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Summary

Need a better understanding of the Straight-Through Estimator (STE)

initially proposed for quantization in neural networks [1, 2]

Propose a sparse support recovery algorithm by deriving the STE

1. Enhanced exploration capability beyond local minima

2. Superior performance with highly-coherent dictionaries (spike deconvolution)

3. Theoretical guarantees for sparse recovery

4. Can be warm-started with state-of-the-art algorithms

Sparse support recovery

Goal

Recover S∗ = supp(x∗) from
y = Ax∗ + e ∈ Rm

with x∗ ∈ Rn s.t. ‖x∗‖0 ≤ k and A ∈ Rm×n

Optimization problem

Minimize
x∈Rn, ‖x‖0≤k

F (x) := 1
2
‖Ax − y‖2

2

Problem reformulation with a sparsification operator H

Minimize
X ∈Rn

F (H (X )) with H (X ) ∈ argmin
x∈Rn

supp(x) ⊆ largestk(X )

1
2

‖Ax − y‖2
2

Straight-Through Estimator for sparsification

Differentiate F (x) = F (H(X )) where H is non-differentiable ?

X H F F (H(X ))x

Straight-through estimator
∂(F ◦ H)

∂X
(X ) = ∂F

∂x
(H(X ))

∂x

∂X
(X ) ≈ ∂F

∂x
(H(X ))

Gradient update: X t+1 = X t − η
∂F

∂x
(H(X )) = X t − ηAT (Axt − y)

Support Exploration Algorithm (SEA)

Main idea: Support exploration variable X t searches for S∗

Algorithm 1 SEA [3]

1: Initialize X 0

2: repeat

3: St = largestk (X t)
4: xt = argmin

x∈Rn

supp(x)⊂St

‖Ax − y‖2
2

5: X t+1 = X t − ηAT (Axt − y)
6: until halting criterion is true

7: tBEST = argmin
t′∈J0,tK

‖Axt′ − y‖2
2

8: return xtBEST

⇒ Explore sparse solutions

Algorithm 2 HTP [4]

1: Initialize x0

2: repeat

3: St = largestk (xt)
4: xt = argmin

x∈Rn

supp(x)⊂St

‖Ax − y‖2
2

5: xt+1 = xt − ηAT (Axt − y)
6: until halting criterion is true

7:

8: return xt

⇒ Stop in a local minimum

Support exploration variable X t updated with an STE update

X t is a sum of gradients of explored sparse approximates
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Theorem - Recoverywith RIP assumption

Upper bound on the number of iterations for sparse recovery

Assume A satisfies the (2k + 1)-RIP [5] and ‖Ai‖2 = 1. If x∗ satisfies

αRIP

k ‖x∗‖2 + γRIP

k ‖e‖2 <
mini∈S∗ |x∗

i |
2k

then for all X 0, η, there exists ts ≤ TRIP such that S∗ ⊆ Sts, where

TRIP =
2k‖X 0‖∞

η + (k + 1) mini∈S∗ |x∗
i |

mini∈S∗ |x∗
i | − 2k (αRIP

k ‖x∗‖2 + γRIP

k ‖e‖2)

Exact support recovery

If moreover, x∗ is such that min
i∈S∗

|x∗
i | >

2√
1 − δ2k

‖e‖2, and SEA performs

more than TRIP iterations, then S∗ ⊆ StBEST and ‖xtBEST − x∗‖2 ≤ 2√
1−δk

‖e‖2

Gaussian deconvolution with x∗
|S∗ ∼ U([−2, −1] ∪ [1, 2])

Figure 1. x∗ and y with the solutions provided by the algorithms when k = 20

Figure 2. Average support distance suppdist(x) = k−|S∗∩ supp(x)|
k between S∗ and the support

of the solutions provided by the algorithms over 200 run: µ(A) = 0.97, σ = 3

Phase transition diagramwith A, x∗
|S∗ ∼ N (0, 1)

Figure 3. Empirical support recovery phase transition curves. Problems below each curve

are solved by the algorithms with a success rate larger than 95% over 1000 runs


