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Lipschitz Networks

fiX — Y V(x1,x) € X2 dy(f(x), f(x2)) < Kdx(x1, x0)

Goal

Neural networks are learned functions fy from R” to R?, can we design
architectures which yield guaranteed K-Lipschitz functions?
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Lipschitz Networks

fiX — Y V(x1,x) € X2 dy(f(x), f(x2)) < Kdx(x1, x0)

Goal

Neural networks are learned functions fy from R” to R?, can we design
architectures which yield guaranteed K-Lipschitz functions?

With a small K:
@ Better generalization
@ Improved adversarial robustness
o Greater interpretability
@ Wasserstein distance computation (Peyré & Cuturi 2018).
°

Issue: Lipschitz guarantee without sacrificing expressive power.
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Notations

@ x input, y output

o L layers

e [t layer: dimension n;, W, € R"*"—1

e zy=Whi_1+ by, hy = ¢(z)

oy=2z

e C/(X,R) space of all 1-Lipschitz functions mapping (X, dx) to (R, L,)
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A first result [Cem 2018]

Composition J

Composition of two 1-Lipschitz functions is 1-Lipschitz.
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A first result [Cem 2018]

Composition

Composition of two 1-Lipschitz functions is 1-Lipschitz.

Consequence

Compose 1-Lipschitz affine transform (||Wx||, < [|x||,Vx) and 1 - Lipschitz
activations.

@ RelU, tanh, maxout are 1-Lipschitz (if scaled appropriately)!
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So... Are we done?

Theorem

Expressivity [Cem 2018] Consider a neural net f : R" — R, built with |W|, <1
and 1-Lipschitz elementwise monotonic activation functions. If |V f||2 = 1 almost
everywhere then f is linear
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So... Are we done?

Theorem

Expressivity [Cem 2018] Consider a neural net f : R" — R, built with |W|, <1
and 1-Lipschitz elementwise monotonic activation functions. If |V f||2 = 1 almost
everywhere then f is linear

@ RelLU, sigmoid, tanh?
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Semi definite Programming Layer [Araujo et al. 2019]

SDPL
Residual layer with parameters W € R<*k g c RX, b € R¥

X x—=2WT 1o(WTx + b)

with:
K

T=> [(WTW);exp(qi — g))|
j=1

and o the RelLU activation function.

o W weight matrices are square (0-padding on the input)
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Semi definite Programming Layer [Araujo et al

SDPL
Residual layer with parameters W € R<*k g c RX, b € R¥

X x—=2WT 1o(WTx + b)

with:
K

T=> [(WTW);exp(qi — g))|
j=1

and o the RelLU activation function.

. 2019]

o W weight matrices are square (0-padding on the input)

o Output layer: affine layer

WTX

X4 ——+b
[[wll2

Lipschitz networks
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Wasserstein Distance estimation

Kantorovitch duality

WP, P) = sup  Exvp[f(x)] = Exvp,[f(x)]
fEC(X,R)

@ Wasserstein GAN: Lischitz network for the discriminator by weight clipping
[Arjovsky et al. 2017]

Lwean (G, D) = Exnyig[D(X)] = Exper [D(x)]

@ Kantorovich-Rubinstein dual formulation: for the optimal D, G tries to
minimize Lwean o< Wi(fi6, fhrer)

Lipschitz networks
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Wasserstein GAN: Leaky RELU vs MaxMin




Application to signed distance field [Coiffier 2024]

@ Set of points x; with known distances d;

@ Naive approach: combining 1-lipschitz network with a fitting loss:
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Application to signed distance field [Coiffier 2024]

@ Set of points x; with known distances d;

@ Naive approach: combining 1-lipschitz network with a fitting loss:
underestimates the signed distance field + not robust to imperfect data.

Hinge-Kantorovich-Rubinstein loss [Serrurier 2021]

Likr = LKR + AMpinge

with:
Lkr = Z —sign(d;)ug(x;)

i

hinge = Z max(0, m — sign(d;)u(x;))

@ Under mild assumptions, proof that this converges to an approximation of the
signed distance field.
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Application to Signed distance field estimation

Input. Sampled
Geometry Point Dataset

Lipschitz networks

> —_—
Surface/Other :
Partition min Lhkk
Unsigned
Distance Field

e — : >
Tnside/Outside min Lyxpr
Partition

Signed
Distance Field

Reconstructed Level Sets (Marching Cubes)

—0.02

0.01 0.02

[Coiffier 2024]
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Application to Signed distance field estimation

W

R -

Input point clou

d

[Coiffier 2024]
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Application to Signed distance field estimation

bbb

Elephant —0.05
Birdcage ~0.02 0.02 0.1 3
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Leverage Neural Implicits with Shape deformation

[Novello 2023]

@ When a surface moves its neural representation evolves with it
@ Can we link the evolution of the Neural Implicit with the vector field of the
deformation?
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Leverage Neural Implicits with Shape deformation

[Novello 2023]

@ When a surface moves its neural representation evolves with it
@ Can we link the evolution of the Neural Implicit with the vector field of the

deformation?
@ Very old topic (see e.g. [Osher 2000])

15/99
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The Level Set Equation (LSE)

e F(x,t) temporal neural implicit
e V(x,t) Vector Field governing the deformation in ambient space.
@ For all t: shape = 0 level set.

OF (x, t)
ot

+(V(x,t),ViF(x,t)) =0
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Mixing the LSE with Neural Networks

@ As before model F by a neural network Fy which takes as input x and t and
outputs the signed distance function at x at time t.

Classical Losses

@ Shape Data attachment loss

Z 1Fo(xi, 0)I1 + [I1 = (ni, VFo(xi, 0))

@ Ambient Data attachment loss

> IIFa(y;, 0) — gtsdf ()
j

@ Eikonal loss

Ex[l1 = IVFa(x, £)ll]]

@ We add the LSE loss depending on the application case.
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Known Vector Fields

[Novello 2023]

LSE Loss

Luse(8) = Egeoll 222D 4 (v 01, V)]
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Mean Curvature Motion

[Novello 2023]

@ Points evolve at speed H(x, t) in direction N(x,t) (normal to the level set)
e H(p,t) = divN
° V(p7 t) = _H(p7 t)N(X, t)

LSE Loss

aFg(X, t)

e+ (VFolx, £), =H(p, )|V Fo(x, 1) )]

L15e(0) = E(x )]l
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Interpolation between shapes

[Novello 2023]

@ Vector field is not known.
@ Two known distance fields fy and f;
@ Possible surrogate:
‘7’%9()(, t)
\/(X7 t) = —(fi(X) — FQ(X, t))m

and F(x,0) = fo(x).
20/99
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Interpolation between shapes (2)

=
=
e

LSE Loss

Luse() = B [| 255D — () ~ Folx, )19l ) ) J
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© Learning Implicit Representations

Learning Implicit Representations 22/99



Learning Occupancy functions [Chen 2019, Mescheder 2020]

2048

1024

256
128

Fealure vector D

st casoates [l
3

131 128

1
—_— | |—| |—| |— —)H"—}D

Concatenate
—3 Copy and Concatenate
—> FC, Leaky ReLU
===> FC, Sigmoid

[Chen 2019]

@ Use an encoder (e.g. PointNet [Qi 2017]) to get the shape latent description
a.
@ Train a neural network to compute the occupancy network of a shape given

(x,y,z,q).
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Data and Losses

A set of N shapes S; with points y; for which the occupancy is known.

Training loss:
TR
@ZZﬁ up(Yik, i), Oik)
i=1 k=1

1
L(ug (i, i), o) = ue(yix, i) — 0|
Chen et al. [2019] adds a sampling density weight

Mescheder et al. [2020] adds a KL divergence between a latent description
prior and the encoder distribution.
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Results and Comparisons

(a) 3DGAN P ﬂ (d) CNN-GAN
(b) PC-GAN : (¢) IM-GAN (sampled at 64*)

o ﬁ:ﬁf o7
PP T PP

[Chen 2019]
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Results - single view reconstruction
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DeepSDF

| dddididigi

LLeveLN

@ Represent an entire class of shapes in an implicit way

/
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Training

xvz) [ ] sDF Code E D || sDF
(x,y,2)

(b) Coded Shape DeepSDF

[Park 2019]

(a) Single Shape DeepSDF

Single shape version
L(fy(), 5) = |clamp(fy, 5) — clamp(x, 5)|

with clamp(x, §) = min(d, max(—4, x)), s isovalue.

28/99
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Training

xvz) [ ] sDF Code || sDF
(xy,z)
(b) Coded Shape DeepSDF

[Park 2019]

(a) Single Shape DeepSDF

Latent shape version
fo(zi, x) = SDFI(X)

Model several distance fields with a single network (factor in shape space)

20/99
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Auto-decoder

Input Output Output
Backprogate
S Code

[ .ﬁ

\\
— ~ Codes

(a) Auto-encoder (b) Auto-decoder

[Park 2019]

@ Usually: train an auto-encoder + throw away the encoder.
@ Here: avoid spending computational resources on encoder.

@ Handle shapes of different number of samples.

30/99
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Model for the auto-decoder

e Data: N shapes X; = {(x;,s;),s; = SDF'(x;)}.

@ Latent code z;, prior p(z;) = centered Gaussian with spherical covariance.

po(zi|Xi) = p(z) Hpe(stZhXj)

@ Reformulation:
p(sjlzi, x;) = exp(—L(fo(zi, xj), sj)) with fy an MLP.
Training

N K
. 1
argmingyn, > D L(fzir %), 5) + ~5llzil13

i=1 j=1
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Network architecture

512
Latent Vector D 1
FC FC FC
(xy.2) |:] D D D U D |:| D l:l

[park 2019]

Learning Implicit Representations
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results

T

— i -

wRme
o i

),’/'/.J g » ‘

(a) Input Depth (b) Completion (ours) (¢) Second View (ours) (d) Ground truth (e) 3D-EPN

[park 2019]

@ solve for the shape code from partial shapes and reconstruct

Learning Implicit Representations
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results

(a) No noise

(b) a = 0.01

(&) o = 0.02 (d) o =0.03

©a=005

[park 2019]

Learning Implicit Representations
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e Generating Shapes as pointsets
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Normalizing Flows

@ "Synthesize a shape resembling a set of shapes"
@ More generally synthesize a density of points resembling a density of points.

o Generative Methods: Many are limited in the number of points
(PointNet-based) or work in the ambient space (Nerf-like - more recent).
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Setting

Idea
o A family of shapes = a distribution of variables in a shape space.
@ A shape = a distribution of points

Use the same process to sample a point on the surface or to sample a distribution
from the set of distributions.

Parameterization

Instead of parameterizing the distribution of samples, model it as a invertible
transformation of samples through Normalizing Flows. (samples = shapes OR
points).
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Normalizing Flow [Rezende 2015]

Normalizing Flow

A series of invertible mapping transforming an initial distribution into another one.

y~P(y), x="fhofp_10---0f(y)

(x output variable, y latent variable, f; invertible mappings)

° vk = filyk-1)iyo = y:

O |-
P(yi) = P(yk-1)| det 5 k| '

Final Formula

log P(x) = log P(y Zlog } det |_1

In practice f; modeled by a neural network (Jacobian easy to compute)
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Continuous Normalizing Flow [Yang 2020]

CNF

Instead of a series of invertible mapping, use a continuous time dynamic:

240 _ (3.1

CNF model for P(x) with P(y) prior

=)+ | " H(8), et 5 y(t0) ~ P(y)

log P(x) = log P(y(to)) — /t ' Tr(%{t))dt

f is a neural network, and an ODE solver is used to compute CNF gradients.
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Final loss

L(X, 9,1,0) = Eq,(z1x)[l0g Po(X|2)] — Dk (Qp(2]X)||Py(2))
= £, (z1x)llog Po(X[2)] + Eq, (z1x) [log Py (2)] + H[Qy(2|X)]

L prior L reconstruction L entropy

@ Lpior: the shape code z is generated following Fdjl (shape should have a
high probability under the prior modeled by a CNF).
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Final loss

L(X, 9,1,0) = Eq,(z1x)[l0g Po(X|2)] — Dk (Qp(2]X)||Py(2))
= £, (z1x)llog Po(X[2)] + Eq, (z1x) [log Py (2)] + H[Qy(2|X)]

L prior L reconstruction L entropy

@ Lpior: the shape code z is generated following Fdjl (shape should have a
high probability under the prior modeled by a CNF).

@ L econstruction: X is likely to be reconstructed from z following Ge_l.

@ L.n: checks that z refers to X.
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Full Network

AN

e A, T

£ Qu2IX)

(a) Training (Auto-encoding) (a) Test (Sampling)

E(X7 (?b? w? 0)
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Breaking it into pieces

AN

o N T

(5100~ 0.1

(a) Training (Auto-encoding) (a) Test (Sampling)

‘Cent(X7 ¢7 T/’)

Generating Shapes as pointsets
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Breaking it into pieces

AN

o N T

(a) Training (Auto-encoding) (a) Test (Sampling)

Ereconstruction(Xy 9, (rb)
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Breaking it into pieces

2~ N, T)

(a) Training (Auto-encoding) (a) Test (Sampling)

£prior(Xa ¢)
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Sampling

i N, T

(a) Training (Auto-encoding) (@) Test (Sampling)

Generate w (Gaussian), use CNF F,, to get z. Use Gy(.; z) to sample points
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Optimization

@ Encoder Q,(z|x): Pointnet 1D convolutions + 2layer-mlp converting into a
Dz-dimensional representation.
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Optimization

@ Encoder Q,(z|x): Pointnet 1D convolutions + 2layer-mlp converting into a
Dz-dimensional representation.

@ CNF Prior follows Ffjord [Grathwhohl 2018]. Models f;, governing the PDE
% = fy(y(t), t) with a network (using Concatsquash layer).
@ CNF Decoder uses Conditional concatsquash layers

@ ODE-compatible backprop: Backpropagating through ODE solutions with the
adjoint Method [Chen 2018] (in practice: DOPRI method Dormand & Prince
1980, RKDP).
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Results
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Latent space
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Generating Shapes as pointsets
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P

Figure 6: Visualization of latent space.
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Diffusion-based shape synthesis [LION, Zeng 2022]

[Zeng 2022]

eIt ity
SIS I8 i ¥ by
@ No grid, non-euclidean data — extremely hard.

@ Based on denoising diffusion in latent space and in ambient space.
@ Point set structured through a voxel grid Point-Voxel CNN [Liu 2019]
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Convolution on point clouds via voxel proxy [Liu 19]

(a) Voxel-Based Feature Aggregation (Coarse-Grained)

Voxelize Convolve Devoxelize
—_ _ e —

. e o

1 Normalize l Fuse

Multi-Layer Perceptron (MLP) -

(b) Point-Based Feature Transformation (Fine-Grained)

o Features per points but aggregated per voxel (coarse grained level)

@ Per point feature (fine grained level)

Generating Shapes as pointsets
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Results

1. Encode into Latent Points and
Generate Different Encodings by
Diffuse-Denoise

3. Reconstruct

2. Reconstruct
Clean Point Clouds

Coarse Voxel Input

Latent Points

[Zeng 2022]

Generated Point Clouds Generated Meshes

Detail variation from a coarse shape embedding.
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Outline

@ Other generative Models for Shape Synthesis
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An example for generating shapes [GRASS, Li et al. 2017]

g m ,
M‘T‘ﬂ Ko ‘W‘M" - \:\\\‘\ \
‘uh L \w‘“u[\“‘\‘ D \\,‘\A

@ Input data: set of shapes with a semantic segmentation into parts.
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Algorithm

@ Step 1: Learn a code representing an arrangement of boxes.

@ Step 2: Train a GAN for generating a new structure

@ Step 3: Use voxelization in each box to synthesize the local geometry.

sl woclimon 30 Taiming Testing 5,
wo o =
root code random noise , ‘ ‘
Q. O o Q.
| o of | BB oo |l 090 L —
°o%0 o5 °) o oo g e m—
H o 0° |IH L o

generated

generated waiing
RVNN encoder ~ RVNN decoder Generator *"““"** Discriminator parts

part code part code
(a) RYNN auto-encoder pre-training (b) RYNN-GAN training

[Li et al. 2017

(c) Volumetric part geometry synthesis
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Step 1: Learn a code
Key idea

Shape components are commonly arranged or perceived to be arranged
hierarchically. Goal of the code: encode this hierarchy of parts

@ Recursive auto-encoder for binary trees: encode the structure into a code;
decode and compare the recovered structure.

@ Recursively merge parts that are either adjacent or symmetric (rotational,
translational, reflectional)

e Training: generate plausible hierarchies for each shape (sample the space of
plausible part groupings)

@ Adjacency and Symmetry encoder/decoder (transform a code into another
encodes the symmetry and the generator)

o Additionally: Box encoder/Node classifier
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Learned hierarchies

[Li et al. 2017)

In a nutshell
Transform a binary tree into a meaningful hierarchy while minimizing the loss

(sum of bounding boxes distances)
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Application: interpolation

[Li et al. 2017)
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Application: shape query
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MeshGPT [Siddiqi et al. 2023]

L~ ARy Ng

MeshGPT: Autoregressive Mesh Generation

- s)
. .
Vobularyl’.eamin | ‘ j l h N -

@ Following text generation idea: generate a mesh as a sequence of triangles

Embedding
Codebook

GPT-Style Transformer

[Siddiqi et al. 2023]
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MeshGPT - Principle

@ Learns a vocabulary of latent representations
of faces

@ Uses these latent representations as tokens

o GPT-like transformer: predicts next token
from previous tokens auto-regressively.

@ 1D Resnet decodes the latent representation
sequences into triangles

IF1% €,y

Input Mesh

Reconstructed
Mieeh
=
;k/

c
D, 3xpxS

Sum
Residual g Reshape.
Features

Residual Face Quantization Module

[Siddiqi et al. 2023]

Result
Resuls is a triangle soup: needs post-processing to turn it into a watertight mesh
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MeshGPT - Results

il e

AtlasNet BSPNet GET3D GET3D-QEM

Polygen Ours

[Siddigi et al. 2023]

Other generative Models for Shape Synthesis
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MeshGPT - Results
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Outline

@ Novel View Synthesis
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Neural Radiance Field (Nerf [Mildenhall et al. 2020])

Input [mages Optimize NeRF Render new views
LR R R
(SRt e X T 3]
CEEE TR R
EFENA RSB
IR IEFEELEN
X LR T L S E R
Fiededntred

o Goal: Generate a new view from a set of views

o Cameras are calibrated (ie we know their positions, orientations and intrinsic
parameters)
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Principle
Neural network takes as input a 3D coordinate and viewing direction and outputs
the volume density and view-dependent emitted radiance at this location and

direction.

Fe(X’.y)Z7 07 QS) = (R7 G7 B7 O.)

@ Architecture MLP with RelLU activations.
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Rendering from the volume

Color of a ray
Ray r(t) = o+ td

c(r) = /t " T(#)o(r(£) C(r(t), d)dt

with:

T(t) = exp—/t o(r(s))ds

@ t,, tr: near and far bounds
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Rendering from the volume

Color of a ray
Ray r(t) = o+ td

C(r)= /t f T(t)o(r(t))C(r(t),d)dt
with:

T(t) = exp—/t o(r(s))ds

@ t,, tr: near and far bounds

e T: attenuation of the ray so far (Beer's law)
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Integral approximation

o Stratified sampling along the ray of positions t;
Discrete Version
C(r) = Ti(1 — exp(—o(t;)l|tisr — ti]])) C(r7)

with

Ti=2 exp(—o(t)l|tis1 — ti])
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Training

5D Input Output Volume Rendering
Position + Direction Color + Density Rendering Loss
(x3z.0.4)— — (RGBo)
K |:|[|I] | _\ AL Ray \ /—\
_ K2 | - ||

oG\T
)‘” Jm) /T‘.fgt 2
2

lﬁ\ Diesanee

b) (c) (d)

[Mildenhall et al. 2020]
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Positional Encoding

Ground Truth Complete Model No View Dependence No Positional Encoding

@ Add a non-learnable layer to embed the position in a higher dimensional
space:

(cos x, cos 2x, - - - , cos Nx, cos y, cos 2y, - - - , cos Ny, cos z, cos 2z, - - -, cos Nz)

@ Intuition: Frequency decomposition, allows to get high frequency information

Novel View Synthesis 70/99



View-dependency

Ground Trut h Complpl@ Model No View Dep@ndence No Positional hncorlmg

@ View-dependent radiance is what allows to capture mirror reflections
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Results

Ground Truth  NeRF (ours) LLFF [28]

Video: https://www.matthewtancik.com/nerf
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Results

Ground Truth  NeRF (ours) LLFF [28]

Video: https://www.matthewtancik.com/nerf

Training time

The optimization for a single scene typically take around 100- 300k iterations to
converge on a single NVIDIA V100 GPU (about 1-2 days).
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Results

Video: https://www.matthewtancik.com/nerf

Training time

The optimization for a single scene typically take around 100- 300k iterations to
converge on a single NVIDIA V100 GPU (about 1-2 days). (Faster variants
released since: Instant NGP [Mueller 2022])

Novel View Synthesis 72/99
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After Nerf... Plenoxels [Yu et al. 2021]

Plenoxel

NeRF

PSNR

20

100x Faster Convergence

—— Plenoxel
—— NeRF

20

30 40 50

Training Time (minutes)

Novel View Synthesis

60

[Yu et al. 2021]

@ No neural net

o (way) faster than nerf
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Method

Spherical
. 0 S Harmonics

Predicted
Color

ad
Ray Distance

¢) Volumetric Rendering

. . .

N Ve minimize Lyecon + ALy
R u
o] - o0

a) Sparse Voxel Grid

Training
Image

b) Trilinear Interpolation d) Optimization

Novel View Synthesis

[Vu et al. 2021]
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Spherical harmonics

(Wikipedia)

Image by Inigo Quilez

Y"(0. ) = ™ P (cos(0))

@ P Associated Legendre polynomial
/

PI(x) = (=1)"(1 = x*)"2 Y (k f!m)!xk_m <ll<> ((/ ' k/_ 1)/2>

k=m
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Color and spherical harmonics

@ Spherical harmonics of degree 2 — 9 coefficients per color channel
@ Color C(r) = sum of the spherical harmonics evaluated in the ray direction

o Estimation on the vertices of a sparse grid and linear interpolation per grid
cell.
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Losses

@ Optimization on SH coefficients and density minimizing the Loss:

Acrecon + AL TV

@ Reconstruction Loss:
recon Z || C é ||2

rer

@ TV Loss:

= Y D IViSHill2 + [Viol2

VEV deD i

(V and R stochastic samplings of the grid vertices and rays)

Novel View Synthesis
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Results

[u et al. 2021]

Ground Truth NeRF++[ ] Plenoxels
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Results

(d) Ground Truth (e) JAXNeRF V (f) Plenoxels

[Yu et al. 2021]

@ Insight: What makes nerf work is not the neural net but Differentiable
rendering.
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Gaussian Splatting

Build on point set Splatting [Zwicker 2001]
Each point is the center of a small 3D Gaussian on it,

Each 3D Gaussian is represented by a quaternion and 3 scaling factors.

Gaussian splat = gaussian parameters + opacity + Spherical harmonics
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Overview

Projection

\ Adaptive

Density Control

Differentiable | —
Tile Rasterizer | ——

— | Initialization Image

N

SfM Points 3D Gaussians

‘ —» Operation Flow  —p Gradient Flow

[Kerble 2023]
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Structure from Motion (SfM)

[Maiteng - Wikipedia]

o Cameras calibrated by Structure from Motion [Snavely 2006]
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Rendering a Gaussian splat scene

@ Projective space Gaussian giving the color.
G(x)=exp—xTE 1x = G'(x) =exp—x"%' 'x

@ Viewing direction W ¥’ = JWEZWT
@ J jacobian of the affine approx of the projective transformation:
f/z 0  —fit/z>

J=| 0 f/z —ft/2?
0 0 0
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Rasterizer

@ Split screen in tiles
o Cull 3d Gaussians against view frustrum
o Each tile = depth sorted Gaussians

@ When saturation level is reached: stop
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Creating or Destroying Geometry

Ground Truth Ours Mip-NeRF360 InstantNGP Plenoxels

imcredits[Kerble 2023]
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Number of iterations

A 3 %
‘n‘:

A dl. 0y
30K iterationslé

imcredits[Kerble 2023]
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Conclusion

@ Geometric data synthesis is hard
o Nerf/Gaussian Splat: do we need to compute the geometry or only render?

@ Multi-resolution, levels of details for neural implicits.
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Outline

@ Bonus (if time permits) Querying Neural implicits

Bonus (if time permits) Querying Neural implicits 88/99



Projecting points on the surface [Yifan 2021]

vanilla optimization with
optimization iso-points

y4

input

@ Sample points on a neural implicit

@ Use them to improve robustness and
accuracy

[Yifan 2021]

Bonus (if time permits) Querying Neural implicits 89/99



Projection on the surface

_ e sampling,
s=£(p; @ —=
r f‘(p ) regularization
project resample upsample
§ 4
| o=
implicit surface S, explicit surface ¢, E

o Starting from a point gg in R3 project it on the surface
o Newton lterations: i1 = qx — J7 (qk)fo(qx) with J (qi) = HJf(qk)Hsz(Qk)

@ For nonsmooth fields, set an upper threshold for the displacement magnitude

Bonus (if time permits) Querying Neural implicits 920/99



Uniform resampling

;0) sampling ,
¢ regularization

project resample upsample

[Yifan 2021]

implicit surface S, explicit surface @,

@ Move the points away from dense areas § < § — ar

@ « step size

o r=7> sen w(Gi )

Bonus (if time permits) Querying Neural implicits 91/99



Upsampling

:0) sampling ,

s=
r P54 regularization
project resample upsample
¢ 4
) =
implicit surface S, explicit surface @, E
=

@ Move the points away from the edges (Edge-away resampling [Huang 2011])

@ Each point is :
> attracted to points that have a similar normal
» repulsed from dense areas.

@ Upsampled points are reprojected on the surface

Bonus (if time permits) Querying Neural implicits 92/99



Application to INR fitting regularization

baseline  screened Poisson  points2surf

o Warmup training (300 iterations)
o Extract isopoints + add isopoints to data points

o Update the isopoints every 1000 iterations

Bonus (if time permits) Querying Neural implicits

[Yifan 2021]
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Arithmetic Queries [Sharp 2022]

[Sharp 2022]

SDF sphere tracing general interval tracing

@ fy a neural implicit Not necessarily a signed distance field.
@ Sphere tracing for SDF, interval arithmetic for general implicit field.

@ Goal: adapt interval arithmetic for neural implicits.

Bonus (if time permits) Querying Neural implicits 924/99



Affine arithmetic [Comba and Stolfi 1993]

affine arithmetic

interval arithmetic

y— f(x)

[Sharp 2022]

@ Interval arithmetic gives loose bounds

o Affine arithmetic: tracks affine coefficients through computation

@ Similar to forward auto-diff: linear operations, nonlinear operations by
linearization (adds affine coefficients!)

MLP J

Affine operations followed by ReLU nonlinearity

Bonus (if time permits) Querying Neural implicits 95/99



Nonlinearities

e R=x9+ Z,N:1 xiei i € [-1,1]
o Replace f by a linear approximation f(x) ~ ax +

Q@ 7V = MaXxcrange(x) |f(X) - f(X)|

Bonus (if time permits) Querying Neural implicits 96/99



Nonlinearities

e X =x9+ Z,N:1 xiei i € [-1,1]
o Replace f by a linear approximation f(x) ~ ax +
Q@ 7V = MaXxcrange(x) |f(X) - f(X)|

e y=fR)=ax+0+ Zf\lzl axie; + YEN+1

Bonus (if time permits) Querying Neural implicits 96/99



Nonlinearities

R=x0+ XN, xei e € [-1,1]

Replace f by a linear approximation f(x) ~ ax +
Y = MaXyerange(s) |F(x) — F()

y=1f(X)=axo+ B+ Z,Nzl Qxi€j + YEN+1

Each layer with width W adds W new coefficients.

Bonus (if time permits) Querying Neural implicits 96/99



Nonlinearities

R=x0+ XN, xei e € [-1,1]

Replace f by a linear approximation f(x) ~ ax +
Y = MaXyerange(s) |F(x) — F()

y=1f(X)=axo+ B+ Z,Nzl aXi€j + VEN+1

Each layer with width W adds W new coefficients.

Solution

Periodically replace a set of coefficients with a single new coefficients

condense(%, D) = xo + Z xiei + (Z [xi|)enr1
i¢D i€D

Bonus (if time permits) Querying Neural implicits
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Range bounds

Procedure 1 RANGEBOUND(fy, ¢, {v;})

a \

Input: A function fy : RY — R and a query box B of dimension \/ \
s < d defined by its center ¢ € R?, and s orthogonal box axis \
vectors {v; € Rd}, not necessarily coordinate axis-aligned. K J

Output: A bound on the sign of f(x) Yx € B as one of
POSITIVE, NEGATIVE, or UNKNOWN.
cRe—cH Zf,l viE;

1
£ 3 < fo® ~range N 02\
3 [y-,y+] « range(y) i
4 if y— > 0 then return POSITIVE ana]YSls 8
s: if y; < 0 then return NEGATIVE £
6: else return UNKNOWN 2
Bonus (if time permits) Querying Neural implicits 97/99



Range bounds

Procedure 1 RANGEBOUND(fy, ¢, {v;})

o \

Input: A function fy : RY — R and a query box B of dimension \/ \
s < d defined by its center ¢ € R?, and s orthogonal box axis \
vectors {v; € Rd}, not necessarily coordinate axis-aligned. J

Output: A bound on the sign of f(x) Yx € B as one of
POSITIVE, NEGATIVE, or UNKNOWN.

L Re—cH+ Ef:l viE;
2§« fol®) ~range > N__J%2 "\
3 [y-,y+] « range(y) i -
4 if y- > 0 then return POSITIVE ana]YSls 8
5. if y; < 0 then return NEGATIVE £
6: else return UNKNOWN 2
Unknown?
Subdivide the box.
97/99

Bonus (if time permits) Querying Neural implicits



Ray casting vs frustum ray casting

frustum ray casting
1.59 sec, 8.18M steps

ray castin

6.72 sec, 65.1M steps steps

165

o
[Sharp 2022]

98/99

Bonus (if time permits) Querying Neural implicits



Applications

implicit
surface

extracted mesh
1.23M faces
in 1.46 sec

considered \
for extraction \

Mesh extraction Closest point

search hierarchy

intersection verified not
ound intersecting

Mesh Intersection
Bonus (if time permits) Querying Neural implicits . 99/99
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