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Goal: minimize f-divergence loss D¢, with target measure v € M, (RY) (e.g. generative
adversarial networks, variational inference).

Often only samples are available ~~ empirical measures.

BUT: Df between empirical measures is co ~ regularize f-divergence.

= Contribution. Prove identification of MMD-regularized f-divergence functional as
Moreau envelope in RKHS. Existence and uniqueness of its Wasserstein gradient flow.
Flow starting at empirical measure is particle flow.

= Prior work. Regularize MMD with f-divergence [5], MMD-Pasch-Hausdorff envelope of
f-divergences [7], Wi-Moreau envelope of f-divergences [8].

= Method. Euler forward discretize particle flow (= gradient descent on the positions).

= Result. We can simulate particle flows for divergences with finite and infinite recession
constant f’_. Tsallis-a divergence with moderately large o outperforms KL-divergence
(v = 1): faster target recovery and more stable.

Reproducing Kernel Hilbert Space, KME, Maximum Mean Discrepancy

: ) S Co(Rd).
= ¢(||x — y||3) with ¢ € C*(RY) completely monotone.

K: R? x R — R symmetric, positive definite, bounded kernel with K(x
We focus on radial kernels K(x, y)

Examples. Gaussian ¢(r) = exp (—-r), IMQ ¢(r) = (s + 12, spline 6(r) = (1— /)72,
~ reproducing kernel Hilbert space (RKHS) #Hx = span({K(x, -) : x € R%}).
The kernel mean embedding (KME) of finite signed measures, M(Rd), into Hg IS
m: MERY = He,  prsm, = / K ) du(o). ()
R
Hk
Q m
> M(RY
X — Oy M(R)
We require m to be injective (Hk “characteristic”) «— Hx C CO(RO’) dense.
Then the maximum mean discrepancy (MMD)
dic: M(RY) x M(R?) = [0,00), (s, 1) = [Imy — m, [l (2)
is an incomplete metric. We have for all i1, v € M(RY)
o) = [, KOey) il = v)( e = 1)) 3)
Regularization in Convex Analysis
(H,{-,), || - ||) Hilbert space, f: H — (—o0, co] convex lower semicontinuous (we write f €
[o(H)) with dom(f) = {x € H: f(x) < oo} # 0.
For e > 0, the e-Moreau envelope of f,
°f: H— R, X — min {f(x’) 21€Hx X'||%:x € H} (4)

Is convex, differentiable regularization of f preserving its minimizers.
Asymptotic regimes: f(x)  f(x) for e ™\, 0 and ¢f(x) ~\ inf(f) for e — oc.
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Left: Moreau envelope eryoeu reaer Right: The functions £, for o € [1, 3].

f-divergence

We consider f € To(R) with f|_, 0y = oo and with unique minimizer at 1. f(1) = 0 and

flo == limeoo 1 (1) > 0. Its convex conjugate is
S—sup{st—f(t):t>0}.
f-divergence of 1 = pv + s € M, (RY) (unique Lebesgue decomposition) to v € M., (RY)

f*: R — (—o0, 0],

D, (pv + ps) = dfopdwfgo.us(Rd) (00 -0 :=0) (5)
R
—  sup  E,[h] —E,[f oh], Eufh] = | h(x)du(x) (6)
heCp(RY:dom(f*)) R

D¢, is convex and weak* lower semicontinuous.
Examples. fx (x) = xIn(x) — x + 1 for x > 0 yields the Kullback-Leibler divergence and
f.(x) = -1 (x* — ax + a — 1) the Tsallis-« divergence T, for a > 0. We have T; = KL.

MMD-Regularized f-divergence

The MMD-regularized f-divergence functional is

D?jy(,u) = min {Df)V( ) Z_AdK( ) NS M(Rd)} : [IRS M(Rd). (7)
Generalizes the KALE-functional [4], which is recovered for f = fx,.
Theorem. (Moreau envelope interpretation)
The H-extension of Dy, \G
4 f,V
D if 3 RY s.t. h = 0,00) < H
Gyf: %K _ [O, 00]7 h — < f,V(M)? | M E M"'( ) S mﬂ? [ N ) K
, 00, else. . / .
\ £l fu
is convex, lower semicontinuous and its Moreau envelope con- 1)
catenated with m is the MMD-regularized f-divergence: M(RY) » [0, o0
A A Dfu |
Gf,u om = ijy ’

Theorem. (Properties of D; )

1. Dual formulation
D?’V(,u) — max {Eﬂ[h] —E,[f*oh] — %HhH%K h e Hg, h< féo} . (8)

2. D; , is Fréchet diff'able with 1-Lipschitz gradient with respect to dx:
VD;:V(/L) = argmax (8).
3. Asymptotic regimes: Mosco resp. pointwise convergence (if 0 € int(dom(f*)) resp. f*
diff'able in 0)

1
Di, =D, ANO0 and  (1+\)D7, — k(- V)2 A — oo

4. Divergence property: D?yy(u) =0 <= u=v.
5. If f*is diff'able in 0, then (u, v) — D?,V metrizes weak convergence on M_ (R%)-balls.

Wasserstein Gradient Flow with respect to D;

8./(d+2)¢"(0)¢(0).

D; , is (—M)-convex along generalized geodesics with M :=
strong Fréchet subdifferential: 0D; (1) = {V argmax (8)}.

There exists a unique Wasserstein gradient flow (+;);.o of D?’V starting at ;o € P2(RY),
fulfilling the continuity equation dyy; = div (vV (9D? (7)) ), 70 = Lo
If 110 is empirical, then so is y; for all t > 0 (particle flows are W, gradient flows).

Numerical Experiments - Particle Descent Algorithm

Take i.i.d. samples (x; = z(o))j J o~ ﬂo and (yj)j . ~ v. Forward Euler discretization in time

J
with step size 7 > 0 yields (in)neny = § Z/ 10.m With gradient step

N} neN.

(n+1) _ ,(n) A ()
i =X — VP (X)),

ﬁn — argmaXin D;\,V(/’Ln) .I S {17 Tt

Representer-type theorem. If | = oo orif A > 2dk(un, v) gb(O)f, , then finding p, is a finite-
dimensional strongly convex problem (we solve it with L-BFGS- B)
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Figure 1. Wasserstein gradient flow of the reqularized Tsallis-a divergence D?a Lfora € {1,3,7.5}, where v
are the three rings. Code: https://github.com/ViktorAJStein/Regularized_f_Divergence_Particle_Flows

Further work. Non-differentiable (e.g. Laplace = 3-Matérn) and unbounded (e.g. Riesz,
Coulomb) kernels. Other divergences, e.g. Rényi. Different time discretizations. Prove con-
sistency bounds [1] and convergence rates.
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