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Abstract

The well-known Wiener’s lemma is a deep and valuable statement in harmonic analysis; in the space
of functions with absolutely convergent Fourier series, elements that admit a multiplicative inverse
are called reversible. We present a method called pseudo-reversing for approximating the reverse
of functions that are not necessarily reversible.

Next, we make use of pseudo-reversing and define downsampling operators that enable us to con-
struct a multiscale pyramid transform, which is a tool for representing data on different scales in
a hierarchical fashion. Finally, we demonstrate the application of contrast enhancement via
multiscaling to manifold-valued data.

Wiener’s lemma

Let T = {z € C: |2| = 1} be the unit circle of the complex plane, and denote by A(T) the Banach
space consisting of all periodic functions f(t) = > 1c7 are” R with coefficients a € ¢1(Z). We
endow A(T) with the norm
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Wiener’s lemma. If f € A(T) and f(z) # 0 for all z € T, then also 1/f € A(T). That is,
1/f(t) =D 1ez br.e*™RL for some b € 01(Z).

Pseudo-reversing and polynomials

Let p(2) = anz" 4+ a,—12" 1 + - + a1z + ag be a polynomial of degree n € N. We assume that
the coefficients of p sum to 1 and rewrite p as

p(z) =Clp) | [(z—7),
rel

where A the set of all zeros of p including multiplicities. For some & > 0, the pseudo-reverse of
the polynomial p is defined by
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where C (pz) is a constant depending on £ determined by p;[(l) = 1.
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(a) Displacements of zeros. (b) Pseudo-reverse coefficients.

Proposition 1. For any polynomial p, the product pgp converges in norm to 1 as & — 0.

lim ||plp — 1|4 = 0.
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Proposition 2. If all zeros of the polynomial p are on the unit circle, then pg(z) converges uni-
formly to 1 as &€ — oo on every compact subset of C.

The reversibility condition & : A(T) — |1, oo] acting on a function f € A(T) is defined by
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with the convention k(f) = oo for functions with inf, | f(2)| = 0. It is evidently seen in [1] that if
f is reversible, positive and band limited, then the coefficients b of 1/f obey

b < CAFL K ez,

for some C' > 0 and 0 < A < 1 depending on x(f).

Corollary. Let p be a polynomial with n € N zeros all on the unit circle. Then

s(pg ) < (1+2/€)"

for any & > 0.

Pseudo-reversing refinement operators

Given a subdivision scheme S¢q with mask o, its reverse decimation operator is defined via
D~c =~ * (c | 2) for any sequence ¢, where v under the z-transform solves

a(z)y(z)=1, ze€C.
We hence look for a solution v € ¢{(Z).

To solve for v we rely on Wiener’s lemma; if a(z) has zeros on T then we use pseudo-reversing to
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get an approximation Ve of a

Multiscaling manifold values

Let M be a Riemannian manifold and denote by ck) c M sequences with indices associated with
the grid 2=k7. A multiscale transform of a sequence cl) yields a pyramid representation comprises
a coarse approximation cY) in addition to detail coefficients dw), (=1,...,J.

Sequence C<‘]> \decomposition\ Pyramid {(2(0); d(1>, d<2>, o d(J)}

reconstruction

The analysis and synthesis are done with a refinement operator Sqo and its reverse decimation Da.
In particular, the decomposition of a sequence c/) is defined iteratively via

=D dY =D s8aeY, =1,
while the inverse transform is defined via
) =StV add =1, J
The operations above denote the exponential mapping and its inverse associated to a point p € M.,

expy(v) =p@v and log,(q) = ¢S p.

Theoretical results

e [t was shown in [2| that if c(/) is sampled over an arc-length parametrization grid of a differentiable
curve in M, then the detail coeflicients generated by the multiscale decay geometrically.

e In case Sq is not reversible and we apply a pseudo-reverse decimation while multiscaling, the detail
coefficients decay still holds but with a controllable violation depending on &.

e Under certain mild assumptions, the inverse multiscale transform becomes stable.

Contrast enhancement application

The manifold of interest is M = SO(3). The subdivision scheme S¢ used in multiscaling has the
mask a = 1/12 (3,4, 3,4, 3,4, 3]. The even mask is not reversible, we used the pseudo-reverse
decimation operator D~ with § = 0.64.

Figure 2: Contrast enhancement of SO(3)-valued sequence. On the left, the original sequence of rotation matrices. On
the right, the enhanced rotation sequence. The largest 20% of the detail coefficients of each layer were enlarged by 40%.
The black arrows indicate the regions with the most drastic twists — highlighting the effect of the application.
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