Implicit Bias of Mirror Flow on Separable Data

Setup: logistic regression

$$\min_{\beta} L(\beta) = \sum_{i=1}^{n} \ln\left(1 + e^{-y_i \langle \beta, x_i \rangle}\right)$$

<u>Assumption</u>: linearly separable data \rightarrow the loss is minimised *at infinity*

 $\lim_{s \to \infty} L(s\beta^*) = 0 \quad \text{for } \beta^* \in S_{\epsilon}$

For a given algorithm, what is the directional limit $\lim_{t\to\infty} \frac{p_t}{\|\beta_t\|}$ of the iterates β_t ?

Many possible solutions in *S*: which one is preferred by the method ? Is it one with good generalization properties ? (*implicit regularization*)

The method: mirror flow

$$\dot{\beta}_t = -\nabla^2 \phi(\beta_t)^{-1} \nabla L(\beta_t)$$

<u>Motivation</u>: reparametrized problems $\beta = F(\theta)$. Under some conditions:

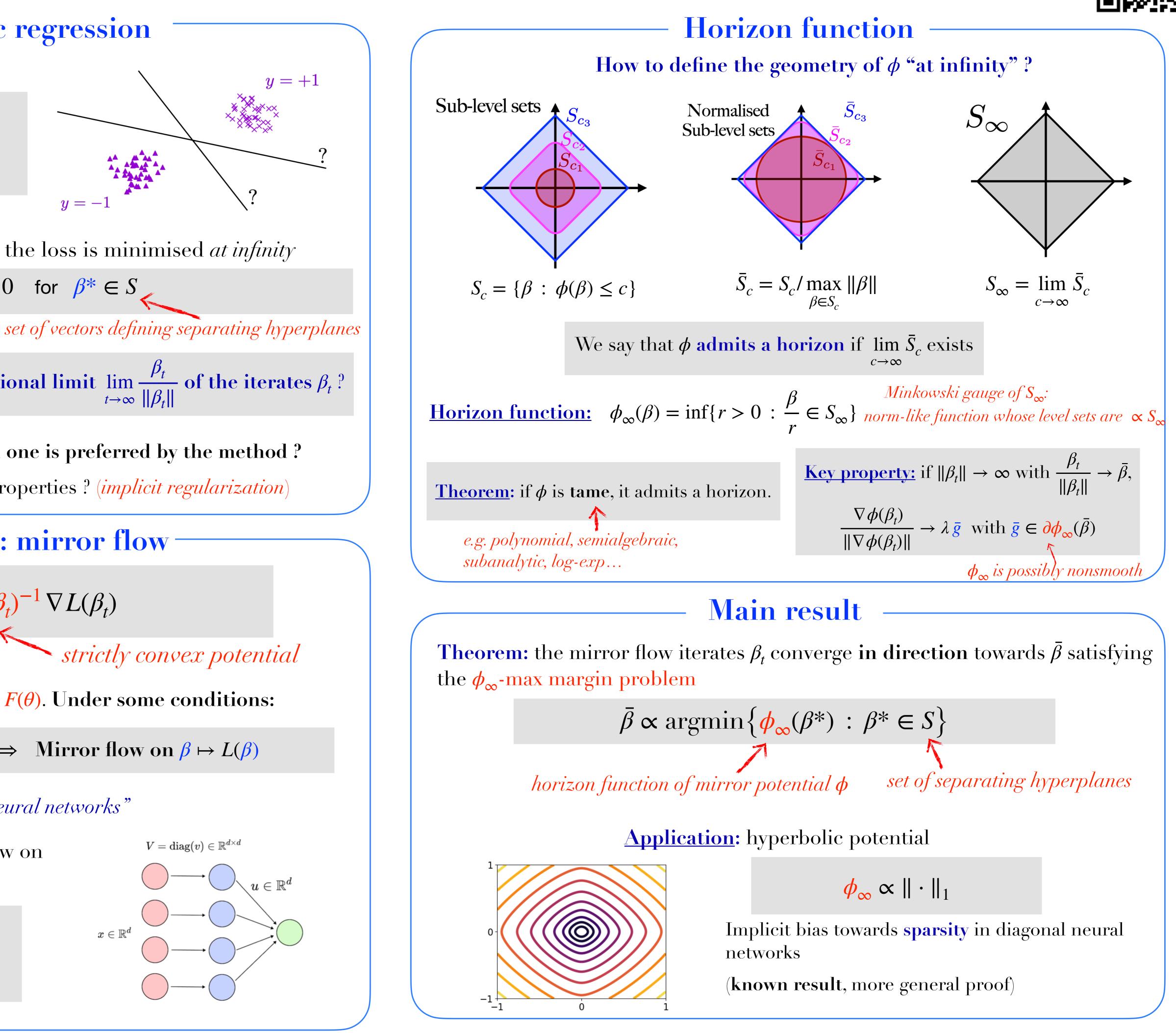
Gradient flow on $\theta \mapsto L(F(\theta)) \iff$ Mirror flow on $\beta \mapsto L(\beta)$

Example: $\beta = F(u, v) = u \odot v$ "diagonal neural networks"

Gradient flow on $L(u \odot v) \iff$ Mirror flow on $L(\beta)$ with hyperbolic potential

$$\phi(\beta) = \sum_{i=1}^d \left(\beta_i \operatorname{arcsinh}(\beta_i) - \sqrt{\beta_i^2 + 1}\right)$$

$$x\in \mathbb{R}^d$$



Scott Pesme (EPFL) Radu Dragomir (Télécom Paris) Nicolas Flammarion (EPFL)

$$\{ \phi_{\infty}(\beta^*) : \beta^* \in S \}$$
for potential ϕ set of separating hyperplanes