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Abstract

In this paper [2] we study the properties of the kernel Kullback-
Leibler divergence (KKL), introduced in [1], with the aim of per-
forming sampling by using the divergence as the objective of an
optimisation problem. Our contributions are to propose a regular-
ized version of the KKL, which is consistent for empirical measures
and to derive a Wasserstein gradient of the KKL which has enabled
to implement a sampling algorithm.

Introduction and motivations

Problem: To approximate a target distribution q on Rd, we solve the
optimization problem

min
p∈×(Rd)

F(p)

where F(p) = D(p||q) with D a divergence or a distance.

Wasserstein gradient flow:
• If for any function h : Rd → Rd, ε > 0, the expansion

F((Id + εh)#p) = F(p) + ε⟨∇W2F(p), h⟩p + o(ε),
holds, then ∇W2F(p) : Rd → Rd is the Wasserstein gradient of F .

• Analogy between gradient flow and Wasserstein gradient flow
Gradient Flow

x(0) = x0,

x′(t) = −∇f (x(t)).
Wasserstein Gradient Flow

p(0) = p0,

∂tp(t) = −∇W2F(p(t)).

The choice of D dictates the overall dynamics. In this project we
selected the regularized Kernel Kullback Leibler Divergence.

Kernel Kullback Leibler divergence (KKL)

Kernel Kullback Leibler divergence (KKL): Given H a
RKHS with reproducing kernel k. For p ≪ q, the KKL divergence
is

KKL(p||q) := Tr[Σp(log Σp − log Σq)]

where
Σp =

∫
k(., x)k(., x)∗dp(x).

If k2 and ∀x ∈ Rd, k(x, x) = 1 then
KKL(p||q) = 0 ⇔ p = q.

Regularized KKL : To handle cases where p ̸≪ q, the regularized
KKL is defined for α ∈]0, 1[ as

KKLα(p ∥ q) := KKL(p ∥ (1 − α)q + αp)

Closed form for regularized KKL on empirical
distributions

Regularized KKL for empirical distributions: Let
x1, . . . , xn ∼ p, y1, . . . , ym and note p̂ = 1

nΣn
i=1δxi

and q̂ = 1
mΣm

j=1δyj
.

Regularized KKL admits a closed form expression

KKLα(p̂||q̂) = Tr
Å1

n
Kp̂ log 1

n
Kp̂

ã
− Tr (IαK log(K)) ,

Iα =
Ç

1
αI 0
0 0

å
and K =

Ñ
α
nKp̂

»
α(1−α)

nm Kp̂,q̂»
α(1−α)

nm Kq̂,p̂
1−α
m Kq̂

é
and Kp̂ = (k(xi, xj))n

i,j=1, Kq̂ = (k(yi, yj))m
i,j=1, Kp̂,q̂ = (k(xi, yj))n,m

i,j=1.

Wasserstein gradient for empirical measures:
∇W2F(p̂)(x) = ∇x

(
S(x)Tg(Kp̂)S(x) − T (x)Tg(K)T (x) − T (x)TAT (x)

)
where S(x) = ( 1√

nk(x, xi))i, T (x) = ((
√

α
nk(x, xi))i, (

»
1−α
m k(x, yj))j)

and A is a matrix depending on the eigenvalues and eigenvectors of K.

Theorical properties of the regularized KKL

• The regularized KKL is consistant to the true KKL for p ≪ q when
α → 0:

KKLα(p||q) →
α→0

KKL(p||q).

• α → KKLα(p||q) is decreasing.

• Consistency of the regularized KKL for empirical measures:

E|KKLα(p̂||q̂) − KKLα(p||q)|⩽ Cp,α
log n√
m ∧ n

+ C ′
p,α

log2 n

m ∧ n
.

The following experiments illustrate the previous theorical results.
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Sampling experiments

Now we fix q̂, we optimize p̂ by a discretisation of the Wasserstein
gradient flow of the regularized KKL.
Descent scheme: Let p̂t = 1

n

∑n
i=1 δxt

i
, γ > 0, t = 1, ..., T .

• xi
t+1 = xi

t − γ∇W2F(p̂t)(xi
t)

• p̂t+1 = (Id − γ∇W2F(p̂t))#p̂
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