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Abstract Tensorial interpolation Results

We propose a novel method for deriving High-Order Volume Let n € N, and define the tensorial Chebyshev-Lobatto grid G4, = @? | Cheb,,, where

Elements (HOVE) for scalar function integration on regular Cheh, — {cos (k_w> e < n} 1: f o vy
embedded manifolds. Using square-squeezing, a transforma- " Y e o N ~oee |
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tion that reparametrizes a flat triangulation mesh into a quad
mesh, we approximate the integrand and volume element ;
n
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within each hypercube via Chebyshev—Lobatto grid interpola Lo(z) = Hlai,i(f)a i) = H .z. ,z.'
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indexed by Ay, = {a € N?: ||a|lc < n}. For each a € Ay, the tensorial multivariate Lagrange polynomials are
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tion.
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Given a function f : [—1,1]? — R, the interpolant Qa,.f € gy of finGyyis

Contribution Qc, f= Z f(pa)La
d,n ’
o Quadrilateral re-parametrization: For a flat tri- acAdn Figure 3: Visualization of the spherical harmonic Y54 (left). Integration
angulation 75, of I', each simplex is reparametrized via a errors of DCG and HOVE with respect to the interpolation degree.

h ) : _ : : . Abbreviations: HOVE;. — interpolating only the geometry, HOVE,. ,, —
hypercube-to-simplex map o : [—1,1]¢ — Ay, termed Quadrilateral re-parametrization Square-squeezing map interpolating the geometry and the integrand. "
square-squeezing. The p; are interpolated on each hy-
percube using k'-order tensorial Chebyshev-Lobatto Given a triangulation 7, of the surface I' = Qp*(0), for each We re-scale [—1,1]% to [0,1]% by setting &; = (21 + 1)/2 1°°
nodes. triangle T@ 6 T, @ = 1,..., K, we consider a quad re- To = (w9 + 1)/2. The square-squeezing transformation on 1021 3

e Error Bound Estimation: Theoretical error esti- parametrization 0, 1]* becomes e
mates showing O(n™") + O(k~=Y) for smooth sur- wi [-1,1" = T;, ;=00 =moroo, i=1,...,K, : F1 T T\ T 5
- - o:[0,1]F = Ay, o(3,7 :(:7; e )
faces, ensuring exponential convergence rates. The quadrilateral re-parametrization enables interpolating 0, 1] ’ (%1, o) : 2 ’ 2 & 10-
e Computational Efficiency: Application of FFT- the geometry functions ¢; = g; o o : [—1,1]° — RJ by | (2) @ ] o
based differentiation and interpolation for O(/N log V) tensor-product polynomials. We derive the kM-order poly- Duffy transformation e 3;5;4”;?;-” | | | |
operations, significantly improving numerical stability nomial interpolant @), 1 of ¢; in tensor-product polynomials ooutiy © [— 1,17 = Ao, opuse(, y) = (1 (1+2)(1—y) "7 poynomialdegree
for complex surfaces. Chebyshev-Lobatto nodes. 4 (3)

Figure 4: Gauss-Bonnet validation [ Kauss dS = 2mx (I) for the
Swiss cheese block composed of 2944 triangles.

Introduction

We consider a compact, orientable, d-dimensional O+l O,
manifold I' embedded in an m-dimensional Euclidean space

(O <da< m)' and an mtegrable function f ' = R. This Figure 1: Construction of a surface parametrization over Ay by

work introduces a new algorithm for approximating the sur- closest-point projection from a piecewise affine approximate mesh, and (a) Standard square (b) Duffy (c) Square-Squeezing
face integral: re-parametrization over the square [y := [—1, 1]°.
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Figure 2: Bilinear square—simplex transformations: Deformations of
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/f(X) ds. (1) Consequently, the integral is approximated by numerically equidistant grids, under Duffy’s transformation (b) and square-squeezing o o
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Computll”lg (C) Lo ~ Polynomial degree
Assuming that the smooth surface I' is topologically equiva- P | | ol . . . | |
lent to a d-dimensional polyhedral surface I, composed of Z/ Qc, (fop;)(x) \/det ((DQGdk%(X))TDQGdk%‘(X)) dx where Qadyk%(X) denoting a k—th order polynomial approx- : N S
simplices 7, = {T;},i=1,...,K: =1 /L | | imating the map ¢;, whereas Qg ,(fop;)(x) is a n—th order

[, — U T polynomial approximating the integrand f : I" — R. Figure 5: Gauss-Bonnet validation for a double torus composed of 8360
B ; triangles.

;€T
The maps o; = m;07; : g — R define the partition of T.
A key challenge is the distribution of nodes within simplices

Theoretical Error Estimates
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"3 SuGeopy where QGd,n(f o ;)(x) is a n—th order polynomial approximating the integrand f : ' — R. Dune-curvedgrid — a dune module for surface parametrization.



