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Padé Approximants

• Let f be analytic of one complex variable z around zero.

• There is a unique rational function Πn(z) = pn(z)/qn(z), of
type (n, n), such that

qn(z)f (z)− pn(z) = O
(
z2n+1

)
at 0.

• If deg Πn = d ≤ n, then Πn has highest order of contact with
f at zero among rational functions of degree d :

f (z)− Πn(z) = O
(
zn+d+1

)
at 0.

Definition

Πn is called the n-th (diagonal) Padé approximant to f at 0.

• Of course, Padé approximants can be defined at any point of
analyticity of f in C other that 0.
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Padé Approximants

• Let f be analytic of one complex variable z around zero.

• There is a unique rational function Πn(z) = pn(z)/qn(z), of
type (n, n), such that

qn(z)f (z)− pn(z) = O
(
z2n+1

)
at 0.

• If deg Πn = d ≤ n, then Πn has highest order of contact with
f at zero among rational functions of degree d :

f (z)− Πn(z) = O
(
zn+d+1

)
at 0.

Definition

Πn is called the n-th (diagonal) Padé approximant to f at 0.
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Multipoint Padé Approximants

• There is a multipoint version: let f be analytic about
z1, · · · , z2n+1 (multiplicity counted by repetition).

• There is a unique rational function Πn(z) = pn(z)/qn(z) of
type (n, n) such that (with obvious changes for multiplicities)

qn(zj)f (zj)− pn(zj) = 0, j = 1, · · · 2n + 1.

• If z1, · · · , zk are distinct with multiplicities m1, · · · ,mk

(
∑

l ml = 2n + 1) and deg Πn = d ≤ n, there are µ1, · · · , µk

with µl ≤ ml and
∑

l µl = n + d + 1 such that
(f − Πn)(z) = Π(z − zl)

µlA(z) where A is analytic in a
neighborhood of the zl . No fraction of degree d has higher
contact with f at these points, but if d < n one can miss
some of the interpolation conditions initially expected.

Definition

Πn is called the n-th (diagonal) multipoint Padé approximant to f
at z1, · · · , z2n+1.
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Multipoint Padé Approximants

• There is a multipoint version: let f be analytic about
z1, · · · , z2n+1 (multiplicity counted by repetition).

• There is a unique rational function Πn(z) = pn(z)/qn(z) of
type (n, n) such that (with obvious changes for multiplicities)

qn(zj)f (zj)− pn(zj) = 0, j = 1, · · · 2n + 1.

• If z1, · · · , zk are distinct with multiplicities m1, · · · ,mk

(
∑

l ml = 2n + 1) and deg Πn = d ≤ n, there are µ1, · · · , µk

with µl ≤ ml and
∑

l µl = n + d + 1 such that
(f − Πn)(z) = Π(z − zl)

µlA(z) where A is analytic in a
neighborhood of the zl .

No fraction of degree d has higher
contact with f at these points, but if d < n one can miss
some of the interpolation conditions initially expected.

Definition

Πn is called the n-th (diagonal) multipoint Padé approximant to f
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Some history

• Padé approximants to ez were introduced by Hermite in 1873
to prove transcendency of e. Elaborating on this, Lindemann
proved the transcendency of π in 1882.

• They were later expounded by Padé in his thesis [Padé 1892].

• Ever since they have been an important tool in number theory;
e.g, from [Siegel 1949] to [Krattenthaler & Rivoal, 2008].

• As from the 60’s, they became a device in physical modeling
and numerical analysis, as a means to extrapolate functions
from their Taylor coefficients [Baker & Graves-Morris, 1996].

• Over the last decade, Padé approximants tend to be
superseded in modeling and engineering by least squares
substitutes, one of which is the object of this talk.

• Let us first review basic facts on the convergence of Padé
approximants.
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superseded in modeling and engineering by least squares
substitutes, one of which is the object of this talk.

• Let us first review basic facts on the convergence of Padé
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About uniform convergence

Padé approximants to Markov functions
∫ dµ(t)

z−t were shown to
converge as n → ∞, locally uniformly off the convex hull of suppµ
[Markov 1895, Gonchar & Lopéz 1975, Rakhmanov 1977,
Beckermann & Derevyagin & Zhadanov 2010, Stahl & Totik
1990]. Other cases of local uniform convergence in the domain of
analyticity include:

• Cauchy transforms of continuous non-vanishing functions on a
segment [Baxter 1961, Nuttal & Singh 1977, Magnus 1987];

• certain entire functions of exponential type like Polya
frequencies [Arms & Edrei, 1970]; entire functions with
smooth and fast decaying Taylor coefficients [Lubinsky,
1985-1988].

However, such cases do not reflect the general situation: Padé
approximants often fail to converge locally uniformly, due to
spurious poles that wander about the domain of analyticity.
(arbitrary limit sets [Rachmanov, 1987], dynamics with
deterministic chaos [Suetin, 2010] [Yattselev-LB,2013]).
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Cases for multipoint approximants

Multipoint Padé approximants need further qualification, for one
has to choose the interpolation points. Cases of local uniform
convergence in the domain of analyticity include:

• Markov functions for conjugate-symmetric interpolation
[Gonchar & Lopéz 78, Rakhmanov 82, Stahl & Totik 90];

• Cauchy transforms of non-vanishing Hölder-like functions on
analytic arcs for suitable interpolation points [Yattselev & LB,
2009][Yattselev,2018].

• Certain entire functions of exponential type for suitable choice
of points [Wielonsky, 1990].

• But again, multipoint Padé approximants often fail to
converge locally uniformly, due to spurious poles. For instance
[Yattselev & LB, 2009] shows this is generic for Cauchy
integrals over non-analytic arcs, whatever the interpolation
scheme.

• In fact, Padé approximants are not seen best through
spectacles of uniform convergence: they converge in capacity.
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Logarithmic capacity

Let K ⊂ C be compact and PK the probability measures on K . If
ω ∈ PK , its potential is

V ω(z) :=

∫
log

1

|z − t|
dω(t).

The energy of ω is

I [ω] :=

∫
V ω(z)dω(z) =

∫∫
log

1

|z − t|
dω(z)dω(t).

The capacity capK of K is defined via

log
1

capK
:= inf

ω∈PK

I [ω].

Capacity is a measure of size.
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Capacity cont’d

• Denoting by Mn monic polynomials of degree n, one has:

capK = lim
n→∞

inf
P∈Mn

∥P∥1/nL∞(K).

• If capK = 0 we say that K is polar. Then it is very small
(measure zero, totally disconnected, H1-dimension zero).

• If capK > 0, there is a unique ωK ∈ PK such that

log
1

capK
= I [ωK ].

The measure ωK is called the equilibrium distribution of K .

• ωK is characterized by the fact that

V ωK = constant quasi everywhere on K

(quasi everywhere means “except perhaps on a polar set”.)
Note: the normalized counting measures of Lejà points are
some sort of greedy discretization of ωK .
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Convergence in capacity

We can now define convergence in capacity:

Definition

Let Ω be an open subet of dom f , the domain of analyticity of f .
One says that Πn converges to f in capacity on Ω iff, for each
compact K ⊂ Ω and each ε > 0, it holds that

lim
n→∞

cap {z ∈ K : |f (z)− Πn(z)| > ε} = 0.

Stronger is the notion of geometric convergence in capacity:

Definition

With the previous notation, one says that Πn converges
geometrically to f in capacity on Ω iff, for each compact K ⊂ Ω
there is 0 < δ < 1 such that, for every ε > 0, one has for n large
enough:

|f (z)− Πn(z)| < δn on K \ En with capEn < ε.
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Convergence in capacity of Padé approximants

• Geometric convergence in capacity of Padé approximants (also
multipoint for appropriate interpolation points) was shown for
function elements, holomorphically continuable on a compact
Riemann surface Σ save a compact polar subset E thereof.

• When Σ = S2, this is the Nuttall-Pommerenke-Wallin theorem
and convergence in capacity is faster than geometric in Σ \ E .

• When Σ ̸= S2, the domain of convergence is the complement
of a system of cuts of minimum capacity (weighted if
multipoint) outside of which the function is single-valued
(union E ) [Nuttall, 1977],[Stahl, 1985], [Gonchar-Rakhmanov,
1989].

• When f is expressed from the outset as a Cauchy integral on
such systems of cuts, analyticity assumptions can be relaxed.

• Since then Riemann-Hilbert approaches yielded refined
asymptotics; we do not lean on them [Aptekarev, Yattselev,...].
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• Geometric convergence in capacity of Padé approximants (also
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Difference between S2 and more general Σ

• A rational function is holomorphic on S2. Hence, if Σ = S2
then f and its Padé interpolants live on the same topological
space and “natural” approximation can take place.

• When Σ ̸= S2 rational approximants to some initial branch of
the function must accumulate singularities to produce a cut,
preventing analytic continuation to the rest of the surface in
the limit, when the degree goes large.

• Note that when Σ = S2 there is a sequence of rational
approximants converging locally uniformly faster than
geometric to f on Σ \ E , whose poles tend to E
[Yattselev,LB]; but it is unclear how to construct such a
sequence from pointwise values of f .



Difference between S2 and more general Σ

• A rational function is holomorphic on S2.

Hence, if Σ = S2
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Remarks

• Spurious poles are no obstacle to convergence in capacity: for
if Qn has a zero Pn will have a zero nearby, and Pn/Qn will
not be large on a big set

• Using Rouché’s theorem and properties of the logarithmic
capacity, it can be shown that if f has a pole then Πn must
have a pole nearby as n → ∞.

• Hence, Padé approximation is appealing to detect singularities
of a meromorphic function knowing pointwise values.

• Such applications are common to Physicists and Engineers in
Electromagnetism and circuit theory, but today least squares
versions of Padé approximants are favored by practitioners.
Let us now explain one of them.
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A least square substitute to Padé approximants

• We write Pm for the polynomials of degree at most m and P0
m

for those assuming the value 1 at 0.

• Let f be analytic in Ω ⊂ C with 0 ∈ Ω.

• For n ∈ N and N ∈ N such that 2n + 1 ≤ N, we consider the
criterion:

J0 : Pn × P0
n −→ R+

(p, q) 7−→
N−1∑
i=0

|ci (p, q, f )|2 ,
(1)

where ci (p, q, f ) is the i-th Taylor coefficient at 0 of p − qf .

• A least square substitute (LSS) Padé approximant of order n
on N terms to f is now p0n,N/q

0
n,N ,

where (p0n,N , q
0
n,N) ∈ Argminp∈Pn, q∈P0

n
J0(p, q).

• Of course, the point 0 could be traded for any other in Ω.
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Least square substitute to multipoint Padé

• Denote by P1
m the set of monic polynomials of degree m. A

multipoint version of LSS Padé approximants is the following:

• If z1, · · · , zN are points in Ω, we consider the criterion:

J : Pn × P1
n −→ R+

(p, q) 7−→
N∑
i=1

|p(zi )− q(zi )f (zi )|2 ,
(2)

with obvious modifications to handle multiplicities.

• A least square substitute (LSS) multipoint Padé approximant
of order n to f in the {zj} is pn,N/qn,N ,

where (pn,N , qn,N) ∈ Argminp∈Pn, q∈P1
n
J(p, q).

• note the monic normalization of the denominator.
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• Denote by P1
m the set of monic polynomials of degree m. A
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Remarks

• Least square interpolation for polynomials is fairly well-known.
For instance, [Calvi-Levenberg,2008] show that such
interpolants converge uniformly to f on compact subsets of
the domain of analyticity under suitable assumptions on the
asymptotics of interpolation points.

• In contrast, despite their rather intensive numerical use (often
called “vector fitting algorithm” in the Engineering literature)
and heuristics such as “AAA” that deal with barycentric
representation based on the choice of a few exact
interpolation conditions, very little seems to be known on the
convergence of LSS Padé and multipoint Padé approximants.

• Hereafter we present an analog of the Nutall-Pommerenke
theorem for LSS Padé approximants.

• Our results require that N = O(n), though from probabilistic
considerations one may surmise that N = O(n2) is enough.
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Existence and uniqueness issues

• LSS Padé approximants exist but, unlike Padé approximants,
they may not be unique.

• However, the set of f for which the pair (p0n,N , q
0
n,N) is not

unique for some (n,N) is meager in the sense of Baire for
every reasonable complete metric topology on germs.

• Moreover, for any f and a > 2 there exists a sequence
(Nk , nk) of integers, 2(a− 1)nk ≤ Nk ≤ 2ank such that
p0n,N/q

0
n,N is unique.

• The situation for LSS multipoint Padé is similar, but we have
the extra-choice of interpolation points. If f is not rational,
sequences {z1, · · · , zN , · · · } such that pn,N/qn,N is unique for
each N and all n ≤ (N − 1)/2 contains a dense subset of ΩN.

• When dealing with asymptotics of p0n,N/q
0
n,N or pn,N/qn,N , we

always assume that LSS (multipoint) Padé approximants are
unique along the considered sequences (n,N).



Existence and uniqueness issues
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they may not be unique.

• However, the set of f for which the pair (p0n,N , q
0
n,N) is not

unique for some (n,N) is meager in the sense of Baire for
every reasonable complete metric topology on germs.

• Moreover, for any f and a > 2 there exists a sequence
(Nk , nk) of integers, 2(a− 1)nk ≤ Nk ≤ 2ank such that
p0n,N/q

0
n,N is unique.

• The situation for LSS multipoint Padé is similar, but we have
the extra-choice of interpolation points. If f is not rational,
sequences {z1, · · · , zN , · · · } such that pn,N/qn,N is unique for
each N and all n ≤ (N − 1)/2 contains a dense subset of ΩN.

• When dealing with asymptotics of p0n,N/q
0
n,N or pn,N/qn,N , we

always assume that LSS (multipoint) Padé approximants are
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• LSS Padé approximants exist but, unlike Padé approximants,
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LS-analog to Nuttall-Pommerenke

Our main result is the following:

Theorem

Let F be a compact set in C such that cap(F ) = 0 and 0 /∈ F . Let
f be analytic in C\F . Then for all compact sets K ⊂ C, for all
ε > 0, δ > 0, µ > 1, there exists m0 ∈ N such that for all natural
numbers n and N which satisfy:

2n + 1 ≤ N ≤ µn,

n0 ≤ n,

it holds that
|f − p0n,N/q

0
n,N | < εm,

on K \ En with cap(En) ≤ δ.
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A multipoint analog

The multipoint version below only asserts existence of a suitable
sequence of interpolation points.

Theorem

Let E and F be two compact sets in C such that 0 ̸∈ E,
cap(F ) = 0 and E ∩ F = ∅. Let f be analytic in C\F . Let K ⊂ C
be a compact set, ε > 0, δ > 0, µ > 1. Then, there exists a
sequence (zi )i∈N of distinct points in K and n0 such that for all
natural numbers m, n and N which satisfy:

2n + 1 ≤ N ≤ µn, (3)

n0 ≤ n,

one has:
|f − pn,N/qn,N | < εn,

on K \ En with cap(En) ≤ δ.
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Some steps of the proof

• With no loss of generality we assume f is analytic at infinity.
• As capF = 0, to each η > 0 there is k ∈ N and h ∈ P1

k with

F ⊂ Dη := {z ∈ C : |h(z)| < ηk}.

We let ℓ such that n − k < kℓ ≤ n.
• Write the optimality condition for the convex minimization

defining LSS Padé, with {cj} the Taylor coefficients of p − qf :

cj = 0 for 0 ≤ j ≤ n,
N−1∑
i=j

c i fi−j = 0 for 0 ≤ j ≤ n − 1,

• define two polynomials a(z) :=
∑N−2n−1

k=0 atz
t and

b(z) :=
∑n−1

ℓ=0 bℓz
ℓ in PN−2n−1 and Pn−1 respectively, with

N−1−i∑
t=0

ath
ℓ
N−1−i−t −

n−1∑
j=0

bj f i−j = 0, n + 1 ≤ i ≤ N − 1

Possible since N − n − 1 equations and N − n unknowns.
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defining LSS Padé, with {cj} the Taylor coefficients of p − qf :

cj = 0 for 0 ≤ j ≤ n,
N−1∑
i=j

c i fi−j = 0 for 0 ≤ j ≤ n − 1,

• define two polynomials a(z) :=
∑N−2n−1

k=0 atz
t and

b(z) :=
∑n−1

ℓ=0 bℓz
ℓ in PN−2n−1 and Pn−1 respectively, with

N−1−i∑
t=0

ath
ℓ
N−1−i−t −

n−1∑
j=0

bj f i−j = 0, n + 1 ≤ i ≤ N − 1

Possible since N − n − 1 equations and N − n unknowns.



Some steps of the proof cont’d

• For Γ a cycle surrounding Dη, we get for z /∈ Dη by the
residue formula that

1

2iπ

∫
Γ

hℓ(ξ)(p0n,N − q0n,N f )(ξ)a(ξ)

ξN(ξ − z)
dξ =

1

z

N−1∑
i=0

ci

N−1−i∑
t=0

ath
ℓ
N−1−i−t (4)

−
hℓ(z)(p0n,N − q0n,N f )(z)a(z)

zN
. (5)

• Consequently, by the optimality condition and Cauchy’s
theorem:

hℓ(z)(p0n,N − q0n,N f )(z)a(z)

zN
= − 1

2iπ

∫
Γ

hℓ(ξ)q0n,N(ξ)f (ξ)a(ξ)

ξN(ξ − z)
dξ.
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Some steps of the proof cont’d

From there we get the estimate:∣∣∣∣∣p0n,Nq0n,N
− f

∣∣∣∣∣ (z) ≤ C0
ηkℓ

|hℓ(z)|
sup
ξ∈Γ

∣∣∣∣a(ξ)a(z)

∣∣∣∣ sup
ξ∈Γ

∣∣∣∣∣q0n,N(ξ)q0n,N(z)

∣∣∣∣∣ supξ∈Γ

∣∣∣∣ZN

ξN

∣∣∣∣
• and we use that a polynomial of degree m with supremum at
least 1 on a disk of radius r is greater than εm in modulus
except on a set of capacity at most 3rε,

• along with the fact that |ξ| > c > 0.

• We also need that for N large enough, a cannot be zero unless
f is rational.
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A conjecture

We conjecture that the interpolation points may be arbitrary;
namely, that the following holds:
Let E and F be two compact sets in C such that 0 ̸∈ E,
cap(F ) = 0 and E ∩ F = ∅. Let (zi )i∈N be a family of distinct
points in E . Let f be analytic in C\F . Let K ⊂ C be a compact
set, ε > 0, δ > 0, µ > 1. Then, there exists n0 such that for all
natural numbers n and N which satisfy:

2n + 1 ≤ N ≤ µn,

n0 ≤ n,

we have:
|f − pn,N/qn,N | < εn,

on K \ En with cap(En) ≤ δ.
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Comments

• In our proofs, increasing N is a nuisance that we must fight.

• We had to bound it linearly with n.

• It would be more pleasant to consider N as a help ...

• Maybe for other types of convergence? Probabilistic ones?
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And most importantly

THANK YOU.


