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Introduction
Problem: Given two distributions, p and q, determine if they are the same using
a hypothesis test:

H0 : p = q vs. H1 : p ̸= q

Methods: Kernel MMD, Optimal Transport, Kolmogorov-Smirnov test,
Classifier two-sample tests

T(θ; p̂, q̂) =
∫

Rd
f (x, θ)d(p̂ − q̂)(x)

Main Idea and Motivation
Cheng et al (2022) large theoretical bounds for classifier neural network
two-sample tests do not match experiments.
Small networks can detect distribution differences quickly.
Statistical power: percent of (orange) two-sample statistics lie past 95th
percentile of associated permutation test curve (blue)

Figure
Two-layer ReLU network | 6000 training samples/distribution | 1000 test samples/distribution |

d = 20 | 1000 tests/cell | 100 permutation tests/test | x-axis: two-sample statistic

Hard Problem
Consider Gaussian mixture models P and Q given by
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where µh
1 = 0d, µh

2 = 0.5 ∗ 1d, ∆h
1 = 0.5, and ∆h

2 = −0.5.

Setup
Training Setup: Train a classifier f : Rd × Θ → R to distinguish between
empirical measures p̂ and q̂ from samples of p and q.

Classifier two-sample tests use a loss function:

L̂(θ) =
1
2

(∫
Rd
(f (x, θ)− 1)2p̂(x)dx +

∫
Rd
(f (x, θ) + 1)2q̂(x)dx

)
.

In population limit, loss function becomes

L(θ) =
1
2

∥∥∥∥f (·, θ)− p − q
p + q

(·)︸ ︷︷ ︸
≡f ∗(·)

∥∥∥∥2

L2(p+q)
.

Training Dynamics:

∂tû(x, t) = −1
2

(
Ex′∼p̂K̂t(x, x′)̂ep(x′, t) + Ex′∼q̂K̂t(x, x′)̂eq(x′, t)

)
Training dynamics depend on neural tangent kernel (NTK) matrix
Kt(x, x′) = ⟨∇θf (x, θ(t)),∇θf (x′, θ(t))⟩Θ and the errors êp and êq from p and q
distributions, respectively.

Theoretical Insights
Key Theorem: Assume that f ∗ has a “large enough energy/norm” on the first k
eigenfunctions of zero-time NTK K0. Given a desired detection level ϵ > 0 and
time-separation level Cϵ ≥ γ > 0, with high probability,

t+(ϵ)︸ ︷︷ ︸
min detection time

under null

− t−(ϵ)︸ ︷︷ ︸
min detection time

under first k
eigenfunctions assumption

≥ γ > 0.

Figure
Separation of two-sample statistics with NTK.

Result is for neural network, not NTK classifier.
Form of t(ϵ) has analytical form but depends on minimizing over subsets of
eigenfunctions of K0.
Just need a large enough “energy” on “lower” frequency NTK modes!
H0 =⇒ f ∗ has “high” frequency modes (sampled target function).
H1 =⇒ f ∗ has “low” frequency modes.

Experimental Results
Statistical Power: Neural networks outperform classical two-sample
tests in detecting small differences between distributions.

(a) Heatmap of statistical power
under f ∗ nontrivial projection
assumption.

(b) Heatmap of test error under
f ∗ nontrivial projection assump-
tion.

(c) Heatmap of train error under
f ∗ nontrivial projection assump-
tion.

(d) Heatmap of statistical power
under null hypothesis.

(e) Heatmap of test error under
null hypothesis.

(f) Heatmap of train error under
null hypothesis.

Statistical power of the “alternative” hypothesis case increases
much faster than the null hypothesis case.
The test training error for both cases increase as is expected from
initialization.
Oddly, training error decreases for both cases but this implies that
the statistical power.
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