Statistical and Geometrical properties of the regularized kernel Kullback Leibler divergence

Clémentine Chazal¹ Anna Korba ¹ Francis Bach 2

CREST/ENSAE, IP Paris¹, INRIA, Paris²

Abstract

EXAMPLE PARIS

In this paper [\[2\]](#page-0-0) we study the properties of the kernel Kullback-Leibler divergence (KKL), introduced in [\[1\]](#page-0-1), with the aim of performing sampling by using the divergence as the objective of an optimisation problem. Our contributions are to propose a regularized version of the KKL, which is consistent for empirical measures and to derive a Wasserstein gradient of the KKL which has enabled to implement a sampling algorithm.

Problem: To approximate a target distribution q on \mathbb{R}^d , we solve the optimization problem

Introduction and motivations

The choice of *D* dictates the overall dynamics. In this project we selected the regularized Kernel Kullback Leibler Divergence.

$$
\min_{p \in \mathsf{X}(\mathbb{R}^d)} \mathcal{F}(p)
$$

where $\mathcal{F}(p) = D(p||q)$ with *D* a divergence or a distance.

Wasserstein gradient flow:

• If for any function $h: \mathbb{R}^d \to \mathbb{R}^d$, $\varepsilon > 0$, the expansion $\mathcal{F}((I_d + \varepsilon h)_{\#p}) = \mathcal{F}(p) + \varepsilon \langle \nabla_{W_2} \mathcal{F}(p), h \rangle_p + o(\varepsilon),$

holds, then $\nabla_{W_2} \mathcal{F}(p) : \mathbb{R}^d \to \mathbb{R}^d$ is the Wasserstein gradient of \mathcal{F} .

• Analogy between gradient flow and Wasserstein gradient flow $\sqrt{ }$ Gradient Flow

$$
\begin{cases}\nx(0) = x_0, \\
x'(t) = -\nabla f(x(t)). \\
\int p(0) = p_0, \\
\partial_t p(t) = -\nabla_{W_2} \mathcal{F}(p(t)).\n\end{cases}
$$

EXECT THEORY OF SUBARY SET ASSESS Where $p \nless q$ **, the regard** $\alpha \in]0,1[$ **as
** $\alpha(p \parallel q) := \text{KKL}(p \parallel (1-\alpha)q + \alpha p)$ **

Complementations**

External distributions

External distributions

External distributions
 \cdots , y_m and note **Regularized** KKL **for empirical distributions:** Let $x_1, \ldots, x_n \sim p, y_1, \ldots, y_m$ and note $\hat{p} = \frac{1}{n}$ *n* $\sum_{i=1}^n$ $\sum\limits_{i=1}^n \delta_{x_i}$ and $\widehat{q} = \frac{1}{n}$ *m* $\sum_{i=1}^{m}$ $\frac{m}{j=1}\delta_{y_j}.$ Regularized KKL admits a closed form expression $\text{KKL}_{\alpha}(\hat{p}||\hat{q}) = \text{Tr}$ $\sqrt{1}$ *n* $K_{\hat{p}}\log$ 1 *n* $K_{\hat{p}}$ \setminus $-$ Tr($I_{\alpha}K \log(K)$), $I_\alpha =$ $\sqrt{1}$ *α I* 0 0 0 å and $K =$ $\sqrt{2}$ *α n K^p* $\widehat{\rho}$ $\sqrt{\alpha(1-\alpha)}$ $\sqrt{\alpha(1-\alpha)}$ *nm Kp,* $\widehat{\rho}$ \hat{q} \hat{q} *nm Kq,* \hat{q} \hat{p} $\widehat{\rho}$ 1−*α m* $K_{\hat{q}}$ \hat{q} \setminus and $K_{\hat{p}} = (k(x_i, x_j))_{i=1}^n$ $\hat{h}_{i,j=1}^{n},\ K_{\hat{q}}=(k(y_{i},y_{j}))_{i,j}^{m}$ *i,j*=1 , *Kp,* $\widehat{\rho}$ *q* $_{\widehat{q}}=(k(x_{i}% ,\overline{z}_{i})\cdot r_{i}^{T}\cdot r_{i}^{T}\cdot r_{i}^{T}\cdot r_{i}^{T}% \cdot r_{i}^{T}\cdot r_{i$ *, yj*)) *n,m i,j*=1 .

Kernel Kullback Leibler divergence (KKL**)**

 $KKL_{\alpha}(p||q) \rightarrow$ *α*→0

• $\alpha \rightarrow \text{KKL}_{\alpha}(p||q)$ is decreasing.

- $KKL(p||q) := Tr[\sum_p (\log \sum_p \log \sum_q)]$
	-

$$
\frac{\frac{\alpha}{n}K_{\hat{p}}}{nm} \sqrt{\frac{\alpha(1-\alpha)}{nm}} K_{\hat{q},\hat{p}} \left\{ \frac{1-\alpha}{m} K_{\hat{q}} \right\}
$$
\n
$$
\sum_{i,j=1}^{m} K_{\hat{p},\hat{q}} = (k(x_i, y_j))_{i,j=1}^{n,m}.
$$

 $KKL(p||q)$.

Kernel Kullback Leibler divergence (KKL): Given H a RKHS with reproducing kernel *k*. For $p \ll q$, the KKL divergence is

where

 $\Sigma_p =$ Z $k(.,x)k(.,x)*dp(x).$

If k^2 and $\forall x \in \mathbb{R}^d$, $k(x, x) = 1$ then $KKL(p||q) = 0 \Leftrightarrow p = q.$

Regularized KKL : To handle cases where $p \not\ll q$, the regularized KKL is defined for $\alpha \in]0,1[$ as

 $KKL_{\alpha}(p || q) := KKL(p || (1 - \alpha)q + \alpha p)$

n $\sum_{i=1}^{n}$ $\sum_{i=1}^n \delta_x$ *t i* $, \gamma > 0, t = 1, ..., T.$

Closed form for regularized KKL **on empirical distributions**

Wasserstein gradient for empirical measures: $\nabla_{W_2} \mathcal{F}(\hat{p})(x) = \nabla_x \left(S(x)^T g(K_{\hat{p}}) S(x) - T(x)^T g(K) T(x) - T(x)^T A T(x) \right)$ where $S(x) = \left(\frac{1}{\sqrt{x}}\right)^2$ $\frac{1}{n}k(x,x_i))_i, T(x) = ((\sqrt{\frac{\alpha}{n}})$ $\frac{\overline{\alpha}}{n}k(x,x_i))_i,$ ($\sqrt{\frac{1-\alpha}{2}}$ $\frac{-\alpha}{m}k(x,y_j))_j)$ and *A* is a matrix depending on the eigenvalues and eigenvectors of *K*.

Theorical properties of the regularized KKL

• The regularized KKL is consistant to the true KKL for $p \ll q$ when $\alpha \rightarrow 0$:

• Consistency of the regularized KKL for empirical measures: $\mathbb{E}|\text{KKL}_{\alpha}(\hat{p}||\hat{q}) - \text{KKL}_{\alpha}(p||q)| \leq C_{p,\alpha}$ log *n* √ *m* ∧ *n* $+ C'_i$ *p,α* $\log^2 n$ *m* ∧ *n*

.

The following experiments illustrate the previous theorical results.

Sampling experiments

Now we fix \hat{q} , we optimize \hat{p} by a discretisation of the Wasserstein gradient flow of the regularized KKL. **Descent scheme:** Let $\hat{p}_t = \frac{1}{n}$

$$
\bullet x_{t+1}^i = x_t^i - \gamma \nabla_{W_2} \mathcal{F}(\hat{p}_t)(x_t^i)
$$

$$
\bullet \hat{p}_{t+1} = (I_d - \gamma \nabla_{W_2} \mathcal{F}(\hat{p}_t))_{\#\hat{p}}
$$

Experiments:

MMD, KALE and KKL flow for 3 rings target.

target

Shape transfer

Reference

[1] Francis Bach. Information theory with kernel methods. *IEEE Transactions on*

- *Information Theory*, 69(2):752–775, 2022.
-

[2] Clémentine Chazal, Anna Korba, and Francis Bach. Statistical and geometrical properties of regularized kernel kullback-leibler divergence. *NeurIPS*, 2024.