0,

then if L(po) is “sufficiently small” ps = fioo € Py<P([0,1] x Q) and:

L) < e CPMNL (o)

Example
For o = cos, and initialization o s.t. at each s € [0, 1]:

u~bo, W ,U'wa b~ u([07 7T])
> Gaussian: 1" (w) o< exp(—pllw||®) and L(uo) < Ce™ V"',

> Heavy-tail: " (w) oc (1 + [[w]|*)~“/**) and L(o) < CN27%/1,

> Random features: i = - " 0w, with w1, ..., wy ~ p*
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Conclusion

Contributions

> Proposed a model of infinitely deep and wide ResNets whose training is
modeled by GF for a Conditional OT metric,
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Conclusion

Contributions

> Proposed a model of infinitely deep and wide ResNets whose training is
modeled by GF for a Conditional OT metric,

> We show this model satisfies a (local) P-t property and conclude to a
(local) convergence result,
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Conclusion

Contributions

> Proposed a model of infinitely deep and wide ResNets whose training is
modeled by GF for a Conditional OT metric,

> We show this model satisfies a (local) P-t property and conclude to a
(local) convergence result,

Open problems

> Feature Learning: no result about the feature representations learned during
training,
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Conclusion

Contributions

> Proposed a model of infinitely deep and wide ResNets whose training is
modeled by GF for a Conditional OT metric,

> We show this model satisfies a (local) P-t property and conclude to a
(local) convergence result,

Open problems

> Feature Learning: no result about the feature representations learned during
training,

> Global convergence: we cannot prove that GF always succeeds in finding a
global minimizer of the risk.
— some trajectories are known to diverge but are never seen numerically...
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Conclusion

Contributions

> Proposed a model of infinitely deep and wide ResNets whose training is
modeled by GF for a Conditional OT metric,

> We show this model satisfies a (local) P-t property and conclude to a
(local) convergence result,

Open problems

> Feature Learning: no result about the feature representations learned during
training,

> Global convergence: we cannot prove that GF always succeeds in finding a
global minimizer of the risk.
— some trajectories are known to diverge but are never seen numerically...

Thanks for your attention!

)
2
@
=2
@
9]
o
()
h)
3
2
a
o
@
o
o
>
]
o]
=
ic
o0
ic
ic
°
=

18/18



	ResNets and Neural ODEs
	Mean Fiels limits of Neural Networks
	Training with Conditional Wasserstein Gradient Flow
	Convergence analysis
	Conclusion

