



# Raphaël Barboni

raphael.barboni@ens.fr

September 2024

Training infinitely deep and wide ResNets

with Conditional Optimal Transport

- 1 ResNets and Neural ODEs
- 2 Mean Fiels limits of Neural Networks
- 3 Training with Conditional Wasserstein Gradient Flow
- 4 Convergence analysis
- 5 Conclusion



Figure: The ResNet-34 architecture (He et al., '16)



Figure: The ResNet-34 architecture (He et al., '16)

 $F: \Theta \times \mathbb{R}^d \to \mathbb{R}^d$  is a Neural Network (the *residual*).

### Definition (Residual Neural Network (ResNet))

For parameterization  $\theta = (\theta(1),...,\theta(S)) \in \Theta^S$  and input  $x \in \mathbb{R}^d$ :

$$\operatorname{ResNet}_{\theta}(x) \coloneqq x(S) \quad \text{with} \quad \left\{ \begin{array}{rcl} x(0) & = & x \\ x(s+1) & = & \underbrace{x(s)}_{\text{skip connection}} + \underbrace{\frac{1}{S} \operatorname{F}_{\theta(s+1)}(x(s))}_{\text{residual}} \right.$$

We consider the **infinite depth** limit  $S \to +\infty$ :

### Definition (Neural ODE (Chen et al.'18))

For parameterization  $\theta \in \Theta^{[0,1]}$  and input  $x \in \mathbb{R}^d$ :

$$NODE_{\theta}(x) := x(1)$$
 with 
$$\begin{cases} x(0) = x \\ \frac{d}{ds}x(s) = F_{\theta(s)}(x(s)) \end{cases}$$

We consider the **infinite depth** limit  $S \to +\infty$ :

#### Definition (Neural ODE (Chen et al.'18))

For parameterization  $\theta \in \Theta^{[0,1]}$  and input  $x \in \mathbb{R}^d$ :

$$NODE_{\theta}(x) := x(1)$$
 with 
$$\begin{cases} x(0) = x \\ \frac{d}{ds}x(s) = F_{\theta(s)}(x(s)) \end{cases}$$



We consider the **infinite depth** limit  $S \to +\infty$ :

#### Definition (Neural ODE (Chen et al.'18))

For parameterization  $\theta \in \Theta^{[0,1]}$  and input  $x \in \mathbb{R}^d$ :

$$NODE_{\theta}(x) := x(1)$$
 with 
$$\begin{cases} x(0) = x \\ \frac{d}{ds}x(s) = F_{\theta(s)}(x(s)) \end{cases}$$



→ several results about time discretization (Marion, Wu et al. '23)

Let  $(x^i,y^i)_{1\leq i\leq N}\in(\mathbb{R}^d\times\mathbb{R}^d)^N$  be training data samples:

$$\forall \theta \in \Theta^{[0,1]}, \quad \mathcal{L}(\theta) := \frac{1}{2N} \sum_{i=1}^{N} \left| \text{NODE}_{\theta}(x^i) - y^i \right|^2.$$

Let  $(x^i,y^i)_{1\leq i\leq N}\in(\mathbb{R}^d\times\mathbb{R}^d)^N$  be training data samples:

$$\forall \theta \in \Theta^{[0,1]}, \quad \mathcal{L}(\theta) := \frac{1}{2N} \sum_{i=1}^{N} \left| \text{NODE}_{\theta}(x^i) - y^i \right|^2.$$

# Gradient Flow (GF)

For initialization  $\theta_0 \in \Theta$ :  $\frac{\mathrm{d}}{\mathrm{d}t}\theta_t = -\nabla \mathcal{L}(\theta_t)$ 

Let  $(x^i,y^i)_{1\leq i\leq N}\in(\mathbb{R}^d\times\mathbb{R}^d)^N$  be training data samples:

$$\forall \theta \in \Theta^{[0,1]}, \quad \mathcal{L}(\theta) \coloneqq \frac{1}{2N} \sum_{i=1}^{N} \left| \text{NODE}_{\theta}(x^i) - y^i \right|^2.$$

## Gradient Flow (GF)

For initialization  $\theta_0 \in \Theta$ :  $\frac{\mathrm{d}}{\mathrm{d}t}\theta_t = -\nabla \mathcal{L}(\theta_t)$ 

#### Question

Does GF find 
$$\theta^* \in \underset{\theta \in \Theta^{[0,1]}}{\operatorname{arg \, min}} \mathcal{L}(\theta)$$
 ?

→ minimization of a **non-convex** and **non-coercive** loss in **high dimension**.

- 1 ResNets and Neural ODEs
- 2 Mean Fiels limits of Neural Networks

- 3 Training with Conditional Wasserstein Gradient Flow
- 4 Convergence analysis
- 5 Conclusion

- $m{\Sigma}$   $\Omega=\{(u,w,b)\in\mathbb{R}^d\times\mathbb{R}^d\times\mathbb{R}\}$  is the space of weights,
- $oldsymbol{\sigma}:\mathbb{R} 
  ightarrow \mathbb{R}$  is a non-linear activation

- $\Omega = \{(u, w, b) \in \mathbb{R}^d \times \mathbb{R}^d \times \mathbb{R}\}$  is the space of weights,
- $ightharpoonup \sigma: \mathbb{R} 
  ightharpoonup \mathbb{R}$  is a non-linear activation

A Single Hidden Layer (SHL) Perceptron of width M is defined as:

$$F_{\{(u_i, w_i, b_i)\}_{i=1}^M}(x) = \frac{1}{M} \sum_{i=1}^M u_i \sigma(w_i^\top x + b_i)$$

- $\Omega = \{(u, w, b) \in \mathbb{R}^d \times \mathbb{R}^d \times \mathbb{R}\}$  is the space of weights,
- $m{\sigma}:\mathbb{R} o\mathbb{R}$  is a non-linear activation

A Single Hidden Layer (SHL) Perceptron of width M is defined as:

$$F_{\{(u_i, w_i, b_i)\}_{i=1}^M}(x) = \frac{1}{M} \sum_{i=1}^M u_i \sigma(w_i^\top x + b_i)$$
$$= \int_{\Omega} u \sigma(w^\top x + b) d\hat{\nu}(u, w, b), \quad \hat{\nu} = \frac{1}{M} \sum_{i=1}^M \delta_{(u_i, w_i, b_i)}.$$

- $\Omega = \{(u, w, b) \in \mathbb{R}^d \times \mathbb{R}^d \times \mathbb{R}\}$  is the space of weights,
- $ightharpoonup \sigma: \mathbb{R} 
  ightharpoonup \mathbb{R}$  is a non-linear activation

A Single Hidden Layer (SHL) Perceptron of width M is defined as:

$$F_{\{(u_i, w_i, b_i)\}_{i=1}^M}(x) = \frac{1}{M} \sum_{i=1}^M u_i \sigma(w_i^\top x + b_i)$$
$$= \int_{\Omega} u \sigma(w^\top x + b) d\hat{\nu}(u, w, b), \quad \hat{\nu} = \frac{1}{M} \sum_{i=1}^M \delta_{(u_i, w_i, b_i)}.$$

We consider arbitrarily wide NNs:

# Definition (Mean-Field Neural Network (Chizat'18, Mei'19))

For every  $\nu$  in the space  $\mathcal{P}(\Omega)$  of probability measures over  $\Omega$ :

$$F_{\nu}(x) \coloneqq \int_{\Omega} u \sigma(w^{\top} x + b) d\nu(u, w, b).$$

Parameters are measures over  $[0,1] \times \Omega$  with uniform marginal on [0,1]:

$$\mathcal{P}_2^{\text{Leb}}([0,1] \times \Omega) := \{ \mu \in \mathcal{P}_2([0,1] \times \Omega), \ s.t. \ (\pi_s)_{\#} \mu = \text{Leb}([0,1]) \}.$$

then for ds-a.e.  $s \in [0,1]$ ,  $\mu(.|s) \in \mathcal{P}_2(\Omega)$ .

Parameters are measures over  $[0,1] \times \Omega$  with uniform marginal on [0,1]:

$$\mathcal{P}_2^{\mathrm{Leb}}([0,1]\times\Omega)\coloneqq\left\{\mu\in\mathcal{P}_2([0,1]\times\Omega),\ s.t.\ (\pi_s)_\#\mu=\mathrm{Leb}([0,1])\right\}.$$

then for ds-a.e.  $s \in [0,1]$ ,  $\mu(.|s) \in \mathcal{P}_2(\Omega)$ .

# **Definition (Mean-field NODEs)**

For every  $\mu \in \mathcal{P}_2^{\mathrm{Leb}}([0,1] \times \Omega)$  and every input  $x \in \mathbb{R}^d$ :

$$NODE_{\mu}(x) := x_{\mu}(1), \quad \begin{cases} x_{\mu}(0) = x \\ \frac{d}{ds}x_{\mu}(s) = F_{\mu(\cdot|s)}(x_{\mu}(s)) \end{cases}$$

Let  $(x^i, y^i)_{1 \le i \le N} \in (\mathbb{R}^d \times \mathbb{R}^d)^N$  be training data samples:

$$\forall \mu \in \mathcal{P}_2^{\text{Leb}}([0,1] \times \Omega), \quad \mathcal{L}(\mu) := \frac{1}{2N} \sum_{i=1}^N \left| \text{NODE}_{\mu}(x^i) - y^i \right|^2.$$

#### Question

Does GF find 
$$\mu^* \in \arg\min \mathcal{L}$$
?

- 1 ResNets and Neural ODEs
- 2 Mean Fiels limits of Neural Networks
- 3 Training with Conditional Wasserstein Gradient Flow
- 4 Convergence analysis
- 5 Conclusion

# **Conditional Optimal Transport**

Conditional Optimal Transport distance, for  $\mu, \mu' \in \mathcal{P}_2^{\mathrm{Leb}}([0,1] \times \Omega)$ :

$$D^{COT}(\mu, \mu')^{2} := \int_{0}^{1} W_{2}(\mu(.|s), \mu'(.|s))^{2} ds$$

$$= \min_{\substack{\gamma \in \mathcal{P}_{2}^{Leb}([0,1] \times \Omega^{2}) \\ \gamma(.|s) \in \Gamma(\mu(.|s), \mu'(.|s))}} \int_{0}^{1} \int_{\Omega^{2}} \|\omega - \omega'\|^{2} d\gamma(s, \omega, \omega')$$

# **Conditional Optimal Transport**

Conditional Optimal Transport distance, for  $\mu, \mu' \in \mathcal{P}_2^{\mathrm{Leb}}([0,1] \times \Omega)$ :

$$D^{COT}(\mu, \mu')^{2} := \int_{0}^{1} W_{2}(\mu(.|s), \mu'(.|s))^{2} ds$$

$$= \min_{\substack{\gamma \in \mathcal{P}_{2}^{Leb}([0,1] \times \Omega^{2}) \\ \gamma(.|s) \in \Gamma(\mu(.|s), \mu'(.|s))}} \int_{0}^{1} \int_{\Omega^{2}} \|\omega - \omega'\|^{2} d\gamma(s, \omega, \omega')$$

# Proposition (Characterization of AC curves (analogous to the $W_2$ case))

 $(\mu_t)_{t>0}$  is an absolutely continuous curve in  $(\mathcal{P}_2^{\mathrm{Leb}}([0,1]\times\Omega),D^{\mathrm{COT}})$  iff:

$$\partial_t \mu_t + \operatorname{div}_{\omega}(\mu_t v_t) = 0$$
, with  $v_t \in L^2(\mu_t)$ 

 $\rightarrow$  various applications: evolution PDEs with heterogeneities (Peszek&Poyato '22), bayesian flow matching (Chemseddine et al. '24), conditional generative modeling (Kerrigan et al. '24), ...

Numerically, backpropagation algorithm computes the **adjoint gradient** (Chen et al. '18) for every  $s \in [0,1]$  and every  $(u,w,b) \in \Omega$ :

$$\nabla \mathcal{L}[\mu](s,(u,w,b)) \coloneqq \frac{1}{N} \sum_{i=1}^{N} \begin{pmatrix} \sigma(w^{\top} x_{\mu}^{i}(s) + b) p_{\mu}^{i}(s) \\ \sigma'(w^{\top} x_{\mu}^{i}(s) + b) (u^{\top} p_{\mu}^{i}(s)) x_{\mu}^{i}(s) \\ \sigma'(w^{\top} x_{\mu}^{i}(s) + b) (u^{\top} p_{\mu}^{i}(s)) \end{pmatrix} \in \Omega$$

with the adjoint adjoint states:

$$p_{\mu}^{i}(s) = \nabla_{x_{\mu}^{i}(s)}\mathcal{L}$$

Numerically, backpropagation algorithm computes the **adjoint gradient** (Chen et al. '18) for every  $s \in [0,1]$  and every  $(u,w,b) \in \Omega$ :

$$\nabla \mathcal{L}[\mu](s,(u,w,b)) \coloneqq \frac{1}{N} \sum_{i=1}^{N} \begin{pmatrix} \sigma(w^{\top} x_{\mu}^{i}(s) + b) p_{\mu}^{i}(s) \\ \sigma'(w^{\top} x_{\mu}^{i}(s) + b) (u^{\top} p_{\mu}^{i}(s)) x_{\mu}^{i}(s) \\ \sigma'(w^{\top} x_{\mu}^{i}(s) + b) (u^{\top} p_{\mu}^{i}(s)) \end{pmatrix} \in \Omega$$

with the adjoint states:

$$p_{\mu}^{i}(s) = \nabla_{x_{\mu}^{i}(s)} \mathcal{L}$$

## Theorem (Conditional Wasserstein GF)

For any initialization  $\mu_0 \in \mathcal{P}_2^{\mathrm{Leb}}([0,1] \times \Omega)$  the equation:

$$\partial_t \mu_t - \operatorname{div}_{\omega}(\mu_t \nabla \mathcal{L}[\mu_t]) = 0$$
 (Conditional WGF)

is well-posed and is a (metric) gradient flow for  $\mathcal{L}$ .

- 1 ResNets and Neural ODEs
- 2 Mean Fiels limits of Neural Networks
- 3 Training with Conditional Wasserstein Gradient Flow
- 4 Convergence analysis
- 5 Conclusion

### **Definition (Polyak-Łojasiewicz inequality)**

 $\mathcal L$  satisfies a (R,m)-P-L inequality around  $\mu_0\in\mathcal P_2^{\operatorname{Leb}}([0,1] imes\Omega)$  if:

$$\forall \mu \in B(\mu_0, R), \quad \|\nabla \mathcal{L}[\mu]\|_{L^2(\mu)}^2 \ge m\mathcal{L}(\mu),$$

## **Definition (Polyak-Łojasiewicz inequality)**

 $\mathcal L$  satisfies a (R,m)-P-L inequality around  $\mu_0\in\mathcal P_2^{\operatorname{Leb}}([0,1]\times\Omega)$  if:

$$\forall \mu \in B(\mu_0, R), \quad \|\nabla \mathcal{L}[\mu]\|_{L^2(\mu)}^2 \ge m\mathcal{L}(\mu),$$

### Proposition (Hauer, Mazon '19, Dello Schiavo et al.'23)

Assume  $\mathcal L$  satisfies a (R,m)-P-L inequality around  $\mu_0$  and  $\mathcal L(\mu_0)<\frac{mR^2}{4}$ . Then if  $(\mu_t)_{t\geq 0}$  is the Conditional WGF for  $\mathcal L$ :

$$\forall t \geq 0, \quad \mathcal{L}(\mu_t) \leq \mathcal{L}(\mu_0)e^{-mt}.$$

and moreover  $\mu_t \to \mu_\infty \in \mathcal{P}_2^{\mathrm{Leb}}([0,1] \times \Omega)$ .

Proof.

$$\frac{\mathrm{d}}{\mathrm{d}t} \left\{ 2\sqrt{\mathcal{L}(\mu_t)} + \sqrt{m} \int_0^t \|\nabla \mathcal{L}[\mu_{t'}]\|_{L^2(\mu_{t'})} \mathrm{d}t' \right\} \le 0$$

For the empirical risk  $\mathcal{L}: \mathcal{P}_2^{\mathrm{Leb}}([0,1] \times \Omega) \to \mathbb{R}_+$ :

$$\|\nabla \mathcal{L}[\mu]\|_{L^{2}(\mu)}^{2} = \int_{0}^{1} \int_{\Omega} \left\| \frac{1}{N} \sum_{i=1}^{N} \begin{pmatrix} \sigma(w^{\top} x_{\mu}^{i}(s) + b) p_{\mu}^{i}(s) \\ \sigma'(w^{\top} x_{\mu}^{i}(s) + b) (u^{\top} p_{\mu}^{i}(s)) x_{\mu}^{i}(s) \end{pmatrix} \right\|^{2} d\mu(u, w, b|s) dx$$

For the empirical risk  $\mathcal{L}: \mathcal{P}_2^{\mathrm{Leb}}([0,1] \times \Omega) \to \mathbb{R}_+$ :

$$\begin{split} \|\nabla \mathcal{L}[\mu]\|_{L^{2}(\mu)}^{2} &= \int_{0}^{1} \int_{\Omega} \left\| \frac{1}{N} \sum_{i=1}^{N} \left( \begin{matrix} \sigma(w^{\top} x_{\mu}^{i}(s) + b) p_{\mu}^{i}(s) \\ \sigma'(w^{\top} x_{\mu}^{i}(s) + b) (u^{\top} p_{\mu}^{i}(s)) x_{\mu}^{i}(s) \end{matrix} \right) \right\|^{2} \mathrm{d}\mu(u, w, b | s) \mathrm{d}u(u, w,$$

For the empirical risk  $\mathcal{L}: \mathcal{P}_2^{\mathrm{Leb}}([0,1] \times \Omega) \to \mathbb{R}_+$ :

$$\begin{split} \|\nabla \mathcal{L}[\mu]\|_{L^{2}(\mu)}^{2} &= \int_{0}^{1} \int_{\Omega} \left\| \frac{1}{N} \sum_{i=1}^{N} \left( \sigma'(w^{\top} x_{\mu}^{i}(s) + b) p_{\mu}^{i}(s) \\ \sigma'(w^{\top} x_{\mu}^{i}(s) + b) (u^{\top} p_{\mu}^{i}(s)) x_{\mu}^{i}(s) \right) \right\|^{2} \mathrm{d}\mu(u, w, b | s) \mathrm{d}s \\ &\geq \frac{1}{N^{2}} \int_{0}^{1} \sum_{1 \leq i, j \leq N} (p_{\mu}^{i}(s))^{\top} \underbrace{K_{\mu(.|s)}(x_{\mu}^{i}(s), x_{\mu}^{j}(s))}_{\text{kernel depending on } \mu(.|s)} p_{\mu}^{j}(s) \mathrm{d}s, \end{split}$$

where for  $\nu \in \mathcal{P}(\Omega)$ :

$$K_{\nu}(x, x') := \int_{\Omega} \sigma(w^{\top}x + b)\sigma(w^{\top}x' + b)d\nu(u, w, b).$$

 $\rightarrow$  quantitative bounds on the conditioning of  $K_{\nu}$  for specific choices of  $\sigma$  and  $\nu$ .

Assume  $\mu_0 \in \mathcal{P}_2^{\mathrm{Leb}}([0,1] \times \Omega)$  is s.t.:

$$\lambda_0 := \int_0^1 \lambda_{\min} \left( (K_{\mu_0(.|s)}(x_{\mu_0}^i(s), x_{\mu_0}^j(s)))_{1 \le i, j \le N} \right) \mathrm{d}s > 0,$$

then if  $\mathcal{L}(\mu_0)$  is "sufficiently small"  $\mu_t \to \mu_\infty \in \mathcal{P}_2^{\operatorname{Leb}}([0,1] \times \Omega)$  and:

$$\mathcal{L}(\mu_t) \le e^{-C(\lambda_0/N)t} \mathcal{L}(\mu_0)$$

Assume  $\mu_0 \in \mathcal{P}_2^{\mathrm{Leb}}([0,1] \times \Omega)$  is s.t.:

$$\lambda_0 := \int_0^1 \lambda_{\min} \left( (K_{\mu_0(.|s)}(x_{\mu_0}^i(s), x_{\mu_0}^j(s)))_{1 \le i, j \le N} \right) \mathrm{d}s > 0,$$

then if  $\mathcal{L}(\mu_0)$  is "sufficiently small"  $\mu_t \to \mu_\infty \in \mathcal{P}_2^{\operatorname{Leb}}([0,1] \times \Omega)$  and:

$$\mathcal{L}(\mu_t) \le e^{-C(\lambda_0/N)t} \mathcal{L}(\mu_0)$$

### **Example**

For  $\sigma = \cos$ , and initialization  $\mu_0$  s.t. at each  $s \in [0,1]$ :

$$u \sim \delta_0, \quad \mathbf{w} \sim \boldsymbol{\mu}^{\mathbf{w}}, \quad b \sim \mathcal{U}([0, \pi])$$

Assume  $\mu_0 \in \mathcal{P}_2^{\mathrm{Leb}}([0,1] \times \Omega)$  is s.t.:

$$\lambda_0 := \int_0^1 \lambda_{\min} \left( (K_{\mu_0(.|s)}(x_{\mu_0}^i(s), x_{\mu_0}^j(s)))_{1 \le i, j \le N} \right) ds > 0,$$

then if  $\mathcal{L}(\mu_0)$  is "sufficiently small"  $\mu_t \to \mu_\infty \in \mathcal{P}_2^{\mathrm{Leb}}([0,1] \times \Omega)$  and:

$$\mathcal{L}(\mu_t) \le e^{-C(\lambda_0/N)t} \mathcal{L}(\mu_0)$$

#### **Example**

For  $\sigma = \cos$ , and initialization  $\mu_0$  s.t. at each  $s \in [0, 1]$ :

$$u \sim \delta_0, \quad \mathbf{w} \sim \boldsymbol{\mu}^{\mathbf{w}}, \quad b \sim \mathcal{U}([0, \pi])$$

- Gaussian:  $\mu^w(w) \propto \exp(-\rho \|w\|^2)$  and  $\mathcal{L}(\mu_0) < Ce^{-N^{2/d}}$ ,
- Heavy-tail:  $\mu^w(w) \propto (1 + \|w\|^2)^{-(d/2+\beta)}$  and  $\mathcal{L}(\mu_0) < CN^{-3-6\beta/d}$
- **Random features:**  $\hat{\mu}^w = \frac{1}{M} \sum \delta_{w_i}$  with  $w_1, ..., w_M \sim \mu^w$

Assume  $\mu_0 \in \mathcal{P}_2^{\mathrm{Leb}}([0,1] \times \Omega)$  is s.t.:

$$\lambda_0 := \int_0^1 \lambda_{\min} \left( (K_{\mu_0(.|s)}(x_{\mu_0}^i(s), x_{\mu_0}^j(s)))_{1 \le i, j \le N} \right) \mathrm{d}s > 0,$$

then if  $\mathcal{L}(\mu_0)$  is "sufficiently small"  $\mu_t \to \mu_\infty \in \mathcal{P}_2^{\operatorname{Leb}}([0,1] \times \Omega)$  and:

$$\mathcal{L}(\mu_t) \le e^{-C(\lambda_0/N)t} \mathcal{L}(\mu_0)$$

#### **Example**

For  $\sigma = \cos$ , and initialization  $\mu_0$  s.t. at each  $s \in [0, 1]$ :

$$u \sim \delta_0, \quad \boldsymbol{w} \sim \boldsymbol{\mu}^{\boldsymbol{w}}, \quad b \sim \mathcal{U}([0, \pi])$$

- Gaussian:  $\mu^w(w) \propto \exp(-\rho \|w\|^2)$  and  $\mathcal{L}(\mu_0) < Ce^{-N^{2/d}}$ ,
- **>** Heavy-tail:  $\mu^w(w) \propto (1 + \|w\|^2)^{-(d/2+\beta)}$  and  $\mathcal{L}(\mu_0) < CN^{-3-6\beta/d}$
- **>** Random features:  $\hat{\mu}^w = \frac{1}{M} \sum \delta_{w_i}$  with  $w_1, ..., w_M \sim \mu^w$

Assume  $\mu_0 \in \mathcal{P}_2^{\mathrm{Leb}}([0,1] \times \Omega)$  is s.t.:

$$\lambda_0 := \int_0^1 \lambda_{\min} \left( (K_{\mu_0(.|s)}(x_{\mu_0}^i(s), x_{\mu_0}^j(s)))_{1 \le i, j \le N} \right) \mathrm{d}s > 0,$$

then if  $\mathcal{L}(\mu_0)$  is "sufficiently small"  $\mu_t \to \mu_\infty \in \mathcal{P}_2^{\operatorname{Leb}}([0,1] \times \Omega)$  and:

$$\mathcal{L}(\mu_t) \le e^{-C(\lambda_0/N)t} \mathcal{L}(\mu_0)$$

#### **Example**

For  $\sigma = \cos$ , and initialization  $\mu_0$  s.t. at each  $s \in [0, 1]$ :

$$u \sim \delta_0, \quad \boldsymbol{w} \sim \boldsymbol{\mu}^{\boldsymbol{w}}, \quad b \sim \mathcal{U}([0, \pi])$$

- Gaussian:  $\mu^w(w) \propto \exp(-\rho \|w\|^2)$  and  $\mathcal{L}(\mu_0) < Ce^{-N^{2/d}}$ ,
- **>** Heavy-tail:  $\mu^w(w) \propto (1 + \|w\|^2)^{-(d/2+\beta)}$  and  $\mathcal{L}(\mu_0) < CN^{-3-6\beta/d}$
- **Random features:**  $\hat{\mu}^w = \frac{1}{M} \sum \delta_{w_i}$  with  $w_1, ..., w_M \sim \mu^w$

- 1 ResNets and Neural ODEs
- 2 Mean Fiels limits of Neural Networks

- 3 Training with Conditional Wasserstein Gradient Flov
- 4 Convergence analysis
- 5 Conclusion

Proposed a model of infinitely deep and wide ResNets whose training is modeled by GF for a Conditional OT metric,

- Proposed a model of infinitely deep and wide ResNets whose training is modeled by GF for a Conditional OT metric,
- We show this model satisfies a (local) P-Ł property and conclude to a (local) convergence result,

- Proposed a model of infinitely deep and wide ResNets whose training is modeled by GF for a Conditional OT metric,
- We show this model satisfies a (local) P-Ł property and conclude to a (local) convergence result,

### Open problems

Feature Learning: no result about the feature representations learned during training,

- Proposed a model of infinitely deep and wide ResNets whose training is modeled by GF for a Conditional OT metric,
- We show this model satisfies a (local) P-Ł property and conclude to a (local) convergence result,

### Open problems

- Feature Learning: no result about the feature representations learned during training,
- Global convergence: we cannot prove that GF always succeeds in finding a global minimizer of the risk.
  - ightarrow some trajectories are known to diverge but are never seen numerically...

- Proposed a model of infinitely deep and wide ResNets whose training is modeled by GF for a Conditional OT metric,
- We show this model satisfies a (local) P-Ł property and conclude to a (local) convergence result,

#### Open problems

- Feature Learning: no result about the feature representations learned during training,
- Global convergence: we cannot prove that GF always succeeds in finding a global minimizer of the risk.
  - ightarrow some trajectories are known to diverge but are never seen numerically...

Thanks for your attention!