
Implicit neural representations

Julie Digne

Master MVA

November 6th 2024

1/105

Geometric data

p1

p0

v

v

v

v

x0

x1

??

No grid structure.
Irregular Sampling, occlusions when scanning

2/105

Geometric Deep Learning

No image-like grid structure
What is a good representation for working on geometric data?
Various representations Meshes, Point sets...→ Networks adapted to each
representation

[W
u

et
al

.
20

15
]

[S
u

et
al

.
20

15
]

Today
Surfaces will be represented implicitely and we’ll work on function estimation.

3/105

Outline

1 Implicit surface reconstruction - a short history

2 Neural single shape reconstruction

3 Geometric prior - Eikonal equation

4 Rendering Implicit surfaces

5 Detailed surfaces

6 INR for Shape Analysis

7 Querying Neural implicits

8 Lipschitz networks

Implicit surface reconstruction - a short history 4/105

Implicit surface reconstruction - Principle

See the surface as an isolevel of a given function
Extract the surface by some contouring algorithm: Marching cubes [Lorensen
Cline 87], Particle Systems [Levet et al. 06]

Implicit surface reconstruction - a short history 5/105

Implicit functions are not necessarily distance fields

x

Ω

d(x , ∂Ω)

x

−d(x , ∂Ω)
1

1

1
1

1

x

Ω

x

1

0

0

0

0

0

0

0

Implicit surface reconstruction - a short history 6/105

Surface reconstruction from unorganized points
[Hoppe et al. 92]

Input: a set of 3D points
Idea: for points on the surface the signed distance transform has a gradient
equal to the normal

F (p) = ±min
q∈S
∥p − q∥

0 is a regular value for F and thus the isolevel extraction will give a manifold
Compute an associated tangent plane (oi , ni) for each point pi of the point
set
Orientation of the tangent planes as explained before.

Implicit surface reconstruction - a short history 7/105

Surface reconstruction from unorganized points
[Hoppe et al. 92]

Once the points are oriented
For each point p, find the closest centroid oi

Estimated signed distance function: f̂ (p) = ni · (p − oi)

Implicit surface reconstruction - a short history 8/105

Poisson Surface Reconstruction [Kazhdan et al. 2006]

Input: a set of oriented samples
Reconstructs the indicator function of the surface and then extracts the
boundary.
Trick: Normals sample the function’s gradients

Implicit surface reconstruction - a short history 9/105

Poisson Surface Reconstruction [Kazhdan et al. 2006]

1 Transform samples into a vector field
2 Fit a scalar-field to the gradients
3 Extract the isosurface

Implicit surface reconstruction - a short history 10/105

Poisson Surface Reconstruction [Kazhdan et al. 2006]
To fit a scalar field χ to gradients V⃗ , solve:

min
χ
∥∇χ− V⃗ ∥

Eq to:

∇ · (∇χ)−∇ · V⃗ = 0⇔ ∆χ = ∇ · V⃗

Implicit surface reconstruction - a short history 11/105

Gradient Function of an indicator function = unbounded values on the
surface boundaries
We use a smoothed indicator function

Lemma
The gradient of the smoothed indicator function is equal to the smoothed normal
surface field.

∇ · (χ ⋆ F̃)(q0) =

∫
∂M

F̃ (q0 − p) · N⃗∂M(p)dp

Chicken and Egg problem: to compute the gradient one must be able to compute
an integral over the surface!!

Implicit surface reconstruction - a short history 12/105

Approximate the integral by a discrete summation
Surface partition in patches P(s):

∇ · (χ ⋆ F̃)(q0) =
∑
s

∫
P(s)

F̃ (q0 − p) · N⃗∂M(p)dp

Approximation on each patch:

∇ · (χ ⋆ F̃)(q0) =
∑
s

|P(s)|F̃ (q0 − s) · N⃗(s)

Let us define V (q0) =
∑

s |P(s)|F̃ (q0 − s) · N⃗(s)

Implicit surface reconstruction - a short history 13/105

Problem Discretization

Build an adaptive octree O
Associate a function Fo to each node o of O so that: Fo(q) = F (q−o.c

o.w) 1
o.w3

(o.c and o.w are the center and width of node o).⇒ multiresolution structure
The base function F is the nth convolution of a box filter with itself

V⃗ (q) =
∑
s∈S

∑
o∈N (s)

αo,sFo(q)s.N⃗

Look for χ such that its projection on span(Fo) is closest to ∇V :
Minimize

∑
o∈O⟨∆χ−∇ · V ,Fo⟩2

Extracted isovalue: mean value of χ at the sample positions

Implicit surface reconstruction - a short history 14/105

Varying octree depth

Implicit surface reconstruction - a short history 15/105

Varying octree depth

Implicit surface reconstruction - a short history 16/105

Varying octree depth

Implicit surface reconstruction - a short history 17/105

Resilience to bad normals

M
ul

le
n

et
al

.
20

10

Implicit surface reconstruction - a short history 18/105

Moving Least Squares surfaces

definition
A set of points (xi) ∈ R3 with associated function values fi , Moving least squares
approximation

p(x) = argminy
∑
i

(y − fi)
2θ(∥x − xi∥)

with θ a decreasing function (e.g. θ(t) = exp−t2))

Implicit surface reconstruction - a short history 19/105

Adaptation to 3D surfaces

For each point compute its projection on the surface. The Point Set Surface
is defined as the fixed points of this projection procedure.
Variants: APSS [Guennebaud 2007], RIMLS [Oztireli 2009]
Can be used to define a distance to a surface (+surface reconstruction via
marching cubes).

[A
le

xa
20

01
]

Implicit surface reconstruction - a short history 20/105

Results

[Oztireli 2009]

Implicit surface reconstruction - a short history 21/105

From the signed distance function to the mesh

At each point in R3, the signed distance function to the surface can be
estimated
Extract the 0 levelset of this function: points where this function is 0

Approximation
Evaluate the function at the vertices of a grid and deduce the local geometry of
the surface in each grid cube.

Implicit surface reconstruction - a short history 22/105

Example in 2D

Implicit surface reconstruction - a short history 23/105

Example in 2D

Implicit surface reconstruction - a short history 23/105

Example in 2D

Implicit surface reconstruction - a short history 23/105

Example in 2D

Implicit surface reconstruction - a short history 23/105

Example in 2D

Implicit surface reconstruction - a short history 23/105

Example in 2D

Implicit surface reconstruction - a short history 23/105

Example in 2D

Implicit surface reconstruction - a short history 23/105

Example in 2D

Implicit surface reconstruction - a short history 23/105

Example in 2D

Implicit surface reconstruction - a short history 23/105

Example in 2D

Implicit surface reconstruction - a short history 23/105

Example in 2D

Implicit surface reconstruction - a short history 23/105

From Marching Squares to Marching Cubes

Im
ag

es
by

B
en

A
nd

er
so

n

Drawing lines between intersection points is ambiguous and does not give a
surface patch.

Implicit surface reconstruction - a short history 24/105

Look-up tables

Im
ag

e
by

Jm
tr

iv
ia

l(
W

ik
ip

ed
ia

)

There are 28 = 256 possible cases for cube corner values.
By symmetry + rotation arguments it reduces to 15 cases.
Build a look-up table giving the grid cell triangulation based on the corner
values case.

Implicit surface reconstruction - a short history 25/105

Ambiguous cases

Implicit surface reconstruction - a short history 26/105

Ambiguous cases

Implicit surface reconstruction - a short history 27/105

Ambiguous cases

Refine the grid to remove ambiguation
Switch to marching tetrahedra algorithm

Implicit surface reconstruction - a short history 28/105

Advantages and drawbacks of the Implicit surface
reconstruction methods

Drawbacks Advantages

Only semi-sharp, loss of details
Final mesh not interpolating the
initial pointset
Marching cubes introduces artefacts
Watertight surface, very bad with
open boundaries

Noise robustness
Watertight surface, hole closure
Most standard way of
reconstructing a surface

Implicit surface reconstruction - a short history 29/105

Outline

1 Implicit surface reconstruction - a short history

2 Neural single shape reconstruction

3 Geometric prior - Eikonal equation

4 Rendering Implicit surfaces

5 Detailed surfaces

6 INR for Shape Analysis

7 Querying Neural implicits

8 Lipschitz networks

Neural single shape reconstruction 30/105

Learning a signed distance [DeepSDF - Park et al. 2019]

Learn a SDF uθ to a shape X ,
knowing a set of points xi ∈ X .

Neural single shape reconstruction 31/105

Learning

Input data: a set of points yi in R3 and their distance to the surface
si = SDF (yi)

Loss function

L(θ) =
∑
i

|clamp(uθ(yi), δ)− clamp(si , δ)|

with clamp(h, δ) = min(δ,max(−δ, h)).

δ controls the width of the region of interest around the surface. In practice
δ = 0.1.

Architecture
8 layers MLP, (width 512), dropout, ReLU activation function (tanh for the last
layer) + weight normalization.

Neural single shape reconstruction 32/105

Learning

Input data: a set of points yi in R3 and their distance to the surface
si = SDF (yi)

Loss function

L(θ) =
∑
i

|clamp(uθ(yi), δ)− clamp(si , δ)|

with clamp(h, δ) = min(δ,max(−δ, h)).

δ controls the width of the region of interest around the surface. In practice
δ = 0.1.

Architecture
8 layers MLP, (width 512), dropout, ReLU activation function (tanh for the last
layer) + weight normalization.

Neural single shape reconstruction 32/105

Results

[P
ar

k
20

19
]

Neural single shape reconstruction 33/105

Learning an occupancy function [Mescheder 2019]

Occupancy function
Given an object as a compact subset Ω ⊂ R3, the occupancy function
u : R3 → 0, 1 is such that:

uθ(x) =

{
1 if x ∈ Ω

0 otherwise

Neural network will learn a function uθ(x) predicting whether u is inside Ω or
outside Ω

Neural single shape reconstruction 34/105

Losses

Input data: a set of points yi in R3 and their positions relatively to the
surface oi = 0 or 1.

Loss function

L(θ) =
∑
i

BCE (uθ(yi), oi)

This is the single shape loss. Occupancy networks are mostly used in the
context of latent shape spaces, see next course for more details!

Neural single shape reconstruction 35/105

Results

[M
es

ch
ed

er
20

19
]

Neural single shape reconstruction 36/105

Learning an unsigned distance

M
ul

le
n

et
al

.
20

10

Normal direction is easy to compute
Consistent normal orientation is hard to compute
Bad normal orientations create artifacts for the SDF estimation

Neural single shape reconstruction 37/105

Sign agnostic distance function (Aatzmon 2020]

Unoriented points (not even using normal
direction)
Signed distance function or surface indicator
function

Neural single shape reconstruction 38/105

Losses

Loss function

loss(θ) = Ex∈DX
[τ(|uθ(x)|, hX (x))]

DX is a distribution of points
τ is a similarity function.
hX is an unsigned distance to the shape.

Conditions on τ

τ : R× R+ → R is such that:
Sign agnostic: τ(−a, b) = τ(a, b)∀(a, b) ∈ R× R+

Monotonicity: ∂τ
∂a = ρ(a− b)∀(a, b) ∈ R+ × R

Useful for the theorems guaranteeing reconstruction properties.

Neural single shape reconstruction 39/105

Losses

Loss function

loss(θ) = Ex∈DX
[τ(|uθ(x)|, hX (x))]

DX is a distribution of points
τ is a similarity function.
hX is an unsigned distance to the shape.

Conditions on τ

τ : R× R+ → R is such that:
Sign agnostic: τ(−a, b) = τ(a, b)∀(a, b) ∈ R× R+

Monotonicity: ∂τ
∂a = ρ(a− b)∀(a, b) ∈ R+ × R

Useful for the theorems guaranteeing reconstruction properties.

Neural single shape reconstruction 39/105

Choice of hX and similarity τ

ℓ2 distance:

Signed distance function

h2(y) = min
x∈X
∥y − x∥2

ℓ0 distance:

indicator of the surface

h0(y) =

{
1 if y ∈ X

0 otherwise.

τ(a, b) = ||a| − b|l

Neural single shape reconstruction 40/105

Choice of hX and similarity τ

ℓ2 distance: Signed distance function

h2(y) = min
x∈X
∥y − x∥2

ℓ0 distance: indicator of the surface

h0(y) =

{
1 if y ∈ X

0 otherwise.

τ(a, b) = ||a| − b|l

Neural single shape reconstruction 40/105

Choice of point distribution DX

Data points X = x , not enough to learn the whole field
For the ℓ2 distance:

DX =
∑
i

N (xi , σ
2I)

L2(θ) = Ey∼DX
[|uθ(y)| − h2(y)]

For the ℓ0 distance:

DX =
∑
i

N (xi , σ
2I) +

∑
i

δxi

L0(θ) = Ey∼
∑

i N (xi ,σ2I)[|uθ(y)| − 1] + Ey∼
∑

i δxi
[|uθ(y)|]

Neural single shape reconstruction 41/105

Neural Architecture

MLP Architecture

uθ(x) = φ(wT fl ◦ fl−1 ◦ · · · ◦ f1(x) + b) + c

with:
fi (x) = ν(Wix + bi)

bi ∈ Rdout
i , Wi ∈ Rdout

i ×d in
i , w ∈ Rdout

l and c ∈ R. ν are ReLU activation functions
and φ a strong nonlinearity activation function.
+ Skip connection to the middle layer.

Strong activation
φ : R← R is called a strong non-linearity if it is differentiable almost everywhere,
antisymmetric: φ(a) = −φ(−a) and there exists β ∈ R+ so that 1

β ≥ φ
′(a) ≥ β

for all a ∈ R where it is defined.

In practice we take φ(a) = a or φ(a) = tanh(a) + γa with γ ≥ 0.

Neural single shape reconstruction 42/105

Neural Architecture

MLP Architecture

uθ(x) = φ(wT fl ◦ fl−1 ◦ · · · ◦ f1(x) + b) + c

with:
fi (x) = ν(Wix + bi)

bi ∈ Rdout
i , Wi ∈ Rdout

i ×d in
i , w ∈ Rdout

l and c ∈ R. ν are ReLU activation functions
and φ a strong nonlinearity activation function.
+ Skip connection to the middle layer.

Strong activation
φ : R← R is called a strong non-linearity if it is differentiable almost everywhere,
antisymmetric: φ(a) = −φ(−a) and there exists β ∈ R+ so that 1

β ≥ φ
′(a) ≥ β

for all a ∈ R where it is defined.

In practice we take φ(a) = a or φ(a) = tanh(a) + γa with γ ≥ 0.

Neural single shape reconstruction 42/105

Neural Architecture

MLP Architecture

uθ(x) = φ(wT fl ◦ fl−1 ◦ · · · ◦ f1(x) + b) + c

with:
fi (x) = ν(Wix + bi)

bi ∈ Rdout
i , Wi ∈ Rdout

i ×d in
i , w ∈ Rdout

l and c ∈ R. ν are ReLU activation functions
and φ a strong nonlinearity activation function.
+ Skip connection to the middle layer.

Strong activation
φ : R← R is called a strong non-linearity if it is differentiable almost everywhere,
antisymmetric: φ(a) = −φ(−a) and there exists β ∈ R+ so that 1

β ≥ φ
′(a) ≥ β

for all a ∈ R where it is defined.

In practice we take φ(a) = a or φ(a) = tanh(a) + γa with γ ≥ 0.

Neural single shape reconstruction 42/105

Initialization

Why? Avoid some local minima.

Theorem

Let uθ be an MLP, Let bi = 0, and Wi iid for a normal distribution N (0,
√

2√
dout
i

)

1 ≤ i ≤ l , w =
√
π√
dout
l

1, c = −r then: uθ(x) = ϕ(∥x∥ − r).

Neural single shape reconstruction 43/105

Properties

Plane reproduction: If data points lie on a hyperplane, this plane is a critical
point of the loss.
Local plane reconstruction: Can be applied locally for surfaces.

Neural single shape reconstruction 44/105

Results

Input point cloud, Ball Pivoting, Variational implicit reconstruction, SAL

Neural single shape reconstruction 45/105

Outline

1 Implicit surface reconstruction - a short history

2 Neural single shape reconstruction

3 Geometric prior - Eikonal equation

4 Rendering Implicit surfaces

5 Detailed surfaces

6 INR for Shape Analysis

7 Querying Neural implicits

8 Lipschitz networks

Geometric prior - Eikonal equation 46/105

Implicit neural field

Signed distance field u to a surface S satisfies the Eikonal equation:

∥∇u∥ = 1 with u(x) = 0 ∀x ∈ ∂S

Since a MLP is differentiable use the Eikonal equation as a loss function
[Gropp 2020]

Geometric prior - Eikonal equation 47/105

Implicit neural field

Signed distance field u to a surface S satisfies the Eikonal equation:

∥∇u∥ = 1 with u(x) = 0 ∀x ∈ ∂S

Since a MLP is differentiable use the Eikonal equation as a loss function
[Gropp 2020]

Geometric prior - Eikonal equation 47/105

Optimization Process

Input data a set of points (xi , ni), i ∈ I

Look for u continuous and a.e. C1 such that: ∥∇u∥ = 1
u|∂Ω = 0

∇u|∂Ω] = n
(1)

Loss [Gropp 2020]

l(θ) =
1
|I |

∑
i∈I

(|uθ(xi)|+ τ∥∇uθ(xi)− ni∥) + λEx [(∥∇uθ(x)∥ − 1)2]

Geometric prior - Eikonal equation 48/105

Periodic Activation Functions [Sitzmann 2021]
Replace ReLU by periodic activation function x → sin(ωx). Better
differentiability
Loss:

Lsdf =
1
|I |

∑
i∈I

(|uθ(xi)|+ τ∥∇uθ(xi)− ni∥)

+ λEx [(∥∇uθ(x)∥ − 1)2] + λ2Ex /∈Ω[(∥ψ(uθ(x)∥]

with ψ(uθ(x)) = exp−α|uθ(x)|; α >> 1

Fr
om

[S
itz

m
an

n
20

20
]

Geometric prior - Eikonal equation 49/105

Periodic Activation Functions [Sitzmann 2021]

Fr
om

[S
itz

m
an

n
20

20
]

Geometric prior - Eikonal equation 50/105

Outline

1 Implicit surface reconstruction - a short history

2 Neural single shape reconstruction

3 Geometric prior - Eikonal equation

4 Rendering Implicit surfaces

5 Detailed surfaces

6 INR for Shape Analysis

7 Querying Neural implicits

8 Lipschitz networks

Rendering Implicit surfaces 51/105

Sphere tracing

Light Source

Scene Object

Shadow RayView Ray

Image
Camera

Im
ag

e
by

H
en

rik
,W

ik
ip

ed
ia

Requires to compute ray/surface intersection.
Direct intersection with explicit representations (Meshes/Geometric
primitives)

Rendering Implicit surfaces 52/105

Sphere tracing [Hart 1996]

1 Input: a point x and direction v, a
signed distance field u.

2 Initialize t = 0
3 While t < D

1 xt = x + tv
2 d = u(xt)
3 If d < ε Return xt
4 Else Increment t = t + d

Rendering Implicit surfaces 53/105

After intersection...

Similar to ray tracing, rebounds can
be computed
Direct light only: color = scalar
product of normal at intersection
point and light direction.

Im
ag

e
by

H
iro

ki
Sa

ku
m

a

Rendering Implicit surfaces 54/105

Outline

1 Implicit surface reconstruction - a short history

2 Neural single shape reconstruction

3 Geometric prior - Eikonal equation

4 Rendering Implicit surfaces

5 Detailed surfaces

6 INR for Shape Analysis

7 Querying Neural implicits

8 Lipschitz networks

Detailed surfaces 55/105

Implicit displacement field [Yifan 2022]

Smooth surface

d

Detailed surface

Decompose the surface into a smooth base and a displacement field
Both the smooth surface and the displacement field are learned

Detailed surfaces 56/105

Overview

[Y
ifa

n
20

22
]

Detailed surfaces 57/105

Implicit displacement field - definition

[Y
ifa

n
20

22
]

Definition
Smooth base SDF f , detailed SDF f̂ , an implicit displacement field (IDF)

f (x) = f̂ (x + d(x)n), where n =
∇f (x)
∥∇f (x)∥

Learning - naive version
Minimize at query points x ∈ R3: |f (x)− fGT (x̂)| with x̂ = x + d(x)n

Detailed surfaces 58/105

Implicit displacement field - definition

[Y
ifa

n
20

22
]

Definition
Smooth base SDF f , detailed SDF f̂ , an implicit displacement field (IDF)

f (x) = f̂ (x + d(x)n), where n =
∇f (x)
∥∇f (x)∥

Learning - naive version
Minimize at query points x ∈ R3: |f (x)− fGT (x̂)| with x̂ = x + d(x)n

Detailed surfaces 58/105

Inverse implicit displacement field

[Y
ifa

n
20

22
]

Alternative
Inverse Displacement Mapping d̂ : f (x + d̂(x̂)n) = f̂ (x̂)

One can use n̂ = ∇f (x̂)
∥∇f (x̂)∥ instead of n̂ = ∇f (x̂)

∥∇f (x̂)∥ (error is theoretically
bounded)

Detailed surfaces 59/105

Inverse implicit displacement field

[Y
ifa

n
20

22
]

Alternative
Inverse Displacement Mapping d̂ : f (x + d̂(x̂)n) = f̂ (x̂)

One can use n̂ = ∇f (x̂)
∥∇f (x̂)∥ instead of n̂ = ∇f (x̂)

∥∇f (x̂)∥ (error is theoretically
bounded)

Detailed surfaces 59/105

Architecture and training
Two SIREN networks, with different ω parameters (one low - base, one high -
idf)

Composed distance field

f (x) = NωB
(x)

f̂ (x) = NωB
(x + χ(f (x))NωD

(x)
∇f (x)
∥∇f (x)∥

)

where χ is an attenuation function

Loss

Lf̂ =
∑
x∈R3

λ0|∥∇f̂ (x)∥ − 1|+
∑

(p,n)∈∂Ω

(λ1|f̂ (p)|+ λ2(1− ⟨∇f̂ (p), n⟩))

+
∑
x∈R3

λ3 exp(−100f̂ (x))

Detailed surfaces 60/105

Results - Surface decomposition

[Y
ifa

n
20

22
]

Detailed surfaces 61/105

Detailed surface reconstruction

[Y
ifa

n
20

22
]

Detailed surfaces 62/105

Detail transfer

[Y
ifa

n
20

22
]

Detailed surfaces 63/105

Detail transfer results

[Y
ifa

n
20

22
]

Detailed surfaces 64/105

Outline

1 Implicit surface reconstruction - a short history

2 Neural single shape reconstruction

3 Geometric prior - Eikonal equation

4 Rendering Implicit surfaces

5 Detailed surfaces

6 INR for Shape Analysis

7 Querying Neural implicits

8 Lipschitz networks

INR for Shape Analysis 65/105

Regularizing INR away from the surface

[Clémot, Digne 2023]

INR for Shape Analysis 66/105

Medial Axis

Definition
A point p belongs to the medial axis of a compact shape if it has at least two
distinct nearest neighbors on the shape surface.

INR for Shape Analysis 67/105

Overview

INR training
Point set with

oriented normals
Uniform

surface points
Skeletal points Skeletal complex

MILP solving

INR for Shape Analysis 68/105

Eikonal Equation

Infinite number of solutions
Viscosity solution theory: allows to select
the right solution
Use smooth eikonal equation (not practical
[Lipman 2019])

∥∇u∥ − ε∆u = 1

Consequence: blobs appear

[C
am

ill
i
20

14
]

Infinite nber of solutions
Not an issue close to the surface – but far away?

INR for Shape Analysis 69/105

Which neural network?

MLP (6 layers, 128-256 neurons/layer) with
ReLU activation functions
ReLU yields a function in W 1,p [Lipman
2019]
But: not always easy to train
Sitzman (2021) replaces ReLU with sine
activation function: smooth function

IGR SIREN

u
∥∇

u
∥

∥∇
∥∇

u
∥∥

INR for Shape Analysis 70/105

TV regularization - some theory

Look for a smooth surrogate for the signed distance function
Medial axis: zeros of the gradient
The TV term favors that u has no second order differential content along the
gradient lines

Since ∇u = (ux , uy , uz), it follows:

∇∥∇u∥ = ∇
√
u2
x + u2

y + u2
z

=
1

2∥∇u∥

2uxuxx + 2uyuxy + 2uzuxz
2uxuxy + 2uyuyy + 2uzuyz
2uxuzx + 2uyuzy + 2uzuzz


= Hu

∇u
∥∇u∥

INR for Shape Analysis 71/105

Total loss

Eikonal loss:
Leikonal =

∫
R3

(1− ∥∇u(p)∥)2 dp (2)

Surface loss:

Lsurface =

∫
∂Ω

u(p)2dp +

∫
∂Ω

1− n(p) · ∇u(p)
∥n(p)∥ ∥∇u(p)∥

dp (3)

Learning point loss

Llearning =
∑
p∈P

(u(p)− d(p))2 +
∑
p∈P

1− ∇u(p) · ∇d(p)
∥∇u(p)∥ ∥∇d(p)∥

(4)

+ TV loss

Loss

L = λeLeikonal + λsLsurface + λlLlearning + λTVLTV (5)

INR for Shape Analysis 72/105

Convergence

0 10 20 30 40 50
Epochs

10 2

10 1

100

101 Point cloud loss (0.01)
Eikonal loss (0.01)
Learning points loss (0.00)
Total variation loss (1.07)

INR for Shape Analysis 73/105

Resulting Fields
Ours

0% 0.5% 1% 2%
SD

F

IGR

SD
F

Siren

SD
F

INR for Shape Analysis 74/105

∥∇u∥
Ours

0% 0.5% 1% 2%

IGR

Siren

INR for Shape Analysis 75/105

∇∥∇u∥

Ours
0% 0.5% 1% 2%

Siren

INR for Shape Analysis 76/105

then...

GPU skeleton tracing to extract points on the skeleton
Select a subset based on the Coverage Axis method [Dou 2022]

▶ N points xi , M skeletal points si with distance ri to the surface.
▶ Coverage matrix: D (N ×M)

Dij = 1 if ∥pi − sj∥ − rj ≤ δ and 0 otherwise

▶ Mixed Integer Linear Problem:

min ∥v∥2

s.t. Dv ⪰ 1 (6)

Link the selected points by computing the regular triangulation of weighted
skeletal points and surface points + keep simplices between skeletal points

INR for Shape Analysis 77/105

Results

INR for Shape Analysis 78/105

Results

0%
0.

01
%

0.
03

%

Ours Coverage Axis L1-medial skeleton

INR for Shape Analysis 79/105

Results

Ours Coverage Ours Coverage
Axis Axis

INR for Shape Analysis 80/105

With noise
0% 0.5% 1% 2%

O
ur

s
C
ov

er
ag

e
A

xi
s

M
C
S

INR for Shape Analysis 81/105

With noise
0% 0.5% 1% 2%

O
ur

s
IG

R
SI

R
EN

INR for Shape Analysis 82/105

Outline

1 Implicit surface reconstruction - a short history

2 Neural single shape reconstruction

3 Geometric prior - Eikonal equation

4 Rendering Implicit surfaces

5 Detailed surfaces

6 INR for Shape Analysis

7 Querying Neural implicits

8 Lipschitz networks

Querying Neural implicits 83/105

Projecting points on the surface [Yifan 2021]

Sample points on a neural implicit
Use them to improve robustness and
accuracy

[Y
ifa

n
20

21
]

Querying Neural implicits 84/105

Projection on the surface

[Y
ifa

n
20

21
]

Starting from a point q0 in R3 project it on the surface
Newton Iterations: qk+1 = qk − J+f (qk)fθ(qk) with J+f (qk) =

1
∥Jf (qk)∥2 Jf (qk)

For nonsmooth fields, set an upper threshold for the displacement magnitude

Querying Neural implicits 85/105

Uniform resampling

[Y
ifa

n
20

21
]

Move the points away from dense areas q̃ ← q̃ − αr
α step size
r =

∑
q̃i∈N (q̃) w(q̃i , q̃)

q̃i−q̃
∥q̃i−q̃∥

Querying Neural implicits 86/105

Upsampling

[Y
ifa

n
20

21
]

Move the points away from the edges (Edge-away resampling [Huang 2011])
Each point is :

▶ attracted to points that have a similar normal
▶ repulsed from dense areas.

Upsampled points are reprojected on the surface

Querying Neural implicits 87/105

Application to INR fitting regularization

[Y
ifa

n
20

21
]

Warmup training (300 iterations)
Extract isopoints + add isopoints to data points
Update the isopoints every 1000 iterations

Querying Neural implicits 88/105

Arithmetic Queries [Sharp 2022]

[S
ha

rp
20

22
]

fθ a neural implicit Not necessarily a signed distance field.
Sphere tracing for SDF, interval arithmetic for general implicit field.
Goal: adapt interval arithmetic for neural implicits.

Querying Neural implicits 89/105

Affine arithmetic [Comba and Stolfi 1993]

[S
ha

rp
20

22
]

Interval arithmetic gives loose bounds
Affine arithmetic: tracks affine coefficients through computation
Similar to forward auto-diff: linear operations, nonlinear operations by
linearization (adds affine coefficients!)

MLP
Affine operations followed by ReLU nonlinearity

Querying Neural implicits 90/105

Nonlinearities

x̂ = x0 +
∑N

i=1 xiεi εi ∈ [−1, 1]

Replace f by a linear approximation f̂ (x) ≈ αx + β

γ = maxx∈range(x̂) |f (x)− f̂ (x)|

ŷ = f (x̂) = αx0 + β +
∑N

i=1 αxiεi + γεN+1

Each layer with width W adds W new coefficients.

Solution
Periodically replace a set of coefficients with a single new coefficients

condense(x̂ ,D) = x0 +
∑
i /∈D

xiεi + (
∑
i∈D

|xi |)εN+1

Querying Neural implicits 91/105

Nonlinearities

x̂ = x0 +
∑N

i=1 xiεi εi ∈ [−1, 1]

Replace f by a linear approximation f̂ (x) ≈ αx + β

γ = maxx∈range(x̂) |f (x)− f̂ (x)|

ŷ = f (x̂) = αx0 + β +
∑N

i=1 αxiεi + γεN+1

Each layer with width W adds W new coefficients.

Solution
Periodically replace a set of coefficients with a single new coefficients

condense(x̂ ,D) = x0 +
∑
i /∈D

xiεi + (
∑
i∈D

|xi |)εN+1

Querying Neural implicits 91/105

Nonlinearities

x̂ = x0 +
∑N

i=1 xiεi εi ∈ [−1, 1]

Replace f by a linear approximation f̂ (x) ≈ αx + β

γ = maxx∈range(x̂) |f (x)− f̂ (x)|

ŷ = f (x̂) = αx0 + β +
∑N

i=1 αxiεi + γεN+1

Each layer with width W adds W new coefficients.

Solution
Periodically replace a set of coefficients with a single new coefficients

condense(x̂ ,D) = x0 +
∑
i /∈D

xiεi + (
∑
i∈D

|xi |)εN+1

Querying Neural implicits 91/105

Nonlinearities

x̂ = x0 +
∑N

i=1 xiεi εi ∈ [−1, 1]

Replace f by a linear approximation f̂ (x) ≈ αx + β

γ = maxx∈range(x̂) |f (x)− f̂ (x)|

ŷ = f (x̂) = αx0 + β +
∑N

i=1 αxiεi + γεN+1

Each layer with width W adds W new coefficients.

Solution
Periodically replace a set of coefficients with a single new coefficients

condense(x̂ ,D) = x0 +
∑
i /∈D

xiεi + (
∑
i∈D

|xi |)εN+1

Querying Neural implicits 91/105

Range bounds

[S
ha

rp
20

22
]

Unknown?
Subdivide the box.

Querying Neural implicits 92/105

Range bounds

[S
ha

rp
20

22
]

Unknown?
Subdivide the box.

Querying Neural implicits 92/105

Ray casting vs frustum ray casting

[S
ha

rp
20

22
]

Querying Neural implicits 93/105

Applications

Mesh extraction Closest point

Mesh Intersection

[S
ha

rp
20

22
]Querying Neural implicits 94/105

Outline

1 Implicit surface reconstruction - a short history

2 Neural single shape reconstruction

3 Geometric prior - Eikonal equation

4 Rendering Implicit surfaces

5 Detailed surfaces

6 INR for Shape Analysis

7 Querying Neural implicits

8 Lipschitz networks

Lipschitz networks 95/105

Lipschitz Networks

f : X → Y; ∀(x1, x2) ∈ X 2, dY(f (x1), f (x2)) ≤ KdX (x1, x2)

Goal
Neural networks are learned functions fθ from Rn to Rd , can we design
architectures which yield guaranteed K -Lipschitz functions?

With a small K :

Better generalization
Improved adversarial robustness
Greater interpretability
Wasserstein distance computation (Peyré & Cuturi 2018).
Issue: Lipschitz guarantee without sacrificing expressive power.

Lipschitz networks 96/105

Lipschitz Networks

f : X → Y; ∀(x1, x2) ∈ X 2, dY(f (x1), f (x2)) ≤ KdX (x1, x2)

Goal
Neural networks are learned functions fθ from Rn to Rd , can we design
architectures which yield guaranteed K -Lipschitz functions?

With a small K :
Better generalization

Improved adversarial robustness
Greater interpretability
Wasserstein distance computation (Peyré & Cuturi 2018).
Issue: Lipschitz guarantee without sacrificing expressive power.

Lipschitz networks 96/105

Lipschitz Networks

f : X → Y; ∀(x1, x2) ∈ X 2, dY(f (x1), f (x2)) ≤ KdX (x1, x2)

Goal
Neural networks are learned functions fθ from Rn to Rd , can we design
architectures which yield guaranteed K -Lipschitz functions?

With a small K :
Better generalization
Improved adversarial robustness

Greater interpretability
Wasserstein distance computation (Peyré & Cuturi 2018).
Issue: Lipschitz guarantee without sacrificing expressive power.

Lipschitz networks 96/105

Lipschitz Networks

f : X → Y; ∀(x1, x2) ∈ X 2, dY(f (x1), f (x2)) ≤ KdX (x1, x2)

Goal
Neural networks are learned functions fθ from Rn to Rd , can we design
architectures which yield guaranteed K -Lipschitz functions?

With a small K :
Better generalization
Improved adversarial robustness
Greater interpretability

Wasserstein distance computation (Peyré & Cuturi 2018).
Issue: Lipschitz guarantee without sacrificing expressive power.

Lipschitz networks 96/105

Lipschitz Networks

f : X → Y; ∀(x1, x2) ∈ X 2, dY(f (x1), f (x2)) ≤ KdX (x1, x2)

Goal
Neural networks are learned functions fθ from Rn to Rd , can we design
architectures which yield guaranteed K -Lipschitz functions?

With a small K :
Better generalization
Improved adversarial robustness
Greater interpretability
Wasserstein distance computation (Peyré & Cuturi 2018).

Issue: Lipschitz guarantee without sacrificing expressive power.

Lipschitz networks 96/105

Lipschitz Networks

f : X → Y; ∀(x1, x2) ∈ X 2, dY(f (x1), f (x2)) ≤ KdX (x1, x2)

Goal
Neural networks are learned functions fθ from Rn to Rd , can we design
architectures which yield guaranteed K -Lipschitz functions?

With a small K :
Better generalization
Improved adversarial robustness
Greater interpretability
Wasserstein distance computation (Peyré & Cuturi 2018).
Issue: Lipschitz guarantee without sacrificing expressive power.

Lipschitz networks 96/105

Notations

x input, y output
L layers
l th layer: dimension nl , Wl ∈ Rnl×nl−1

zl = Wlhl−1 + bl , hl = ϕ(zl)

y = zL

CL(X ,R) space of all 1-Lipschitz functions mapping (X , dX) to (R, Lp)

Lipschitz networks 97/105

A first result [Anil 2019]

Composition
Composition of two 1-Lipschitz functions is 1-Lipschitz.

Consequence
Compose 1-Lipschitz affine transform (∥Wx∥p ≤ ∥x∥p,∀x) and 1 - Lipschitz
activations.

ReLU, tanh, maxout are 1-Lipschitz (if scaled appropriately)!

Lipschitz networks 98/105

A first result [Anil 2019]

Composition
Composition of two 1-Lipschitz functions is 1-Lipschitz.

Consequence
Compose 1-Lipschitz affine transform (∥Wx∥p ≤ ∥x∥p,∀x) and 1 - Lipschitz
activations.

ReLU, tanh, maxout are 1-Lipschitz (if scaled appropriately)!

Lipschitz networks 98/105

A first result [Anil 2019]

Composition
Composition of two 1-Lipschitz functions is 1-Lipschitz.

Consequence
Compose 1-Lipschitz affine transform (∥Wx∥p ≤ ∥x∥p,∀x) and 1 - Lipschitz
activations.

ReLU, tanh, maxout are 1-Lipschitz (if scaled appropriately)!

Lipschitz networks 98/105

So... Are we done?

Theorem
Expressivity [Anil 2019] Consider a neural net f : Rn → R, built with ∥W ∥2 ≤ 1
and 1-Lipschitz elementwise monotonic activation functions. If ∥∇f ∥2 = 1 almost
everywhere then f is linear

ReLU, sigmoid, tanh?

Lipschitz networks 99/105

So... Are we done?

Theorem
Expressivity [Anil 2019] Consider a neural net f : Rn → R, built with ∥W ∥2 ≤ 1
and 1-Lipschitz elementwise monotonic activation functions. If ∥∇f ∥2 = 1 almost
everywhere then f is linear

ReLU, sigmoid, tanh?

Lipschitz networks 99/105

Semi definite Programming Layer [Araujo et al. 2019]

SDPL
Residual layer with parameters W ∈ Rk×k , q ∈ Rk , b ∈ Rk

x ← x − 2WT−1σ(W T x + b)

with:

T =
K∑
j=1

|(W TW)ij exp(qi − qj)|

and σ the ReLU activation function.

W weight matrices are square (0-padding on the input)

Output layer: affine layer

x ← wT x

∥w∥2
+ b

Lipschitz networks 100/105

Semi definite Programming Layer [Araujo et al. 2019]

SDPL
Residual layer with parameters W ∈ Rk×k , q ∈ Rk , b ∈ Rk

x ← x − 2WT−1σ(W T x + b)

with:

T =
K∑
j=1

|(W TW)ij exp(qi − qj)|

and σ the ReLU activation function.

W weight matrices are square (0-padding on the input)
Output layer: affine layer

x ← wT x

∥w∥2
+ b

Lipschitz networks 100/105

Application to signed distance field [Coiffier 2024]

Set of points xi with known distances di

Naive approach: combining 1-lipschitz network with a fitting loss:

underestimates the signed distance field + not robust to imperfect data.

Hinge-Kantorovich-Rubinstein loss [Serrurier 2021]

LhKR = LKR + λLm
hinge

with:
LKR =

∑
i

−sign(di)uθ(xi)

Lm
hinge =

∑
i

max(0,m − sign(di)u(xi))

Under mild assumptions, proof that this converges to an approximation of the
signed distance field.

Lipschitz networks 101/105

Application to signed distance field [Coiffier 2024]

Set of points xi with known distances di

Naive approach: combining 1-lipschitz network with a fitting loss:
underestimates the signed distance field + not robust to imperfect data.

Hinge-Kantorovich-Rubinstein loss [Serrurier 2021]

LhKR = LKR + λLm
hinge

with:
LKR =

∑
i

−sign(di)uθ(xi)

Lm
hinge =

∑
i

max(0,m − sign(di)u(xi))

Under mild assumptions, proof that this converges to an approximation of the
signed distance field.

Lipschitz networks 101/105

Application to signed distance field [Coiffier 2024]

Set of points xi with known distances di

Naive approach: combining 1-lipschitz network with a fitting loss:
underestimates the signed distance field + not robust to imperfect data.

Hinge-Kantorovich-Rubinstein loss [Serrurier 2021]

LhKR = LKR + λLm
hinge

with:
LKR =

∑
i

−sign(di)uθ(xi)

Lm
hinge =

∑
i

max(0,m − sign(di)u(xi))

Under mild assumptions, proof that this converges to an approximation of the
signed distance field.

Lipschitz networks 101/105

Application to Signed distance field estimation

[C
oi

ffi
er

20
24

]

Lipschitz networks 102/105

Application to Signed distance field estimation

[C
oi

ffi
er

20
24

]

Lipschitz networks 103/105

Application to Signed distance field estimation

[C
oi

ffi
er

20
24

]

Lipschitz networks 104/105

Conclusion

Overview of Single shape implicit representation techniques
Signed distance field or occupancy function or ??
Combining losses with adequate architectures.

Lipschitz networks 105/105

Temporary page!

LATEX was unable to guess the total number of pages correctly. As there was some
unprocessed data that should have been added to the final page this extra page
has been added to receive it.
If you rerun the document (without altering it) this surplus page will go away,
because LATEX now knows how many pages to expect for this document.

