
Novel view synthesis and Geometry Synthesis

Julie Digne

Master MVA

November 13th 2024

1/99

Outline

1 Lipschitz networks

2 Shape synthesis by deformation

3 Learning Implicit Representations

4 Generating Shapes as pointsets

5 Other generative Models for Shape Synthesis

6 Novel View Synthesis

7 Bonus (if time permits) Querying Neural implicits

Lipschitz networks 2/99

Lipschitz Networks

f : X → Y; ∀(x1, x2) ∈ X 2, dY(f (x1), f (x2)) ≤ KdX (x1, x2)

Goal
Neural networks are learned functions fθ from Rn to Rd , can we design
architectures which yield guaranteed K -Lipschitz functions?

With a small K :

Better generalization
Improved adversarial robustness
Greater interpretability
Wasserstein distance computation (Peyré & Cuturi 2018).
Issue: Lipschitz guarantee without sacrificing expressive power.

Lipschitz networks 3/99

Lipschitz Networks

f : X → Y; ∀(x1, x2) ∈ X 2, dY(f (x1), f (x2)) ≤ KdX (x1, x2)

Goal
Neural networks are learned functions fθ from Rn to Rd , can we design
architectures which yield guaranteed K -Lipschitz functions?

With a small K :
Better generalization

Improved adversarial robustness
Greater interpretability
Wasserstein distance computation (Peyré & Cuturi 2018).
Issue: Lipschitz guarantee without sacrificing expressive power.

Lipschitz networks 3/99

Lipschitz Networks

f : X → Y; ∀(x1, x2) ∈ X 2, dY(f (x1), f (x2)) ≤ KdX (x1, x2)

Goal
Neural networks are learned functions fθ from Rn to Rd , can we design
architectures which yield guaranteed K -Lipschitz functions?

With a small K :
Better generalization
Improved adversarial robustness

Greater interpretability
Wasserstein distance computation (Peyré & Cuturi 2018).
Issue: Lipschitz guarantee without sacrificing expressive power.

Lipschitz networks 3/99

Lipschitz Networks

f : X → Y; ∀(x1, x2) ∈ X 2, dY(f (x1), f (x2)) ≤ KdX (x1, x2)

Goal
Neural networks are learned functions fθ from Rn to Rd , can we design
architectures which yield guaranteed K -Lipschitz functions?

With a small K :
Better generalization
Improved adversarial robustness
Greater interpretability

Wasserstein distance computation (Peyré & Cuturi 2018).
Issue: Lipschitz guarantee without sacrificing expressive power.

Lipschitz networks 3/99

Lipschitz Networks

f : X → Y; ∀(x1, x2) ∈ X 2, dY(f (x1), f (x2)) ≤ KdX (x1, x2)

Goal
Neural networks are learned functions fθ from Rn to Rd , can we design
architectures which yield guaranteed K -Lipschitz functions?

With a small K :
Better generalization
Improved adversarial robustness
Greater interpretability
Wasserstein distance computation (Peyré & Cuturi 2018).

Issue: Lipschitz guarantee without sacrificing expressive power.

Lipschitz networks 3/99

Lipschitz Networks

f : X → Y; ∀(x1, x2) ∈ X 2, dY(f (x1), f (x2)) ≤ KdX (x1, x2)

Goal
Neural networks are learned functions fθ from Rn to Rd , can we design
architectures which yield guaranteed K -Lipschitz functions?

With a small K :
Better generalization
Improved adversarial robustness
Greater interpretability
Wasserstein distance computation (Peyré & Cuturi 2018).
Issue: Lipschitz guarantee without sacrificing expressive power.

Lipschitz networks 3/99

Notations

x input, y output
L layers
l th layer: dimension nl , Wl ∈ Rnl×nl−1

zl = Wlhl−1 + bl , hl = ϕ(zl)

y = zL

CL(X ,R) space of all 1-Lipschitz functions mapping (X , dX) to (R, Lp)

Lipschitz networks 4/99

A first result [Cem 2018]

Composition
Composition of two 1-Lipschitz functions is 1-Lipschitz.

Consequence
Compose 1-Lipschitz affine transform (∥Wx∥p ≤ ∥x∥p,∀x) and 1 - Lipschitz
activations.

ReLU, tanh, maxout are 1-Lipschitz (if scaled appropriately)!

Lipschitz networks 5/99

A first result [Cem 2018]

Composition
Composition of two 1-Lipschitz functions is 1-Lipschitz.

Consequence
Compose 1-Lipschitz affine transform (∥Wx∥p ≤ ∥x∥p,∀x) and 1 - Lipschitz
activations.

ReLU, tanh, maxout are 1-Lipschitz (if scaled appropriately)!

Lipschitz networks 5/99

A first result [Cem 2018]

Composition
Composition of two 1-Lipschitz functions is 1-Lipschitz.

Consequence
Compose 1-Lipschitz affine transform (∥Wx∥p ≤ ∥x∥p,∀x) and 1 - Lipschitz
activations.

ReLU, tanh, maxout are 1-Lipschitz (if scaled appropriately)!

Lipschitz networks 5/99

So... Are we done?

Theorem
Expressivity [Cem 2018] Consider a neural net f : Rn → R, built with ∥W ∥2 ≤ 1
and 1-Lipschitz elementwise monotonic activation functions. If ∥∇f ∥2 = 1 almost
everywhere then f is linear

ReLU, sigmoid, tanh?

Lipschitz networks 6/99

So... Are we done?

Theorem
Expressivity [Cem 2018] Consider a neural net f : Rn → R, built with ∥W ∥2 ≤ 1
and 1-Lipschitz elementwise monotonic activation functions. If ∥∇f ∥2 = 1 almost
everywhere then f is linear

ReLU, sigmoid, tanh?

Lipschitz networks 6/99

Semi definite Programming Layer [Araujo et al. 2019]

SDPL
Residual layer with parameters W ∈ Rk×k , q ∈ Rk , b ∈ Rk

x ← x − 2WT−1σ(W T x + b)

with:

T =
K∑
j=1

|(W TW)ij exp(qi − qj)|

and σ the ReLU activation function.

W weight matrices are square (0-padding on the input)

Output layer: affine layer

x ← wT x

∥w∥2
+ b

Lipschitz networks 7/99

Semi definite Programming Layer [Araujo et al. 2019]

SDPL
Residual layer with parameters W ∈ Rk×k , q ∈ Rk , b ∈ Rk

x ← x − 2WT−1σ(W T x + b)

with:

T =
K∑
j=1

|(W TW)ij exp(qi − qj)|

and σ the ReLU activation function.

W weight matrices are square (0-padding on the input)
Output layer: affine layer

x ← wT x

∥w∥2
+ b

Lipschitz networks 7/99

Wasserstein Distance estimation

Kantorovitch duality

W (P1,P2) = sup
f∈CL(X ,R)

Ex∼P1[f (x)]− Ex∼P2 [f (x)]

Wasserstein GAN: Lischitz network for the discriminator by weight clipping
[Arjovsky et al. 2017]

LWGAN(G ,D) = Ex∼µG
[D(x)]− Ex∼µref

[D(x)]

Kantorovich-Rubinstein dual formulation: for the optimal D, G tries to
minimize LWGAN ∝W1(µG , µref)

Lipschitz networks 8/99

Wasserstein GAN: Leaky RELU vs MaxMin

[C
em

et
al

.
20

18
]

Lipschitz networks 9/99

Application to signed distance field [Coiffier 2024]

Set of points xi with known distances di

Naive approach: combining 1-lipschitz network with a fitting loss:

underestimates the signed distance field + not robust to imperfect data.

Hinge-Kantorovich-Rubinstein loss [Serrurier 2021]

LhKR = LKR + λLm
hinge

with:
LKR =

∑
i

−sign(di)uθ(xi)

Lm
hinge =

∑
i

max(0,m − sign(di)u(xi))

Under mild assumptions, proof that this converges to an approximation of the
signed distance field.

Lipschitz networks 10/99

Application to signed distance field [Coiffier 2024]

Set of points xi with known distances di

Naive approach: combining 1-lipschitz network with a fitting loss:
underestimates the signed distance field + not robust to imperfect data.

Hinge-Kantorovich-Rubinstein loss [Serrurier 2021]

LhKR = LKR + λLm
hinge

with:
LKR =

∑
i

−sign(di)uθ(xi)

Lm
hinge =

∑
i

max(0,m − sign(di)u(xi))

Under mild assumptions, proof that this converges to an approximation of the
signed distance field.

Lipschitz networks 10/99

Application to signed distance field [Coiffier 2024]

Set of points xi with known distances di

Naive approach: combining 1-lipschitz network with a fitting loss:
underestimates the signed distance field + not robust to imperfect data.

Hinge-Kantorovich-Rubinstein loss [Serrurier 2021]

LhKR = LKR + λLm
hinge

with:
LKR =

∑
i

−sign(di)uθ(xi)

Lm
hinge =

∑
i

max(0,m − sign(di)u(xi))

Under mild assumptions, proof that this converges to an approximation of the
signed distance field.

Lipschitz networks 10/99

Application to Signed distance field estimation

[C
oi

ffi
er

20
24

]

Lipschitz networks 11/99

Application to Signed distance field estimation

[C
oi

ffi
er

20
24

]

Lipschitz networks 12/99

Application to Signed distance field estimation

[C
oi

ffi
er

20
24

]

Lipschitz networks 13/99

Outline

1 Lipschitz networks

2 Shape synthesis by deformation

3 Learning Implicit Representations

4 Generating Shapes as pointsets

5 Other generative Models for Shape Synthesis

6 Novel View Synthesis

7 Bonus (if time permits) Querying Neural implicits

Shape synthesis by deformation 14/99

Leverage Neural Implicits with Shape deformation

[N
ov

el
lo

20
23

]

When a surface moves its neural representation evolves with it
Can we link the evolution of the Neural Implicit with the vector field of the
deformation?

Very old topic (see e.g. [Osher 2000])

Shape synthesis by deformation 15/99

Leverage Neural Implicits with Shape deformation

[N
ov

el
lo

20
23

]

When a surface moves its neural representation evolves with it
Can we link the evolution of the Neural Implicit with the vector field of the
deformation?
Very old topic (see e.g. [Osher 2000])

Shape synthesis by deformation 15/99

The Level Set Equation (LSE)

F (x , t) temporal neural implicit
V (x , t) Vector Field governing the deformation in ambient space.
For all t: shape = 0 level set.

∂F (x , t)

∂t
+ ⟨V (x , t),∇xF (x , t)⟩ = 0

Shape synthesis by deformation 16/99

Mixing the LSE with Neural Networks

As before model F by a neural network Fθ which takes as input x and t and
outputs the signed distance function at x at time t.

Classical Losses
Shape Data attachment loss∑

i

∥Fθ(xi , 0)∥2 + ∥1− ⟨ni ,∇Fθ(xi , 0)⟩∥

Ambient Data attachment loss∑
j

∥Fθ(yj , 0)− gtsdf (yj)∥2

Eikonal loss
Ex [|1− ∥∇Fθ(x , t)∥|]

We add the LSE loss depending on the application case.

Shape synthesis by deformation 17/99

Known Vector Fields

[N
ov

el
lo

20
23

]

LSE Loss

LLSE (θ) = E(x,t)[∥
∂Fθ(x , t)

∂t
+ ⟨∇Fθ(x , t),V ⟩∥2]

Shape synthesis by deformation 18/99

Mean Curvature Motion

[N
ov

el
lo

20
23

]

Points evolve at speed H(x , t) in direction N(x , t) (normal to the level set)
H(p, t) = divN

V (p, t) = −H(p, t)N(x , t)

LSE Loss

LLSE (θ) = E(x,t)[∥
∂Fθ(x , t)

∂t
+ ⟨∇Fθ(x , t),−H(p, t)∥∇xFθ(x , t)∥⟩∥2]

Shape synthesis by deformation 19/99

Interpolation between shapes

[N
ov

el
lo

20
23

]

Vector field is not known.
Two known distance fields f0 and f1

Possible surrogate:

V (x , t) = −(f1(x)− Fθ(x , t))
∇Fθ(x , t)
∥∇Fθ(x , t)∥

and F (x , 0) = f0(x).

Shape synthesis by deformation 20/99

Interpolation between shapes (2)

[N
ov

el
lo

20
23

]

LSE Loss

LLSE (θ) = E(x,t)

[∥∥∂Fθ(x , t)
∂t

− (f1(x)− Fθ(x , t))∥∇xFθ(x , t)∥
∥∥2)

Shape synthesis by deformation 21/99

Outline

1 Lipschitz networks

2 Shape synthesis by deformation

3 Learning Implicit Representations

4 Generating Shapes as pointsets

5 Other generative Models for Shape Synthesis

6 Novel View Synthesis

7 Bonus (if time permits) Querying Neural implicits

Learning Implicit Representations 22/99

Learning Occupancy functions [Chen 2019, Mescheder 2020]

[C
he

n
20

19
]

Use an encoder (e.g. PointNet [Qi 2017]) to get the shape latent description
α.
Train a neural network to compute the occupancy network of a shape given
(x , y , z , α).

Learning Implicit Representations 23/99

Data and Losses

A set of N shapes Si with points yik for which the occupancy is known.
Training loss:

1
|B|

N∑
i=1

K∑
k=1

L(uθ(yik , αi), oik)

L(uθ(yik , αi), oik) = |uθ(yik , αi)− oik |2

Chen et al. [2019] adds a sampling density weight
Mescheder et al. [2020] adds a KL divergence between a latent description
prior and the encoder distribution.

Learning Implicit Representations 24/99

Results and Comparisons

[C
he

n
20

19
]

Learning Implicit Representations 25/99

Results - single view reconstruction

[C
he

n
20

19
]

[M
es

ch
ed

er
20

20
]

Learning Implicit Representations 26/99

DeepSDF

[P
ar

k
20

19
]

Represent an entire class of shapes in an implicit way

Learning Implicit Representations 27/99

Training

[P
ar

k
20

19
]

Single shape version

L(fθ(x), s) = |clamp(fθ, δ)− clamp(x , δ)|

with clamp(x , δ) = min(δ,max(−δ, x)), s isovalue.

Learning Implicit Representations 28/99

Training

[P
ar

k
20

19
]

Latent shape version

fθ(zi , x) = SDF i (x)

Model several distance fields with a single network (factor in shape space)

Learning Implicit Representations 29/99

Auto-decoder

[P
ar

k
20

19
]

Usually: train an auto-encoder + throw away the encoder.
Here: avoid spending computational resources on encoder.
Handle shapes of different number of samples.

Learning Implicit Representations 30/99

Model for the auto-decoder

Data: N shapes Xi = {(xj , sj), sj = SDF i (xj)}.
Latent code zi , prior p(zi) = centered Gaussian with spherical covariance.

pθ(zi |Xi) = p(zi)
∏
j

pθ(sj |zi , xj)

Reformulation:

p(sj |zi , xj) = exp(−L(fθ(zi , xj), sj)) with fθ an MLP.

Training

argminθ,{zi}N
i=1

N∑
i=1

K∑
j=1

L(fθ(zi , xj), sj) +
1
σ2 ∥zi∥

2
2

Learning Implicit Representations 31/99

Network architecture

[p
ar

k
20

19
]

Learning Implicit Representations 32/99

results

[p
ar

k
20

19
]

solve for the shape code from partial shapes and reconstruct

Learning Implicit Representations 33/99

results

[p
ar

k
20

19
]

Learning Implicit Representations 34/99

Outline

1 Lipschitz networks

2 Shape synthesis by deformation

3 Learning Implicit Representations

4 Generating Shapes as pointsets

5 Other generative Models for Shape Synthesis

6 Novel View Synthesis

7 Bonus (if time permits) Querying Neural implicits

Generating Shapes as pointsets 35/99

Normalizing Flows

"Synthesize a shape resembling a set of shapes"
More generally synthesize a density of points resembling a density of points.
Generative Methods: Many are limited in the number of points
(PointNet-based) or work in the ambient space (Nerf-like - more recent).

Generating Shapes as pointsets 36/99

Setting

Idea
A family of shapes = a distribution of variables in a shape space.
A shape = a distribution of points

Use the same process to sample a point on the surface or to sample a distribution
from the set of distributions.

Parameterization
Instead of parameterizing the distribution of samples, model it as a invertible
transformation of samples through Normalizing Flows. (samples = shapes OR
points).

Generating Shapes as pointsets 37/99

Normalizing Flow [Rezende 2015]

Normalizing Flow
A series of invertible mapping transforming an initial distribution into another one.

y ∼ P(y), x = fn ◦ fn−1 ◦ · · · ◦ f1(y)

(x output variable, y latent variable, fi invertible mappings)

yk = fk(yk−1); y0 = y :

P(yk) = P(yk−1)
∣∣ det ∂fk

∂yk

∣∣−1

Final Formula

logP(x) = logP(y)−
n∑

k=1

log
∣∣ det ∂fk

∂yk−1

∣∣−1

In practice fi modeled by a neural network (Jacobian easy to compute)

Generating Shapes as pointsets 38/99

Continuous Normalizing Flow [Yang 2020]

CNF
Instead of a series of invertible mapping, use a continuous time dynamic:

∂y(t)

∂t
= f (y(t), t)

CNF model for P(x) with P(y) prior

x = y(t0) +

∫ t1

t0

f (y(t), t)dt ; y(t0) ∼ P(y)

logP(x) = logP(y(t0))−
∫ t1

t0

Tr(
∂f

∂y(t)
)dt

f is a neural network, and an ODE solver is used to compute CNF gradients.

Generating Shapes as pointsets 39/99

Final loss

L(X , ϕ, ψ, θ) = EQϕ(z|X)[logPθ(X |z)]− DKL(Qϕ(z |X)||Pψ(z))
= EQϕ(z|X)[logPθ(X |z)]︸ ︷︷ ︸

Lprior

+ EQϕ(z|X)[logPψ(z)]︸ ︷︷ ︸
Lreconstruction

+H[Qϕ(z |X)]︸ ︷︷ ︸
Lentropy

Lprior : the shape code z is generated following F−1
ψ (shape should have a

high probability under the prior modeled by a CNF).

Lreconstruction: X is likely to be reconstructed from z following G−1
θ .

Lent checks that z refers to X .

Generating Shapes as pointsets 40/99

Final loss

L(X , ϕ, ψ, θ) = EQϕ(z|X)[logPθ(X |z)]− DKL(Qϕ(z |X)||Pψ(z))
= EQϕ(z|X)[logPθ(X |z)]︸ ︷︷ ︸

Lprior

+ EQϕ(z|X)[logPψ(z)]︸ ︷︷ ︸
Lreconstruction

+H[Qϕ(z |X)]︸ ︷︷ ︸
Lentropy

Lprior : the shape code z is generated following F−1
ψ (shape should have a

high probability under the prior modeled by a CNF).
Lreconstruction: X is likely to be reconstructed from z following G−1

θ .

Lent checks that z refers to X .

Generating Shapes as pointsets 40/99

Final loss

L(X , ϕ, ψ, θ) = EQϕ(z|X)[logPθ(X |z)]− DKL(Qϕ(z |X)||Pψ(z))
= EQϕ(z|X)[logPθ(X |z)]︸ ︷︷ ︸

Lprior

+ EQϕ(z|X)[logPψ(z)]︸ ︷︷ ︸
Lreconstruction

+H[Qϕ(z |X)]︸ ︷︷ ︸
Lentropy

Lprior : the shape code z is generated following F−1
ψ (shape should have a

high probability under the prior modeled by a CNF).
Lreconstruction: X is likely to be reconstructed from z following G−1

θ .
Lent checks that z refers to X .

Generating Shapes as pointsets 40/99

Full Network

L(X , ϕ, ψ, θ)

Generating Shapes as pointsets 41/99

Breaking it into pieces

Lent(X , ϕ, ψ)

Generating Shapes as pointsets 42/99

Breaking it into pieces

Lreconstruction(X , θ, ϕ)

Generating Shapes as pointsets 43/99

Breaking it into pieces

Lprior (X , ϕ)

Generating Shapes as pointsets 44/99

Sampling

Generate w (Gaussian), use CNF Fψ to get z . Use Gθ(.; z) to sample points

Generating Shapes as pointsets 45/99

Optimization

Encoder Qϕ(z |x): Pointnet 1D convolutions + 2layer-mlp converting into a
DZ -dimensional representation.

CNF Prior follows Ffjord [Grathwhohl 2018]. Models fψ governing the PDE
∂y
∂t = fψ(y(t), t) with a network (using Concatsquash layer).
CNF Decoder uses Conditional concatsquash layers
ODE-compatible backprop: Backpropagating through ODE solutions with the
adjoint Method [Chen 2018] (in practice: DOPRI method Dormand & Prince
1980, RKDP).

Generating Shapes as pointsets 46/99

Optimization

Encoder Qϕ(z |x): Pointnet 1D convolutions + 2layer-mlp converting into a
DZ -dimensional representation.
CNF Prior follows Ffjord [Grathwhohl 2018]. Models fψ governing the PDE
∂y
∂t = fψ(y(t), t) with a network (using Concatsquash layer).

CNF Decoder uses Conditional concatsquash layers
ODE-compatible backprop: Backpropagating through ODE solutions with the
adjoint Method [Chen 2018] (in practice: DOPRI method Dormand & Prince
1980, RKDP).

Generating Shapes as pointsets 46/99

Optimization

Encoder Qϕ(z |x): Pointnet 1D convolutions + 2layer-mlp converting into a
DZ -dimensional representation.
CNF Prior follows Ffjord [Grathwhohl 2018]. Models fψ governing the PDE
∂y
∂t = fψ(y(t), t) with a network (using Concatsquash layer).
CNF Decoder uses Conditional concatsquash layers

ODE-compatible backprop: Backpropagating through ODE solutions with the
adjoint Method [Chen 2018] (in practice: DOPRI method Dormand & Prince
1980, RKDP).

Generating Shapes as pointsets 46/99

Optimization

Encoder Qϕ(z |x): Pointnet 1D convolutions + 2layer-mlp converting into a
DZ -dimensional representation.
CNF Prior follows Ffjord [Grathwhohl 2018]. Models fψ governing the PDE
∂y
∂t = fψ(y(t), t) with a network (using Concatsquash layer).
CNF Decoder uses Conditional concatsquash layers
ODE-compatible backprop: Backpropagating through ODE solutions with the
adjoint Method [Chen 2018] (in practice: DOPRI method Dormand & Prince
1980, RKDP).

Generating Shapes as pointsets 46/99

Results

Generating Shapes as pointsets 47/99

Results

Generating Shapes as pointsets 48/99

Latent space

Generating Shapes as pointsets 49/99

Diffusion-based shape synthesis [LION, Zeng 2022]

[Z
en

g
20

22
]

No grid, non-euclidean data → extremely hard.
Based on denoising diffusion in latent space and in ambient space.
Point set structured through a voxel grid Point-Voxel CNN [Liu 2019]

Generating Shapes as pointsets 50/99

Convolution on point clouds via voxel proxy [Liu 19]

Features per points but aggregated per voxel (coarse grained level)
Per point feature (fine grained level)

Generating Shapes as pointsets 51/99

Results

[Z
en

g
20

22
]

Detail variation from a coarse shape embedding.

Generating Shapes as pointsets 52/99

Outline

1 Lipschitz networks

2 Shape synthesis by deformation

3 Learning Implicit Representations

4 Generating Shapes as pointsets

5 Other generative Models for Shape Synthesis

6 Novel View Synthesis

7 Bonus (if time permits) Querying Neural implicits

Other generative Models for Shape Synthesis 53/99

An example for generating shapes [GRASS, Li et al. 2017]

[L
ie

t
al

.
20

17
]

Input data: set of shapes with a semantic segmentation into parts.

Other generative Models for Shape Synthesis 54/99

Algorithm

Step 1: Learn a code representing an arrangement of boxes.
Step 2: Train a GAN for generating a new structure
Step 3: Use voxelization in each box to synthesize the local geometry.

[L
ie

t
al

.
20

17
]

Other generative Models for Shape Synthesis 55/99

Step 1: Learn a code
Key idea
Shape components are commonly arranged or perceived to be arranged
hierarchically. Goal of the code: encode this hierarchy of parts

[L
ie

t
al

.
20

17
]

Recursive auto-encoder for binary trees: encode the structure into a code;
decode and compare the recovered structure.
Recursively merge parts that are either adjacent or symmetric (rotational,
translational, reflectional)
Training: generate plausible hierarchies for each shape (sample the space of
plausible part groupings)
Adjacency and Symmetry encoder/decoder (transform a code into another
encodes the symmetry and the generator)
Additionally: Box encoder/Node classifier

Other generative Models for Shape Synthesis 56/99

Learned hierarchies

[L
ie

t
al

.
20

17
]

In a nutshell
Transform a binary tree into a meaningful hierarchy while minimizing the loss
(sum of bounding boxes distances)

Other generative Models for Shape Synthesis 57/99

Application: interpolation

[L
ie

t
al

.
20

17
]

Other generative Models for Shape Synthesis 58/99

Application: shape query

[L
ie

t
al

.
20

17
]

Other generative Models for Shape Synthesis 59/99

MeshGPT [Siddiqi et al. 2023]

[S
id

di
qi

et
al

.
20

23
]

Following text generation idea: generate a mesh as a sequence of triangles

Other generative Models for Shape Synthesis 60/99

MeshGPT - Principle

[S
id

di
qi

et
al

.
20

23
]

Learns a vocabulary of latent representations
of faces
Uses these latent representations as tokens
GPT-like transformer: predicts next token
from previous tokens auto-regressively.
1D Resnet decodes the latent representation
sequences into triangles

Result
Resuls is a triangle soup: needs post-processing to turn it into a watertight mesh

Other generative Models for Shape Synthesis 61/99

MeshGPT - Results

[S
id

di
qi

et
al

.
20

23
]

Other generative Models for Shape Synthesis 62/99

MeshGPT - Results

[S
id

di
qi

et
al

.
20

23
]

Other generative Models for Shape Synthesis 63/99

Outline

1 Lipschitz networks

2 Shape synthesis by deformation

3 Learning Implicit Representations

4 Generating Shapes as pointsets

5 Other generative Models for Shape Synthesis

6 Novel View Synthesis

7 Bonus (if time permits) Querying Neural implicits

Novel View Synthesis 64/99

Neural Radiance Field (Nerf [Mildenhall et al. 2020])

Goal: Generate a new view from a set of views
Cameras are calibrated (ie we know their positions, orientations and intrinsic
parameters)

Novel View Synthesis 65/99

Principle
Neural network takes as input a 3D coordinate and viewing direction and outputs
the volume density and view-dependent emitted radiance at this location and
direction.

FΘ(x , y , z , θ, ϕ) = (R,G ,B, σ)

Architecture MLP with ReLU activations.

Novel View Synthesis 66/99

Rendering from the volume

Color of a ray
Ray r(t) = o + td

C (r) =
∫ tf

tn

T (t)σ(r(t))C (r(t), d)dt

with:

T (t) = exp−
∫ t

tn

σ(r(s))ds

tn, tf : near and far bounds

T : attenuation of the ray so far (Beer’s law)

Novel View Synthesis 67/99

Rendering from the volume

Color of a ray
Ray r(t) = o + td

C (r) =
∫ tf

tn

T (t)σ(r(t))C (r(t), d)dt

with:

T (t) = exp−
∫ t

tn

σ(r(s))ds

tn, tf : near and far bounds
T : attenuation of the ray so far (Beer’s law)

Novel View Synthesis 67/99

Integral approximation

Stratified sampling along the ray of positions ti

Discrete Version

C (r) =
∑
i

Ti (1− exp(−σ(ti)∥ti+1 − ti∥))C (ri)

with
Ti =

∑
i

exp(−σ(ti)∥ti+1 − ti∥)

Novel View Synthesis 68/99

Training

[M
ild

en
ha

ll
et

al
.

20
20

]

Novel View Synthesis 69/99

Positional Encoding

Add a non-learnable layer to embed the position in a higher dimensional
space:

(cos x , cos 2x , · · · , cosNx , cos y , cos 2y , · · · , cosNy , cos z , cos 2z , · · · , cosNz)

Intuition: Frequency decomposition, allows to get high frequency information

Novel View Synthesis 70/99

View-dependency

View-dependent radiance is what allows to capture mirror reflections

Novel View Synthesis 71/99

Results

Video: https://www.matthewtancik.com/nerf

Training time
The optimization for a single scene typically take around 100– 300k iterations to
converge on a single NVIDIA V100 GPU (about 1–2 days). (Faster variants
released since: Instant NGP [Mueller 2022])

Novel View Synthesis 72/99

https://www.matthewtancik.com/nerf
https://www.matthewtancik.com/nerf

Results

Video: https://www.matthewtancik.com/nerf

Training time
The optimization for a single scene typically take around 100– 300k iterations to
converge on a single NVIDIA V100 GPU (about 1–2 days).

(Faster variants
released since: Instant NGP [Mueller 2022])

Novel View Synthesis 72/99

https://www.matthewtancik.com/nerf
https://www.matthewtancik.com/nerf

Results

Video: https://www.matthewtancik.com/nerf

Training time
The optimization for a single scene typically take around 100– 300k iterations to
converge on a single NVIDIA V100 GPU (about 1–2 days). (Faster variants
released since: Instant NGP [Mueller 2022])

Novel View Synthesis 72/99

https://www.matthewtancik.com/nerf
https://www.matthewtancik.com/nerf

After Nerf... Plenoxels [Yu et al. 2021]

[Y
u

et
al

.
20

21
]

No neural net
(way) faster than nerf

Novel View Synthesis 73/99

Method

[Y
u

et
al

.
20

21
]

Novel View Synthesis 74/99

Spherical harmonics

Im
ag

e
by

In
ig

o
Q

ui
le

z
(W

ik
ip

ed
ia

)

Ym
l (θ, φ) = e imφPm

l (cos(θ))

Pm
l Associated Legendre polynomial

Pm
l (x) = (−1)m(1− x2)m/2

l∑
k=m

k!

(k −m)!
xk−m

(
l

k

)(
(l + k − 1)/2

l

)
Orthogonal function basis

f (r , θ, φ) =
∞∑
l=0

l∑
m=−l

r le imφY l
m(cos θ)

Novel View Synthesis 75/99

Color and spherical harmonics

Spherical harmonics of degree 2 → 9 coefficients per color channel
Color C (r) = sum of the spherical harmonics evaluated in the ray direction
Estimation on the vertices of a sparse grid and linear interpolation per grid
cell.

Novel View Synthesis 76/99

Losses

Optimization on SH coefficients and density minimizing the Loss:

Lrecon + λLTV

Reconstruction Loss:

Lrecon =
∑
r∈R
∥C (r)− Ĉ (r)∥22

TV Loss:
LTV =

1
|V|

∑
v∈V,d∈D

∑
i

∥∇xSHi∥2 + ∥∇xσ∥2

(V and R stochastic samplings of the grid vertices and rays)

Novel View Synthesis 77/99

Results

[Y
u

et
al

.
20

21
]

Novel View Synthesis 78/99

Results

[Y
u

et
al

.
20

21
]

Insight: What makes nerf work is not the neural net but Differentiable
rendering.

Novel View Synthesis 79/99

Gaussian Splatting

Build on point set Splatting [Zwicker 2001]
Each point is the center of a small 3D Gaussian on it,
Each 3D Gaussian is represented by a quaternion and 3 scaling factors.
Gaussian splat = gaussian parameters + opacity + Spherical harmonics

Novel View Synthesis 80/99

Overview

[K
er

bl
e

20
23

]

Novel View Synthesis 81/99

Structure from Motion (SfM)

[M
ai

te
ng

-
W

ik
ip

ed
ia

]

Cameras calibrated by Structure from Motion [Snavely 2006]

Novel View Synthesis 82/99

Rendering a Gaussian splat scene

Projective space Gaussian giving the color.

G (x) = exp−xTΣ−1x → G ′(x) = exp−xTΣ′−1
x

Viewing direction W Σ′ = JWΣW T

J jacobian of the affine approx of the projective transformation:

J =

fx/z 0 −fx tx/z2

0 fy/z −fy ty/z2

0 0 0



Novel View Synthesis 83/99

Rasterizer

Split screen in tiles
Cull 3d Gaussians against view frustrum
Each tile = depth sorted Gaussians
When saturation level is reached: stop

Novel View Synthesis 84/99

Creating or Destroying Geometry

imcredits[Kerble 2023]

Novel View Synthesis 85/99

Number of iterations

imcredits[Kerble 2023]

Novel View Synthesis 86/99

Conclusion

Geometric data synthesis is hard
Nerf/Gaussian Splat: do we need to compute the geometry or only render?
Multi-resolution, levels of details for neural implicits.

Novel View Synthesis 87/99

Outline

1 Lipschitz networks

2 Shape synthesis by deformation

3 Learning Implicit Representations

4 Generating Shapes as pointsets

5 Other generative Models for Shape Synthesis

6 Novel View Synthesis

7 Bonus (if time permits) Querying Neural implicits

Bonus (if time permits) Querying Neural implicits 88/99

Projecting points on the surface [Yifan 2021]

Sample points on a neural implicit
Use them to improve robustness and
accuracy

[Y
ifa

n
20

21
]

Bonus (if time permits) Querying Neural implicits 89/99

Projection on the surface

[Y
ifa

n
20

21
]

Starting from a point q0 in R3 project it on the surface
Newton Iterations: qk+1 = qk − J+f (qk)fθ(qk) with J+f (qk) =

1
∥Jf (qk)∥2 Jf (qk)

For nonsmooth fields, set an upper threshold for the displacement magnitude

Bonus (if time permits) Querying Neural implicits 90/99

Uniform resampling

[Y
ifa

n
20

21
]

Move the points away from dense areas q̃ ← q̃ − αr
α step size
r =

∑
q̃i∈N (q̃) w(q̃i , q̃)

q̃i−q̃
∥q̃i−q̃∥

Bonus (if time permits) Querying Neural implicits 91/99

Upsampling

[Y
ifa

n
20

21
]

Move the points away from the edges (Edge-away resampling [Huang 2011])
Each point is :

▶ attracted to points that have a similar normal
▶ repulsed from dense areas.

Upsampled points are reprojected on the surface

Bonus (if time permits) Querying Neural implicits 92/99

Application to INR fitting regularization

[Y
ifa

n
20

21
]

Warmup training (300 iterations)
Extract isopoints + add isopoints to data points
Update the isopoints every 1000 iterations

Bonus (if time permits) Querying Neural implicits 93/99

Arithmetic Queries [Sharp 2022]

[S
ha

rp
20

22
]

fθ a neural implicit Not necessarily a signed distance field.
Sphere tracing for SDF, interval arithmetic for general implicit field.
Goal: adapt interval arithmetic for neural implicits.

Bonus (if time permits) Querying Neural implicits 94/99

Affine arithmetic [Comba and Stolfi 1993]

[S
ha

rp
20

22
]

Interval arithmetic gives loose bounds
Affine arithmetic: tracks affine coefficients through computation
Similar to forward auto-diff: linear operations, nonlinear operations by
linearization (adds affine coefficients!)

MLP
Affine operations followed by ReLU nonlinearity

Bonus (if time permits) Querying Neural implicits 95/99

Nonlinearities

x̂ = x0 +
∑N

i=1 xiεi εi ∈ [−1, 1]

Replace f by a linear approximation f̂ (x) ≈ αx + β

γ = maxx∈range(x̂) |f (x)− f̂ (x)|

ŷ = f (x̂) = αx0 + β +
∑N

i=1 αxiεi + γεN+1

Each layer with width W adds W new coefficients.

Solution
Periodically replace a set of coefficients with a single new coefficients

condense(x̂ ,D) = x0 +
∑
i /∈D

xiεi + (
∑
i∈D

|xi |)εN+1

Bonus (if time permits) Querying Neural implicits 96/99

Nonlinearities

x̂ = x0 +
∑N

i=1 xiεi εi ∈ [−1, 1]

Replace f by a linear approximation f̂ (x) ≈ αx + β

γ = maxx∈range(x̂) |f (x)− f̂ (x)|

ŷ = f (x̂) = αx0 + β +
∑N

i=1 αxiεi + γεN+1

Each layer with width W adds W new coefficients.

Solution
Periodically replace a set of coefficients with a single new coefficients

condense(x̂ ,D) = x0 +
∑
i /∈D

xiεi + (
∑
i∈D

|xi |)εN+1

Bonus (if time permits) Querying Neural implicits 96/99

Nonlinearities

x̂ = x0 +
∑N

i=1 xiεi εi ∈ [−1, 1]

Replace f by a linear approximation f̂ (x) ≈ αx + β

γ = maxx∈range(x̂) |f (x)− f̂ (x)|

ŷ = f (x̂) = αx0 + β +
∑N

i=1 αxiεi + γεN+1

Each layer with width W adds W new coefficients.

Solution
Periodically replace a set of coefficients with a single new coefficients

condense(x̂ ,D) = x0 +
∑
i /∈D

xiεi + (
∑
i∈D

|xi |)εN+1

Bonus (if time permits) Querying Neural implicits 96/99

Nonlinearities

x̂ = x0 +
∑N

i=1 xiεi εi ∈ [−1, 1]

Replace f by a linear approximation f̂ (x) ≈ αx + β

γ = maxx∈range(x̂) |f (x)− f̂ (x)|

ŷ = f (x̂) = αx0 + β +
∑N

i=1 αxiεi + γεN+1

Each layer with width W adds W new coefficients.

Solution
Periodically replace a set of coefficients with a single new coefficients

condense(x̂ ,D) = x0 +
∑
i /∈D

xiεi + (
∑
i∈D

|xi |)εN+1

Bonus (if time permits) Querying Neural implicits 96/99

Range bounds

[S
ha

rp
20

22
]

Unknown?
Subdivide the box.

Bonus (if time permits) Querying Neural implicits 97/99

Range bounds

[S
ha

rp
20

22
]

Unknown?
Subdivide the box.

Bonus (if time permits) Querying Neural implicits 97/99

Ray casting vs frustum ray casting

[S
ha

rp
20

22
]

Bonus (if time permits) Querying Neural implicits 98/99

Applications

Mesh extraction Closest point

Mesh Intersection

[S
ha

rp
20

22
]Bonus (if time permits) Querying Neural implicits 99/99

	Lipschitz networks
	Shape synthesis by deformation
	Learning Implicit Representations
	Generating Shapes as pointsets
	Other generative Models for Shape Synthesis
	Novel View Synthesis
	Bonus (if time permits) Querying Neural implicits

	anm0:
	0.194:
	0.193:
	0.192:
	0.191:
	0.190:
	0.189:
	0.188:
	0.187:
	0.186:
	0.185:
	0.184:
	0.183:
	0.182:
	0.181:
	0.180:
	0.179:
	0.178:
	0.177:
	0.176:
	0.175:
	0.174:
	0.173:
	0.172:
	0.171:
	0.170:
	0.169:
	0.168:
	0.167:
	0.166:
	0.165:
	0.164:
	0.163:
	0.162:
	0.161:
	0.160:
	0.159:
	0.158:
	0.157:
	0.156:
	0.155:
	0.154:
	0.153:
	0.152:
	0.151:
	0.150:
	0.149:
	0.148:
	0.147:
	0.146:
	0.145:
	0.144:
	0.143:
	0.142:
	0.141:
	0.140:
	0.139:
	0.138:
	0.137:
	0.136:
	0.135:
	0.134:
	0.133:
	0.132:
	0.131:
	0.130:
	0.129:
	0.128:
	0.127:
	0.126:
	0.125:
	0.124:
	0.123:
	0.122:
	0.121:
	0.120:
	0.119:
	0.118:
	0.117:
	0.116:
	0.115:
	0.114:
	0.113:
	0.112:
	0.111:
	0.110:
	0.109:
	0.108:
	0.107:
	0.106:
	0.105:
	0.104:
	0.103:
	0.102:
	0.101:
	0.100:
	0.99:
	0.98:
	0.97:
	0.96:
	0.95:
	0.94:
	0.93:
	0.92:
	0.91:
	0.90:
	0.89:
	0.88:
	0.87:
	0.86:
	0.85:
	0.84:
	0.83:
	0.82:
	0.81:
	0.80:
	0.79:
	0.78:
	0.77:
	0.76:
	0.75:
	0.74:
	0.73:
	0.72:
	0.71:
	0.70:
	0.69:
	0.68:
	0.67:
	0.66:
	0.65:
	0.64:
	0.63:
	0.62:
	0.61:
	0.60:
	0.59:
	0.58:
	0.57:
	0.56:
	0.55:
	0.54:
	0.53:
	0.52:
	0.51:
	0.50:
	0.49:
	0.48:
	0.47:
	0.46:
	0.45:
	0.44:
	0.43:
	0.42:
	0.41:
	0.40:
	0.39:
	0.38:
	0.37:
	0.36:
	0.35:
	0.34:
	0.33:
	0.32:
	0.31:
	0.30:
	0.29:
	0.28:
	0.27:
	0.26:
	0.25:
	0.24:
	0.23:
	0.22:
	0.21:
	0.20:
	0.19:
	0.18:
	0.17:
	0.16:
	0.15:
	0.14:
	0.13:
	0.12:
	0.11:
	0.10:
	0.9:
	0.8:
	0.7:
	0.6:
	0.5:
	0.4:
	0.3:
	0.2:
	0.1:
	0.0:

