Abstract

We propose a novel method for deriving High-Order Volume Elements (HOVE) for scalar function integration on regular embedded manifolds. Using square-squeezing, a transformation that reparametrizes a flat triangulation mesh into a quad mesh, we approximate the integrand and volume element within each hypercube via Chebyshev–Lobatto grid interpolation.

Contribution

- Quadrilateral re-parametrization: For a flat triangulation \mathcal{T}_h of Γ , each simplex is reparametrized via a hypercube-to-simplex map $\sigma: [-1,1]^d \to \Delta_d$, termed square-squeezing. The ρ_i are interpolated on each hypercube using k^{th} -order tensorial Chebyshev–Lobatto nodes.
- Error Bound Estimation: Theoretical error estimates showing $\mathcal{O}(n^{-r}) + \mathcal{O}(k^{-(r-1)})$ for smooth surfaces, ensuring exponential convergence rates.
- Computational Efficiency: Application of FFTbased differentiation and interpolation for $\mathcal{O}(N \log N)$ operations, significantly improving numerical stability for complex surfaces.

Introduction

We consider a compact, orientable, d-dimensional C^{r+1} manifold Γ embedded in an *m*-dimensional Euclidean space $(0 \leq d \leq m)$, and an integrable function $f : \Gamma \to \mathbb{R}$. This work introduces a new algorithm for approximating the surface integral:

$$\int_{\Gamma} f(\mathbf{x}) \, dS. \tag{1}$$

Assuming that the smooth surface Γ is topologically equivalent to a d-dimensional polyhedral surface Γ_h , composed of simplices $\mathcal{T}_h = \{T_i\}, i = 1, \ldots, K$:

$$\Gamma_h = \bigcup_{T_i \in \mathcal{T}_h} T_i.$$

The maps $\rho_i = \pi_i \circ \tau_i : \Delta_d \to \mathbb{R}^{d+1}$ define the partition of Γ . A key challenge is the distribution of nodes within simplices for stable high-order polynomial interpolation, as no direct analogue of the Chebyshev-Lobatto rule exists for triangles. To address this, we use a hypercube-to-simplex transformation $\sigma: [-1,1]^d \to \triangle_d$, known as square-squeezing (Eq. (2)).

Stable High-Order Approximation of Triangulated Manifolds for Surface Integration

Gentian Zavalani¹, Oliver Sander¹, and Michael Hecht² Center for Advanced Systems Understanding (CASUS), D-02826 Görlitz, Germany^{1,2} Technische Universität Dresden, D-01062 Dresden, Germany¹

Tensorial interpolation

Let $n \in \mathbb{N}$, and define the tensorial Chebyshev–Lobatto grid $G_{d,n} = \bigoplus_{i=1}^{d} \operatorname{Cheb}_{n}$, where $Cheb_n = \left\{ \cos\left(\frac{k\pi}{n}\right) : 0 \le k \right.$ indexed by $A_{d,n} = \{ \alpha \in \mathbb{N}^d : \|\alpha\|_{\infty} \leq n \}$. For each $\alpha \in A_{d,n}$, the tensorial multivariate Lagrange polynomials are $L_{\alpha}(x) = \prod_{i=1}^{\infty} l_{\alpha_{i},i}(x), \quad l_{j,i}(x) = \prod_{k=0,k}^{\infty} l_{\alpha_{i},i}(x)$

Given a function $f: [-1,1]^d \to \mathbb{R}$, the interpolant $Q_{G_{d,n}} f \in \Pi_{d,n}$ of f in $G_{d,n}$ is $Q_{G_{d,n}}f = \sum f(p_{\alpha})L_{\alpha}.$

Quadrilateral re-parametrization

Given a triangulation \mathcal{T}_h of the surface $\Gamma = Q_{\Gamma}^{-1}(0)$, for each triangle $T_i \in \mathcal{T}_h, i = 1, \ldots, K$, we consider a quad reparametrization $\varphi_i: [-1,1]^2 \to T_i, \quad \varphi_i = \varrho_i \circ \sigma = \pi_i \circ \tau_i \circ \sigma, \quad i = 1, \dots, K,$

The quadrilateral re-parametrization enables interpolating the geometry functions $\varphi_i = \varrho_i \circ \sigma : [-1,1]^2 \to \mathbb{R}^3$ by tensor-product polynomials. We derive the k^{th} -order polynomial interpolant $Q_{\varphi_i,k}$ of φ_i in tensor-product polynomials Chebyshev-Lobatto nodes.

Figure 1: Construction of a surface parametrization over Δ_2 by closest-point projection from a piecewise affine approximate mesh, and re-parametrization over the square $\Box_2 := [-1, 1]^2$.

Consequently, the integral is approximated by numerically computing

$$\sum_{i=1}^{K} \int_{[-1,1]^d} Q_{G_{d,n}}(f \circ \varphi_i)(\mathbf{x}) \sqrt{\det\left((DQ_{G_{d,k}}\varphi_i(\mathbf{x}))^T DQ_{G_{d,k}}\varphi_i(\mathbf{x})\right)} d\mathbf{x}$$

Figure 2: Bilinear square-simplex transformations: Deformations of equidistant grids, under Duffy's transformation (b) and square-squeezing

Theoretical Error Estimates

Theorem

Let Γ be a smooth surface and $f: \Gamma \longrightarrow \mathbb{R}$ be a integrable function. Consider a piecewise linear triangulation \mathcal{T}_h of Γ with maximum triangle diameter h > 0. For each triangle $T_i \in \mathcal{T}_h$, $i = 1, \ldots, K$ denote with $Q_{G_{dk}}\varphi_i$ the kth-order approximation of φ_i . Then

$$\int_{\Gamma} f \, dS - \sum_{i=1}^{K} \int_{[-1,1]^d} Q_{G_{d,n}}(f \circ \varphi_i)(\mathbf{x}) \sqrt{\det\left((DQ_{G_{d,k}}\varphi_i(\mathbf{x}))^T DQ_{G_{d,k}}\varphi_i(\mathbf{x})\right)} \, d\mathbf{x} \bigg| = \mathcal{O}\bigg(n^{-r}\bigg) + \mathcal{O}\bigg(k^{-(r-1)}\bigg),$$

where $Q_{G_{d_n}}(f \circ \varphi_i)(\mathbf{x})$ is a n-th order polynomial approximating the integrand $f: \Gamma \to \mathbb{R}$.

(a) Standard square

$$k \le n \bigg\} \,,$$

$$\prod_{\substack{j,k\neq j}}^{n} \frac{x_i - p_{k,i}}{p_{j,i} - p_{k,i}}$$

Figure 3: Visualization of the spherical harmonic Y_5^4 (left). Integration errors of DCG and HOVE with respect to the interpolation degree. Abbreviations: $HOVE_k$ – interpolating only the geometry, $HOVE_{k,n}$ – interpolating the geometry and the integrand.

Square-squeezing map

We re-scale $[-1, 1]^2$ to $[0, 1]^2$ by setting $\tilde{x}_1 = (x_1 + 1)/2$, $\tilde{x}_2 = (x_2 + 1)/2$. The square-squeezing transformation on $[0,1]^2$ becomes

$$\sigma: [0,1]^2 \to \Delta_2, \quad \sigma(\tilde{x}_1, \tilde{x}_2) = \left(\tilde{x}_1 - \frac{\tilde{x}_1 \tilde{x}_2}{2}, \tilde{x}_2 - \frac{\tilde{x}_1 \tilde{x}_2}{2}\right)^T.$$
(2)

Duffy transformation

 $\sigma_{\text{Duffy}}: [-1,1]^2 \to \Delta_2, \quad \sigma_{\text{Duffy}}(x,y) = \left(\frac{1}{4}\left(1+x\right)\left(1-y\right), \frac{1+y}{2}\right)$

(b) Duffy

(3)

where $Q_{G_{d,k}}\varphi_i(\mathbf{x})$ denoting a k-th order polynomial approximating the map φ_i , whereas $Q_{G_{d_n}}(f \circ \varphi_i)(\mathbf{x})$ is a *n*-th order polynomial approximating the integrand $f: \Gamma \to \mathbb{R}$.

Figure 4: Gauss-Bonnet validation $\int_{\Gamma} K_{\text{Gauss}} dS = 2\pi \chi(\Gamma)$ for the Swiss cheese block composed of 2944 triangles.

triangles.

References

- [1] Gentian Zavalani and Michael Hecht. High-order numerical integration on regular embedded surfaces, 2024.
- [2] Gentian Zavalani, Oliver Sander, and Michael Hecht. High-order integration on regular triangulated manifolds reaches super-algebraic approximation rates through cubical re-parameterizations, 2023.
- [3] Simon Praetorius and Florian Stenger. Dune-curvedgrid – a dune module for surface parametrization.

Figure 5: Gauss-Bonnet validation for a double torus composed of 8360