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Abstract

The well-known Wiener’s lemma is a deep and valuable statement in harmonic analysis; in the space
of functions with absolutely convergent Fourier series, elements that admit a multiplicative inverse
are called reversible. We present a method called pseudo-reversing for approximating the reverse
of functions that are not necessarily reversible.

Next, we make use of pseudo-reversing and define downsampling operators that enable us to con-
struct a multiscale pyramid transform, which is a tool for representing data on different scales in
a hierarchical fashion. Finally, we demonstrate the application of contrast enhancement via
multiscaling to manifold-valued data.

Wiener’s lemma

Let T = {z ∈ C : |z| = 1} be the unit circle of the complex plane, and denote by A(T) the Banach
space consisting of all periodic functions f (t) =

∑
k∈Z ake

2πikt with coefficients a ∈ ℓ1(Z). We
endow A(T) with the norm

∥f∥A = ∥a∥1 =
∑
k∈Z

|ak|.

Wiener’s lemma. If f ∈ A(T) and f (z) ̸= 0 for all z ∈ T, then also 1/f ∈ A(T). That is,
1/f (t) =

∑
k∈Z bke

2πikt for some b ∈ ℓ1(Z).

Pseudo-reversing and polynomials

Let p(z) = anz
n + an−1z

n−1 + · · · + a1z + a0 be a polynomial of degree n ∈ N. We assume that
the coefficients of p sum to 1 and rewrite p as

p(z) = C(p)
∏
r∈Λ

(z − r),

where Λ the set of all zeros of p including multiplicities. For some ξ > 0, the pseudo-reverse of
the polynomial p is defined by

p
†
ξ(z) =

(
C(p

†
ξ)

∏
r∈Λ\T

(z − r)
∏

r∈Λ∩T
(z − (1 + ξ)r)

)−1

,

where C(p
†
ξ) is a constant depending on ξ determined by p

†
ξ(1) = 1.
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(a) Displacements of zeros.
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(b) Pseudo-reverse coefficients.

Proposition 1. For any polynomial p, the product p
†
ξp converges in norm to 1 as ξ → 0+.

lim
ξ→0+

∥p†ξp− 1∥A = 0.

Proposition 2. If all zeros of the polynomial p are on the unit circle, then p
†
ξ(z) converges uni-

formly to 1 as ξ → ∞ on every compact subset of C.

The reversibility condition κ : A(T) → [1,∞] acting on a function f ∈ A(T) is defined by

κ(f ) =
supz∈T |f (z)|
infz∈T |f (z)|

,

with the convention κ(f ) = ∞ for functions with infz∈T |f (z)| = 0. It is evidently seen in [1] that if
f is reversible, positive and band limited, then the coefficients b of 1/f obey

|bk| ≤ Cλ|k|, k ∈ Z,

for some C > 0 and 0 < λ < 1 depending on κ(f ).

Corollary. Let p be a polynomial with n ∈ N zeros all on the unit circle. Then

κ(p
−†
ξ ) ≤ (1 + 2/ξ)n

for any ξ > 0.

Pseudo-reversing refinement operators

Given a subdivision scheme Sα with mask α, its reverse decimation operator is defined via
Dγc = γ ∗ (c ↓ 2) for any sequence c, where γ under the z-transform solves

α(z)γ(z) = 1, z ∈ C.

We hence look for a solution γ ∈ ℓ1(Z).

To solve for γ we rely on Wiener’s lemma; if α(z) has zeros on T then we use pseudo-reversing to

get an approximation γ
†
ξ of α

−1.

Multiscaling manifold values

Let M be a Riemannian manifold and denote by c(k) ⊂ M sequences with indices associated with
the grid 2−kZ. A multiscale transform of a sequence c(J) yields a pyramid representation comprises
a coarse approximation c(0) in addition to detail coefficients d(ℓ), ℓ = 1, . . . , J .

Sequence c(J)
decomposition−−−−−−−−−⇀↽−−−−−−−−−
reconstruction

Pyramid
{
c(0);d(1),d(2), . . . ,d(J)

}
The analysis and synthesis are done with a refinement operator Sα and its reverse decimation Dγ.

In particular, the decomposition of a sequence c(J) is defined iteratively via

c(ℓ−1) = Dγc
(ℓ), d(ℓ) = c(ℓ) ⊖ Sαc(ℓ−1), ℓ = 1, . . . , J,

while the inverse transform is defined via

c(ℓ) = Sαc(ℓ−1) ⊕ d(ℓ), ℓ = 1, . . . , J.

The operations above denote the exponential mapping and its inverse associated to a point p ∈ M,

expp(v) = p⊕ v and logp(q) = q ⊖ p.

Theoretical results

• It was shown in [2] that if c(J) is sampled over an arc-length parametrization grid of a differentiable
curve in M, then the detail coefficients generated by the multiscale decay geometrically.

• In case Sα is not reversible and we apply a pseudo-reverse decimation while multiscaling, the detail
coefficients decay still holds but with a controllable violation depending on ξ.

•Under certain mild assumptions, the inverse multiscale transform becomes stable.

Contrast enhancement application

The manifold of interest is M = SO(3). The subdivision scheme Sα used in multiscaling has the
mask α = 1/12 [3, 4, 3, 4, 3, 4, 3]. The even mask is not reversible, we used the pseudo-reverse
decimation operator Dγ with ξ = 0.64.

Figure 2: Contrast enhancement of SO(3)-valued sequence. On the left, the original sequence of rotation matrices. On
the right, the enhanced rotation sequence. The largest 20% of the detail coefficients of each layer were enlarged by 40%.
The black arrows indicate the regions with the most drastic twists – highlighting the effect of the application.
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