Wasserstein Gradient Flows of Moreau Envelopes of f-Divergences in Reproducing Kernel Hilbert Spaces

Sebastian Neumayer, Viktor Stein, Gabriele Steidl, Nicolaj Rux

Goal: minimize f-divergence loss $D_{f,\nu}$ with target measure $\nu \in \mathcal{M}_+(\mathbb{R}^d)$ (e.g. generative adversarial networks, variational inference).

Often **only samples** are available \rightsquigarrow empirical measures.

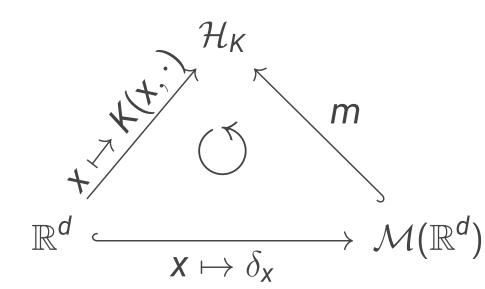
BUT: D_f between empirical measures is $\infty \leadsto \text{regularize } f\text{-divergence}$.

- **Contribution.** Prove identification of MMD-regularized *f*-divergence functional as Moreau envelope in RKHS. Existence and uniqueness of its Wasserstein gradient flow. Flow starting at empirical measure is particle flow.
- **Prior work.** Regularize MMD with f-divergence [5], MMD-Pasch-Hausdorff envelope of f-divergences [7], W_1 -Moreau envelope of f-divergences [8].
- Method. Euler forward discretize particle flow (= gradient descent on the positions).
- **Result.** We can simulate particle flows for divergences with finite and infinite recession constant f'_{∞} . Tsallis- α divergence with moderately large α outperforms KL-divergence ($\alpha = 1$): faster target recovery and more stable.

Reproducing Kernel Hilbert Space, KME, Maximum Mean Discrepancy

 $K \colon \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}$ symmetric, positive definite, bounded kernel with $K(x,\cdot) \in \mathcal{C}_0(\mathbb{R}^d)$. We focus on radial kernels $K(x,y) = \phi(\|x-y\|_2^2)$ with $\phi \in \mathcal{C}^2(\mathbb{R}^d)$ completely monotone. Examples. Gaussian $\phi(r) = \exp\left(-\frac{1}{2s}r\right)$, IMQ $\phi(r) := (s+r)^{-\frac{1}{2}}$, spline $\phi(r) = (1-\sqrt{r})_+^{q+2}$. \to reproducing kernel Hilbert space (RKHS) $\mathcal{H}_K := \overline{\operatorname{span}}(\{K(x,\cdot) : x \in \mathbb{R}^d\})$. The kernel mean embedding (KME) of finite signed measures, $\mathcal{M}(\mathbb{R}^d)$, into \mathcal{H}_K is

$$m \colon \mathcal{M}(\mathbb{R}^d) \to \mathcal{H}_K, \qquad \mu \mapsto m_\mu \coloneqq \int_{\mathbb{R}^d} K(x, \cdot) \,\mathrm{d}\mu(x).$$
 (1)



We require m to be injective (\mathcal{H}_K "characteristic") $\iff \mathcal{H}_K \subset \mathcal{C}_0(\mathbb{R}^d)$ dense. Then the **maximum mean discrepancy (MMD)**

$$d_{\mathcal{K}} \colon \mathcal{M}(\mathbb{R}^d) \times \mathcal{M}(\mathbb{R}^d) \to [0, \infty), \qquad (\mu, \nu) \mapsto \|m_{\mu} - m_{\nu}\|_{\mathcal{H}_{\mathcal{K}}}.$$
 (2)

is an **incomplete** metric. We have for all $\mu, \nu \in \mathcal{M}(\mathbb{R}^d)$

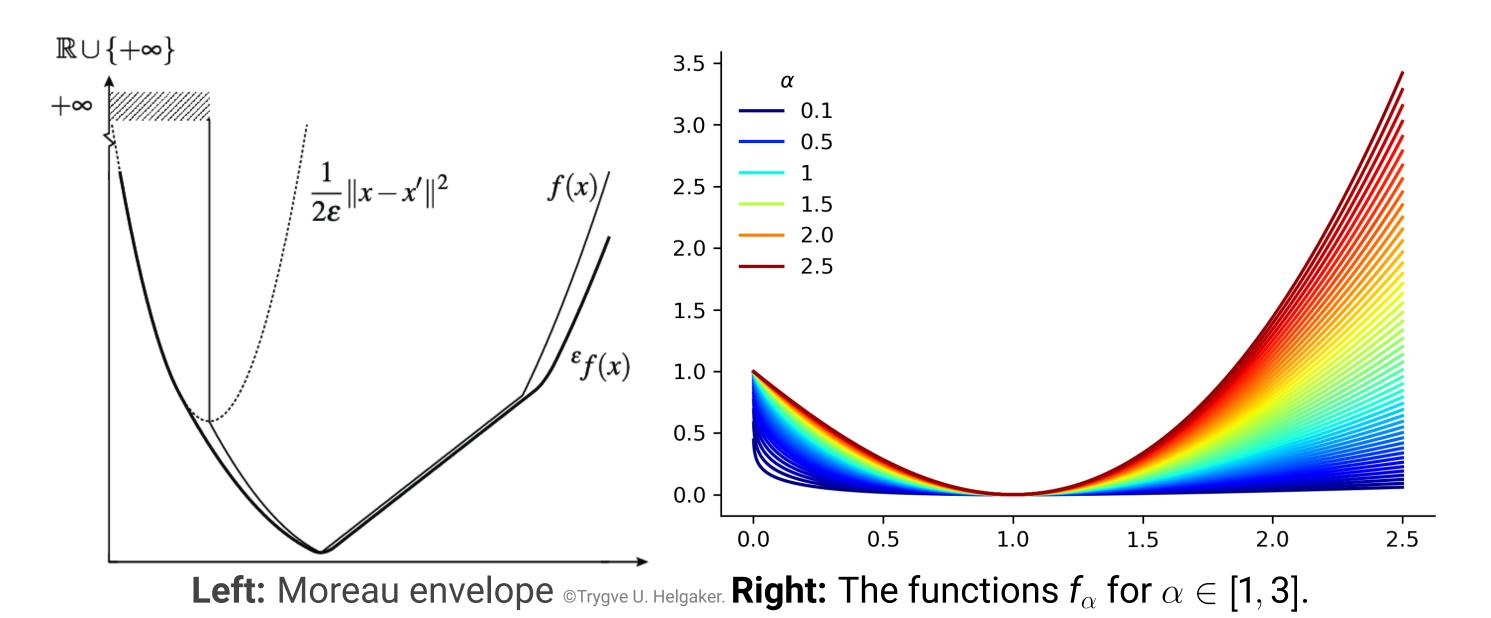
$$d_K(\mu,\nu)^2 = \int_{\mathbb{D}^d \times \mathbb{D}^d} K(x,y) \, \mathrm{d}(\mu-\nu)(x) \, \mathrm{d}(\mu-\nu)(y). \tag{3}$$

Regularization in Convex Analysis

 $(H, \langle \cdot, \cdot \rangle, \| \cdot \|)$ Hilbert space, $f: H \to (-\infty, \infty]$ **convex** lower semicontinuous (we write $f \in \Gamma_0(H)$) with dom $(f) := \{x \in H : f(x) < \infty\} \neq \emptyset$. For $\varepsilon > 0$, the ε -Moreau envelope of f,

$$\varepsilon f: H \to \mathbb{R}, \qquad x \mapsto \min \left\{ f(x') + \frac{1}{2\varepsilon} ||x - x'||^2 : x' \in H \right\}$$
 (4)

is convex, **differentiable** regularization of f preserving its minimizers. Asymptotic regimes: ${}^{\varepsilon}f(x)\nearrow f(x)$ for $\varepsilon\searrow 0$ and ${}^{\varepsilon}f(x)\searrow \inf(f)$ for $\varepsilon\to\infty$.



f-divergence

We consider $f \in \Gamma_0(\mathbb{R})$ with $f|_{(-\infty,0)} \equiv \infty$ and with unique minimizer at 1: f(1) = 0 and $f'_{\infty} := \lim_{t \to \infty} \frac{1}{t} f(t) > 0$. Its convex conjugate is

$$f^*: \mathbb{R} \to (-\infty, \infty], \qquad \mathsf{s} \mapsto \sup \left\{ \mathsf{s} t - f(t) : t \geq 0 \right\}.$$

f-divergence of $\mu = \rho \nu + \mu_s \in \mathcal{M}_+(\mathbb{R}^d)$ (unique Lebesgue decomposition) to $\nu \in \mathcal{M}_+(\mathbb{R}^d)$

$$D_{f,\nu}(\rho\nu + \mu_{s}) := \int_{\mathbb{R}^{d}} \mathbf{f} \circ \rho \, \mathrm{d}\nu + \mathbf{f}'_{\infty} \cdot \mu_{s}(\mathbb{R}^{d}) \qquad (\infty \cdot 0 := 0)$$

$$= \sup_{\mathbf{h} \in \mathcal{C}_{b}(\mathbb{R}^{d}; \mathsf{dom}(\mathbf{f}^{*}))} \mathbb{E}_{\mu}[\mathbf{h}] - \mathbb{E}_{\nu}[\mathbf{f}^{*} \circ \mathbf{h}], \qquad \mathbb{E}_{\mu}[\mathbf{h}] := \int_{\mathbb{R}^{d}} \mathbf{h}(\mathbf{x}) \, \mathrm{d}\mu(\mathbf{x}) \qquad (6)$$

 $D_{f,\nu}$ is convex and weak* lower semicontinuous.

Examples. $f_{KL}(x) := x \ln(x) - x + 1$ for $x \ge 0$ yields the **Kullback-Leibler divergence** and $f_{\alpha}(x) := \frac{1}{\alpha - 1} (x^{\alpha} - \alpha x + \alpha - 1)$ the **Tsallis-** α **divergence** T_{α} for $\alpha > 0$. We have $T_1 = KL$.

MMD-Regularized f-divergence

The **MMD-regularized** *f***-divergence** functional is

$$D_{f,\nu}^{\lambda}(\mu) := \min \left\{ D_{f,\nu}(\sigma) + \frac{1}{2\lambda} d_{K}(\mu,\sigma)^{2} : \sigma \in \mathcal{M}(\mathbb{R}^{d}) \right\}, \qquad \mu \in \mathcal{M}(\mathbb{R}^{d}).$$
 (7)

Generalizes the KALE-functional [4], which is recovered for $f = f_{KL}$.

Theorem. (Moreau envelope interpretation)

The \mathcal{H} -extension of $D_{f,\nu}$,

$$G_{\nu,f} \colon \mathcal{H}_{\mathcal{K}} \to [0,\infty], \quad h \mapsto \begin{cases} D_{f,\nu}(\mu), & \text{if } \exists \mu \in \mathcal{M}_+(\mathbb{R}^d) \text{ s.t. } h = m_\mu, & [0,\infty) & \stackrel{\lambda}{\longleftarrow} \mathcal{H}_{\mathcal{K}} \\ \infty, & \text{else.} \end{cases}$$
 is convex, **lower semicontinuous** and its Moreau envelope concatenated with m is the MMD-regularized f -divergence:
$$\mathcal{M}(\mathbb{R}^d) \xrightarrow{D_{f,\nu}} [0,\infty]$$

$$\mathcal{M}(\mathbb{R}^d) \xrightarrow{D_{f,\nu}} [0,\infty]$$

Theorem. (Properties of $D_{f,\nu}^{\lambda}$)

1. **Dual formulation**

$$D_{f,\nu}^{\lambda}(\mu) = \max \left\{ \mathbb{E}_{\mu}[h] - \mathbb{E}_{\nu}[f^* \circ h] - \frac{\lambda}{2} \|h\|_{\mathcal{H}_{K}}^{2} : h \in \mathcal{H}_{K}, \ h \leq f_{\infty}' \right\}. \tag{8}$$

2. $D_{f,\nu}^{\lambda}$ is Fréchet diff'able with $\frac{1}{\lambda}$ -Lipschitz gradient with respect to d_K :

$$\nabla D_{f_{\nu}}^{\lambda}(\mu) = \operatorname{argmax}(8).$$

3. **Asymptotic** regimes: Mosco resp. pointwise convergence (if $0 \in \text{int}(\text{dom}(f^*))$ resp. f^* diff'able in 0)

$$D_{f,\nu}^{\lambda} o D_{f,\nu} \quad \lambda \searrow 0 \qquad \text{and} \qquad (1+\lambda)D_{f,\nu}^{\lambda} o rac{1}{2} d_{K}(\cdot,
u)^{2} \quad \lambda o \infty$$

- 4. Divergence property: $D_{f\nu}^{\lambda}(\mu) = 0 \iff \mu = \nu$.
- 5. If f^* is diff'able in 0, then $(\mu, \nu) \mapsto D_{f,\nu}^{\lambda}$ metrizes weak convergence on $\mathcal{M}_+(\mathbb{R}^d)$ -balls.

Wasserstein Gradient Flow with respect to $D_{f,\nu}^{\lambda}$

 $D_{f,\nu}^{\lambda}$ is (-M)-convex along generalized geodesics with $M := \frac{8}{\lambda} \sqrt{(d+2)\phi''(0)\phi(0)}$. strong Fréchet subdifferential: $\partial D_{f,\nu}^{\lambda}(\mu) = \{\nabla \operatorname{argmax}(8)\}$.

There exists a unique Wasserstein gradient flow $(\gamma_t)_{t>0}$ of $D_{f,\nu}^{\lambda}$ starting at $\mu_0 \in \mathcal{P}_2(\mathbb{R}^d)$, fulfilling the continuity equation $\partial_t \gamma_t = \text{div}\left(\gamma_t \nabla \left(\partial D_{f,\nu}^{\lambda}(\gamma_t)\right)\right)$, $\gamma_0 = \mu_0$.

If μ_0 is empirical, then so is μ_t for all t > 0 (particle flows are W_2 gradient flows).

Numerical Experiments - Particle Descent Algorithm

Take i.i.d. samples $(x_j = z_j^{(0)})_{j=1}^N \sim \mu_0$ and $(y_j)_{j=1}^M \sim \nu$. Forward Euler discretization in time with step size $\tau > 0$ yields $(\mu_n)_{n \in \mathbb{N}} = \frac{1}{N} \sum_{j=1}^N \delta_{x_i^{(n)}}$ with gradient step

$$oxed{x_j^{(n+1)} = x_j^{(n)} - au
abla \hat{p}_n(x_j^{(n)})}, \qquad \hat{p}_n = \operatorname{argmax} \operatorname{in} D_{f,
u}^{\lambda}(\mu_n) \qquad j \in \{1,\dots,N\}, \ n \in \mathbb{N}.$$

Representer-type theorem. If $f'_{\infty} = \infty$ or if $\lambda > 2d_K(\mu_n, \nu) \sqrt{\phi(0)} \frac{1}{f'_{\infty}}$, then finding \hat{p}_n is a finite-dimensional strongly convex problem (we solve it with L-BFGS-B).

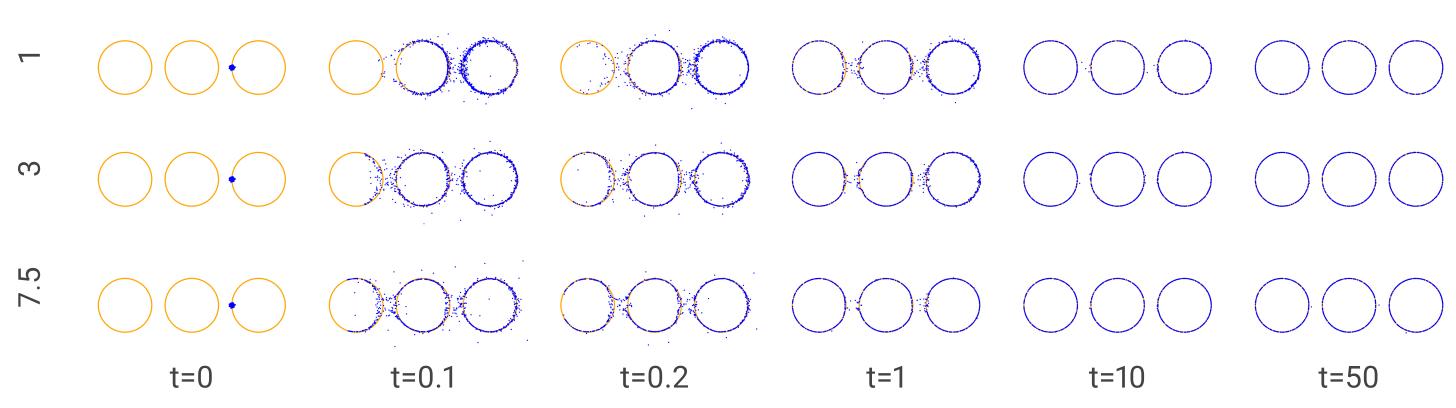


Figure 1. Wasserstein gradient flow of the regularized Tsallis- α divergence $D_{f_{\alpha},\nu}^{\lambda}$ for $\alpha \in \{1,3,7.5\}$, where ν are the three rings. Code: https://github.com/ViktorAJStein/Regularized_f_Divergence_Particle_Flows

Further work. Non-differentiable (e.g. Laplace = $\frac{1}{2}$ -Matérn) and unbounded (e.g. Riesz, Coulomb) kernels. Other divergences, e.g. Rényi. Different time discretizations. Prove consistency bounds [1] and convergence rates.

[1] H. Leclerc, Q. Mérigot, F. Santambrogio and F. Stra (2020) Lagrangian discretization of crowd motion and linear diffusion. SIAM J. Numer. Anal. **58** (4).

[2] L. Ambrosio, N. Gigli and G. Savare (2008). Gradient flows in metric spaces and in the space of probability measures, 2nd edition. Lectures in Mathematics ETH Zürich. Birkhäuser.

[3] J. Hertrich, C. Wald, F. Altekrüger and P. Hagemann (2024). Generative sliced MMD flows with Riesz kernels. ICLR'24.

[4] P. Glaser, M. Arbel and A. Gretton (2021) KALE flow: A relaxed KL gradient flow for probabilities with disjoint support. NeurIPS'21.

[5] H. Kremer, Y., Nemmour, B. Schölkopf and J.-J. Zhu (2023) Estimation beyond data reweighting: kernel methods of moments. ICML'23.

[6] M. Liero, A. Mielke and G. Savaré (2017) Optimal entropy-transport problems and a new Hellinger-Kantorovich distance between positive measures. Invent. Math. 211 3.
[7] J. Birrell et. al. (2022) (f, Γ)-Divergences: Interpolating between f-Divergences and Integral Probability Metrics. J. Mach. Learn.

Res. 23 **39**. [8] D. Terjék (2021) Moreau-Yosida *f*-divergences. ICML'21.

