Geometry Processing and Geometric
Deep Learning

MVA Course, Lecture 4
23/ 10 / 2024

VRIS OVSemnikew
%

\ @y INSTITUT '
Y4 E'Os POLYTECHNIQUE
Y&V DE PARIS

A= Google DeepMind




Deep Learning for 3D shapes
* Main Challenge
3D shapes (typically) do not have a canonical (grid-like) representation!

3D point cloud: an unorganized collection of 3D
coordinates

3D mesh: a collection
of points and triangles
connecting them.
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Last time: Deep Learning on 3D shapes

- Multi-view approaches

- Volumetric approaches

- Spectral methods, pros and cons
- Intrinsic approaches

- Learning via diffusion



Different formulations of Non-Euclidean CNNss
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Global parametrization methods

Key idea: map the input surface to some parametric domain (e.g. 2D

plane) where operations can be defined more easily.
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Global parametrization methods

Key idea: map the input surface to some parametric domain (e.g. 2D
plane) where operations can be defined more easily.

Torus 4-cover
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Standard Euclidean 2D CNN architectures can now be used on 7.

o1
Non-Rigid Shape

ot
The pixels in the geometry image corresponding to points on the original shape are encGled with principal curvatures for rigid
shapes and HKS for non-rigid shapes. Then a standard CNN architecture can be modeled to learn the 3D shape.

Gu, Xianfeng, Steven J. Gortler, and Hugues Hoppe. "Geometry images.” SIGGRAPH 2002.

Sinha, Ayan et al. "Deep learning 3D shape surfaces using geometry images." ECCV 2016

Maron, Haggai, et al. "Convolutional neural networks on surfaces via seamless toric covers." ACM TOG 2017



Projection-based Methods.

Advantages

* Represent the shape as a whole (rather than partial views)
 Can reuse shape parametrization methods
 Enables adoption of Euclidean (2D) learning techniques

Limitations

 Parametrizations are not unique
 Can induce (often heavy) distortion
 Rarely used in practice anymore
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(b) Geometry image 257x257
(bx) Compr. to 1.5KB (not shown)

(a) Original mesh with cut
70K faces; genus 0



Main question:

How to enable neural networks to operate
directly on 3D data?



Approaches for 3D Deep-Learning
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Today: Deep Learning on 3D shapes

Learning on Point clouds

- Main architectures (PointNet, PointNet++, DGCNN, KPConv,

Point Cloud Transformers)

- Applications (surface reconstruction, point cloud filtering)



Point Clouds are everywhere!

- Simplest representation for 3D R

+ Very common output for 3D scanning
- Can be used jointly with images

- Sometimes have collections of points
in higher dimensions!

Partial Inputs

¥ [data set: U



Recap: Point Clouds

x1,y1,z1

Often represented as a
NX3 array

No explicit ‘connectivity’ information

{P1,P2," ", PN} Q O




Learning on Point Clouds Overview

Essential challenge in point-based learning: order invariance!
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Cannot use any method that depends on the order of the points.



Point-Based methods

- Goal: design a NN architecture that can work directly with 3D point clouds
- Must deal with unstructured, unordered data

Object Classification

. Part Segmentation
Point-based
architecture Semantic Segmentation in

scenes

Point Set Point Feature Learning




Two representative tasks:

- Point Cloud classification and segmentation
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Input: (Bx) Nx3 Output: (Bx) C Input: Nx 3 Output: NxC

Representative example of a ‘global’ task Representative example of a pointwise prediction task



Point-based Architectures
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Naive segmentation network 1

m

Input: N x 3

What is wrong with this?

I - ..—”’ I B
Output: NxC

A simple network (shared MLP).
* Input: a 3-dimensional vector (3D coordinates)
*  Output: C-dimensional prediction (class label). Apply the same network to
each point of the point cloud.
¢ (l‘ z) = Pc




Naive segmentation network 1

m

Input: N x 3

What is wrong with this?

I - ..—”’ I B
Output: NxC

Processing each point independently! We will learn a function from 3D
coordinates to a label. No communication between points = “shape awareness”.




Naive segmentation network 2

What is wrong with this?
A o M cat W Cow
I I Chair [ Car
X 0.45
B 0.3
| &
™ . e o
. C :
Input: N x 3 Ll ; | pE R™~ Output:C

Reshape input to a matrix X of size (3*N). Fully connected layers (MLP) from X
to a C-dimensional vector:

MLP(X) =p € R®



Naive segmentation network 2

What is wrong with this?
o p— Bcat B Cow
g I Chair [ Car
A 0.6
0.45
o — > -y 0.3
T \ﬁxl 0.15
Input: Nx 3 pui ’ | Output: C

1. Points tied to their ‘index’ = order in the point cloud (weights for 1st point
not same as, e.g., 3rd point).
2. Cannot handle variable input sizes.



PointNet

ROy
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Qi et al., Pointnet: Deep learning on point sets for 3d classification and segmentation, CVPR 2017



PointNet Overview

First component: global feature vector through a symmetric operation!

Shared MLP

order-

pl p3 symmetric independent
p2 P1 — f(p1) g(f(p;)) = F(P)
feature

vector for the
point cloud

p3 P2 — f(p2)

feature

point cioud VeC;(())ri Iflct)r a
R} > R”
learnable MLP feature vector properties: [fﬁpz), s ( )]

Only depends global
on the point

Qi et al., PointNet: Deep learning on point sets for 3d classification and segmentation, CVPR 2017



PointNet: Basic Operations

shared weights

MLP + Max Pooling / / \

f{x1, 20, ...2,}) = max{MLP(x,), MLP(x5), ... MLP(z,)}

The symmetric operation can be anything that is order-independent.

Original PointNet used max. Other variants use sum.

Qi et al. “PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation” CVPR 2017



PointNet: Basic Operations

MLP + Max Pooling

f({ﬂfl,il?g, .

Xnt) =

shared weights

//\

max{MLP(z1), MLP(z3), ... MLP(z,)}

One more component: Learned spatial transformation

nxd

MLP

shared weights

n X dout

\

MAX reshape to
POOLING MLP P

> 5 dxd matrix
Ixdow —  F——1xd T

_/

Motivation: the network should first
transform the shape before analyzing it.

Qi et al. “PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation” CVPR 2017



PointNet Architecture

Composition of these two basic operations:

1. MLP + Max Pooling

2. Learned transformation matrix

Qi et al. “PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation” CVPR 2017



PointNet Architecture

input
transform

feature
transform

mlp (64,128,1024)

max mlp
pool ;074 (512,256,k)

global feature i

Original design has two learned transformations: on the input 3d
embedding and on the learned (64-dim) features.

Qi et al. “PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation” CVPR 2017



PointNet Architecture

input
transform

feature
transform

mlp (64,128,1024)

max mlp
pool ;074 (512,256,k)

global feature i

Multi-Layer Perceptron (shared weights) to uplift the dimensions (important).

Qi et al. “PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation” CVPR 2017



L
PointNet Architecture

input mlp (64,64) feature mlp (64,128,1024) max mlp
transform > 5 transform & f pool ;554 (512,256,k)

Max Pooling to extract a global feature (i.e., a single vector that summarizes the
entire point cloud).

Qi et al. “PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation” CVPR 2017



L
PointNet Architecture

input mlp (64,64) feature mlp (64,128,1024) max mlp
transform > f transform & - pool 1024 (512,256,k)

*input points
nx3

matrix
multiply |

Qi et al. “PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation” CVPR 2017
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PointNet Architecture: Segmentation

input mlp (64,64) et mlp (64,128,1024)
transform > > transform > >

" input points
nx3
y
A A
nx3

................................................................................................................................................................................................................

 The basic version produces a global feature for the entire
point cloud. Useful for shape classification.

* In some problems (e.g., segmentation) we need an output
label for each point. The label has to be informed by the
overall shape structure (i.e., cannot be done independently).

Complete Inputs

Qi et al. “PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation” CVPR 2017



PointNet Architecture: Segmentation

input mlp (64,64) feature mlp (64,128,1024) max
b - > = i
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Qi et al. “PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation” CVPR 2017



PointNet Architecture: Segmentation

input mlp (64,64) feature mlp (64,128,1024) max
g transform 2 3 . transform . > I - pool 1074
(28] (o8]
g S als shared \g g . \g shared nx1024 ll T |
obal reature
3 e = s
...... 3l—‘—-b_-___’—r——pointfeatures
o — : :
| | BN o1 | 5 |2
Stack mid-level features and n shared | = | shared | £ |3
: =
the global feature  — i E
" mlp (512,256,128) mlp (128,m)

Another MLP to extract the final score for each point



Object Part 3 P"... ;
ReSUItS Segmentation :
' table
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Object Classification motie” By guitar

input | #views | accuracy | accuracy
avg. class | overall

SPH [!1] mesh - 68.2 -

3DShapeNets [28] | volume 1 77.3 84.7
VoxNet [17] volume 12 83.0 85.9
Subvolume [ 18] volume 20 86.0 89.2
LFD [28] image 10 75.5 -

MVCNN [23] image 80 90.1 -

Ours baseline point - 72.6 774
Ours PointNet point 1 86.2 89.2

Table 1. Classification results on ModelNet40. Our net achieves
state-of-the-art among deep nets on 3D input.

Not even state of the art in 2017.
However started a “revolution”
in 3D deep learning.

Scene
Segmentation




Applications in Shape Reconstruction

- Estimate a surface from its point cloud sampling




Common Reconstruction Pipeline

Main steps for reconstruction from point clouds:

Outlier removal — remove points
If have multiple scans, align them.
Smoothing — remove local noise.

Estimate normals at the points.

Surface fitting (e.g. Poisson-based)
« Triangle mesh extraction.

AR

Wolf et al. / Point Cloud
Noise and Outlier Removal
for Image-Based 3D
Reconstruction, 2016



(some of the) Challenges:

Tons of parameters

Can over{=—== “|ures or overfit to noise
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Theoreti
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are required

Berger et al. / A Survey of
Surface Reconstruction

[HDD* 92], [HDD* 92] + Poisson, [LW10], [LW10] + Poisson /rom Point Clouds, 2016



Key steps for 3D reconstruction

Main steps for reconstruction from point clouds:

Outlier removal

If have multiple scans, align them.
Smoothing

Estimate normals

O o=

Surface fitting (e.g. Poisson-based)
« Triangle mesh extraction.



Traditional Approaches — Normal Estimation

Examples:

Jet fitting  MLS Sphere Fitting
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Surface reconstruction Estimating differential ~ Algebraic Point Set
from unorganized points,  quantities using Surfaces, Guennebaud
Hoppe et al., 1992 polynomial fitting of and Gross, 2007

osculating jets, Cazals
and Pouget, 2005



Limitations of Axiomatic Approaches

- Always rely on a user-specified neighborhood
- Can lead to under-fitting (smoothing) near sharp edges or over-fitting to noise

- Normal orientation is hard.

Small patch size Large patch size

I
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L

Sensitive to noise Over-smoothing



PCPNET: Learning Local Properties

Intuition:

1) Normal and curvature estimation is a local operation.

2)  Process shapes by patches.

3) Can sample point clouds from surfaces for almost unlimited training data.

feature
vector for a
local patch
local patch feature vector for
Di P; local properties of p;: H (P;)

PCPNET: Learning Local Shape Properties from Raw Point Clouds,
Guerrero, Kleiman, O., Mitra, 2018



PCPNET architecture

deep network, trained end-to-end

A
‘4 A\
Pre-processing Point Functions = Symmetric =~ Regressor
(center and scale) Operation
- ) = H(P;)—>r1(pi, P)
K2 (p 79 IP))
. feature local
point cloud ]P) vector of properties at
and point p i local patch ]]_:D i ]P)’L p )

PCPNET: Learning Local Shape Properties from Raw Point Clouds,
Guerrero, Kleiman, O., Mitra, 2018



PCPNet multi-scale

Three radii, 3072 point functions, concatenate patch features

Z h(p;) H(IP);[)
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Normal Estimation Results

21 . average over dataset
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PCPNET: Learning Local Shape Properties from Raw Point Clouds, Guerrero, Kleiman, O., Mitra, 2018



Oriented Normal Estimation & Surface
Reconstruction

jet small +
point cloud MST orient. prop. ours

90

angle error (deg.)




Key steps for 3D reconstruction

Main steps for reconstruction from point clouds:

Outlier removal

If have multiple scans, align them.
Smoothing

Estimate local differential properties

Surface fitting (e.g. Poisson-based)
« Triangle mesh extraction.

O o=



PointCleanNet

Main general idea:
Learn to denoise point clouds and to remove outliers

Similar approach to PCPNet, except fit a local displacement vector, and a
classifier score for outliers.

PointCleanNet: Learning to Denoise and Remove Outliers from Dense Point
Clouds, M.-]. Rakotosaona, V. La Barbera, P. Guerrero, N. Mitra, M. O.




PointCleanNet — Architecture

PointCleanNet Architecture and description

OUTLIER DETECTOR
QSTN; STN,

PP

C per-point 644644128 k k4512 256 #10
4 feature vector per-point per-patch
hfeature vector Hk erature vector
DENOISER

STN2 npoims/ Z hl (pj)
m || 7P,
N by B

. . . | FNNg (O ?
364464 o C peroit 64644128 k : " ‘ k"512*12:6*"o f(lpi)L
4 er-poin r-patci
(SRt ects By h:)eatﬂre vector Hk H satl‘:re vector pz

PointCleanNet: Learning to Denoise and Remove Outliers from Dense Point Clouds,
M.-]. Rakotosaona, V. La Barbera, P. Guerrero, N. Mitra, M. O., 2019



PointCleanNet — Results

Results on real data

PointCleanNet: Learning to Denoise and Remove Outliers from Dense Point Clouds,
M.-J. Rakotosaona, V. La Barbera, P. Guerrero, N. Mitra, M. O., 2019



PointCleanNet — Results

Results on real data

PointCleanNet: Learning to Denoise and Remove Outliers from Dense Point Clouds,
M.-J. Rakotosaona, V. La Barbera, P. Guerrero, N. Mitra, M. O., 2019



Limitations of PointNet

input mlp (64,64) feature mlp (64,128,1024) - il

£ transform : g transform i pool o4 (512,256,k)
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? L | | global feature I |

. output scores -
Does not extract a sequence of hierarchical -

features; except a global feature .y
D\D; \\\\
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Convolutions Fully Connected

Subsampling



Limitations of PointNet

input mlp (64,64) feature mlp (64,128,1024) max mlp
g transform > = transform < v pool 074 (512,256,k)
2 |en ) <t <t
g‘ - ¥ shared E = . \g shalred nx1024 l il I
- global feature
I _>'_l_‘__ _"_I_,_> & k |
6. output scores -
R R Image Maps
Does not extract a sequence of hierarchical i o

features (like CNNs); except a global feature \\\N‘m
Does not take into account the local > \\ i .

Convolutions Fully Connected

ge()metry formed by pOintS. Subsampling



Point-based Architectures
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PointNet++

Uses PointNet module as a building block Transforms a set of m points to a
single point with a feature vector

MLP

MAX
POOLING M L P

Ixdow — F——1xd

mx d

multiply

shared weights

PointNet module

Extracts hierarchical features by recursively applying PointNet module

Qi et al. “PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space” 2017



PointNet++

Sampling

Samples n’points using farthest point sampling

Grouping

For each of the sampled point, selects K points
using either

e K-nearest neighbors or
e K points within maximum radius of R

PointNet Layer

Applies PointNet-module to each K-grouping
of points and generates a feature vector

sampling & pointnet sampling &
grouping grouping

Qi et al. “PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space” 2017



PointNet++

Sampling

Samples n’points using farthest point sampling

Grouping

For each of the sampled point, selects K points
using either

e K-nearest neighbors or
e K points within maximum radius of R

PointNet Layer

Applies PointNet-module to each K-grouping
of points and generates a feature vector

Similar to convolution + pooling!

sampling & = pointnet ~ sampling &
grouping grouping

’ : \7 \ Output
&/x \ ' f FuIIy'\Connected

Convolutions

Subsampling

Qi et al. “PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space” 2017



PointNet++ for Classification and Segmentation

.........................................................................

—> - : o
interpolate unit interpolate unit
..... pointnet pointnet
Classification

—

sampling & = pointnet ~ sampling & pointnet
grouping grouping
& M J)
NG G
set abstraction set abstraction

pointnet fully connected layers

Qi et al. “PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space” 2017



PointNet++ for Classification

Hierarchical point set feature learning

Classification
> 3
. . -
sampling & = pointnet ~ sampling & pointnet 8
grouping grouping a
\ A J) i
NG G S

set abstraction set abstraction

pointnet fully connected layers

Qi et al. “PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space” 2017



PointNet++ for Classification

Max Pool + MLP on features of
the final layer
Hierarchical point set feature learning

—

17}
(5]
. . -
sampling & = pointnet ~ sampling & pointnet 8
grouping grouping a
\2 A J) i
NF Y S

set abstraction set abstraction

pointnet fully connected layers

Qi et al. “PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space” 2017



PointNet++ for Segmentation

.........................................................................

Hierarchical point set feature learning Segmentation

—

interpolate unit

! interpolate unit
pointnet pointnet

—

sampling & = pointnet ~ sampling& = pointnet
grouping grouping
\ NS o
Y Y . . .
e - Need to go back to the original points

Qi et al. “PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space” 2017



PointNet++ for Segmentation

.........................................................................

Hierarchical point set feature learning Segmentation

—

interpolate unit

! interpolate unit
pointnet pointnet

—

sampling &~ pointnet  sampling &~ pointnet 1. Residual connections
grouping grouping .
N Y I\ - / 2. Interpolation
set abstraction set abstraction

Qi et al. “PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space” 2017



PointNet++ for Segmentation

interpolation

residual connections

.........................................................................

Hierarchical point set feature learning Segmentation

o »
§ 8(0

—

interpolate unit

! interpolate unit
pointnet pointnet

—

sampling &~ pointnet  sampling &~ pointnet 1. Residual connections
grouping grouping .
N Y I\ - / 2. Interpolation
set abstraction set abstraction

Qi et al. “PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space” 2017



Non-uniform Point Density

PointNet and PointNet ++

implicitly assumes uniform
point density

- e.g. k-nearest neighbors
in the grouping

Becomes fragile with non-
uniform point density

—

sampling & pointnet sampling & pointnet
grouping grouping

Qi et al. “PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space” 2017



Fix for Non-uniform Point Density

. . . —e— PointNet vanilla
Multi-scale Multi-resolution 90 — —=— PointNet vanilla (DP)
grouping grouping . == Ours (SSG)
X o5 e Ours (SSG+DP)
g —s— Ours (MSG+DP)
concat concat :?3 —=— Ours (MRG+DP)
< 80
Ours = PointNet++
75

1000 800 600 400 200

Number of Points

1024 points 512 points 256 points 128 points

+ Random Point Dropout at
Training

Qi et al. “PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space” 2017



PointNet++

Better Performance than PointNet

Increased Compute Time

Might not take into account the

local relations between points _ —y Ty —
pointnet sampling &
grouping grouping

Geometry of hierarchical features
is pre-determined

Qi et al. “PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space” 2017



Point-based Architectures
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DGCNN (EdgeConv): Basic Idea

X.

Form a local graph by

X.
Ji3 \ /
connecting nearby points
Xjia S
@
X
Tis

Wang et al. “Dynamic Graph CNN for Learning on Point Clouds” ACM Trans. Graph 2019



DGCNN (EdgeConv): Basic Idea

E dge( ony Ui3
Form a local graph by \ /

connecting nearby points .// \. '// \0

Apply convolution-like
operation on this graph

vi = Ui jer holzi,x))

Wang et al. “Dynamic Graph CNN for Learning on Point Clouds” ACM Trans. Graph 2019



DGCNN (EdgeConv): Basic Idea

Edge( ony

Form a local graph by

Xiis \ /
connecting nearby points .// \. '// \0

Apply convolution-like
operation on this graph

vi = Ui er holzi,x;))

.

invariant function like max or sum



DGCNN (EdgeConv): Basic Idea

E dge( ony Ui3
Form a local graph by \ /

connecting nearby points / \0 '// \o

Apply convolution-like
operation on this graph

vi = Ui er holzi,x;))
Nearby: with respect to node feature <‘

vectors x;
1
invariant function like max or sum



EdgeConv: Basic Idea

Form a local graph by
connecting nearby points

PointNet++

Connects k-NN from position
of points

Edge( ony

e oA
.//\ .//"\-

EdgeConv

Connects k-NN from feature vectors
of points

Does this at each layer



EdgeConv Architecture

Step 1: Form a local graph by connecting nearby points with respect to I;

Step 2: Update feature vectors

/
zi < ;= Ui jer holwi, x;)




EdgeConv Architecture

[}ep 1: Form a local graph by connecting nearby points with respect to I;

Step 2: Update feature vectors

/
zi < ;= Ui jer holwi, x;)

U iterate Need to compute a new graph at each stage



EdgeConv Architecture

er 1: Form a local graph by connecting nearby points with respect to I;

Step 2: Update feature vectors

/
zi < ;= Ui jer holwi, x;)

Example

U iterate ]’L@(CE@, $]) — U(@a ' (37] — CU@) + @bxl)




Feature Space and Semantically Similar Structures

layer

far

near

Wang et al. “Dynamic Graph CNN for Learning on Point Clouds” ACM Trans. Graph 2019



Feature Space and Semantically Similar Structures

layer

near B El

Wang et al. “Dynamic Graph CNN for Learning on Point Clouds” ACM Trans. Graph 2019



Feature Space and Semantically Similar Structures

near B El

Wang et al. “Dynamic Graph CNN for Learning on Point Clouds” ACM Trans. Graph 2019



Feature Space and Semantically Similar Structures

™

layer

far

near

Wang et al. “Dynamic Graph CNN for Learning on Point Clouds” ACM Trans. Graph 2019



Limitations of EdgeConv

X. X.

@ .jlz € e,". @ Ji2
in3 \ / EdgeConv Xj,g. Ui3 7
Computationally more —

e,
expensive than PointNet and .//C\. .e/fd <

PointNet++ X, .



Limitations of EdgeConv

l:dgcConv
Computationally more

X \ /
expensive than PointNet and .// \. .//. \0

PointNet++

Ji1

Is this really a convolution : F—T1.,. . .oy
operation? Ti <= T3 = Uji(i,j)eE h@(x“ :EJ>



Point-based Architectures
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Convolution

9@ = [ f2)g-a)d




Convolution on Point Clouds?

(e = [ f)g - o)

We only have points on X
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Convolution on Point Clouds?

.F*g foz




Convolution on Point Clouds

Fro= 3 S0




Convolution on Point Clouds

(F* g Z f g . x) Point Cloud
i€ N () k J = {(3727 fz)}z

Neighborhood Kernel
Key question: how to represent ~ N(x) Ly o
the kernel function g ? ‘. Iy ,,
‘4



Convolution on Point Clouds

(F*g)(z

= > fi-gla

zEjV(a: k

Neighborhood Kernel

Key question: how to represent  N(x)

the kernel function g’

Option: have discrete kernel
points, and interpolate elsewhere.

Point Cloud

F = {(i, fi)}

Positions of the kernel points are
independent of the point cloud.



Kernel Point Convolution (KPConv)

g(z)= Y h(z, )W

1<k<K

Filter Values

A specific choice of kernel function

Thomas et al. “KPConv: Flexible and Deformable Convolution for Point Clouds” 2019



Kernel Point Convolution (KPConv)

g(z)= Y h(z, )W

1<k<K

Filter Values

where

h(z, z;,) = max (O, 1 —

Thomas et al. “KPConv: Flexible and Deformable Convolution for Point Clouds” 2019



KPConv Performance

ModelNet40 ShapeNetPart

Methods OA mcloU mloU

SPLATNet [34] - 83.7 85.4

SGPN [42] - 82.8 85.8

3DmFV-Net [9] 91.6 81.0 84.3

SynSpecCNN [45] - 82.0 84.7

RSNet [] 5] - 8l.4 84.9 KP-FCNN Ground Truth

SpecGCN [40] 91.5 - 85.4

PointNet++ [27] 90.7 81.9 85.1

SO-Net [19] 90.9 81.0 84.9

PCNN by Ext [2] 92.3 81.8 85.1

SpiderCNN [45] 90.5 82.4 85.3

MCConv [13] 90.9 - 85.9

FlexConv [10] 90.2 84.7 85.0

PointCNN [20] 92.2 84.6 86.1

g&g;ﬁiﬁl\l i 92_'2 Sg‘g g‘é'g Convolution-based approaches often perform better
KPCony rigid —r =0 BED than PointNet, etc. especially on local understanding

KPCony defrm 99.7 85.1 86.4 tasks, such as semantic segmentation.

Thomas et al. “KPConv: Flexible and Deformable Convolution for Point Clouds” 2019



Sparse Volumes: An Alternate Approach

Approaches so far:
A
e //
/
pe
A
,//
P
Point cloud: N X 3 array ' (Sparsely Occupied) 3D Grid
(or N X (3 + k) if additional pointwise features) with per-voxel occupancy + optional features

4D Spatio-Temporal ConvNets: Minkowski Convolutional Neural Networks, Choy et al. 2019



Sparse Volumes: An Alternate Approach

A ‘normal’ convolution spreads
information to initially empty regions

Sparse convolution: Unoccupied cells
always have zero features (i.e. only apply
operator on occupied cells)
(analogous to a graph)

4D Spatio-Temporal ConvNets: Minkowski Convolutional Neural Networks, Choy et al. 2019




Sparse Volumes: An Alternate Approach

Sparse Conv 3x3x3+3, 64
+
Sparse Conv 3x3x3+3, 64

pool
Minkowski Engine enables convolution with sparse m_ =
=
|
—
o]

tensors
3D: XYZ
4D: XYZ + time

‘Sparse Comv 3x3x3+3, 64

+
—
+

L;
‘Sparse Comv 3x3x3+3, 256

3
w3

+3, 2
| Comv3<3,256 | sparse Conv3<3+3+3,256

—_—

Conv 3x3,256 Sparse Conv 3x3x3+3, 256
Conv 3x3,256 Sparse Conv 3x3x3+3, 256
Comv 33,512 v 3x3x3+3, 512

Sparse Comv 3x3x3+3, 512

] +
=3

Figure 4: Architecture of ResNet18 (left) and MinkowskiNet18
(right). Note the structural similarity. x indicates a hypercubic
kernel, + indicates a hypercross kernel. (best viewed on display)

4D Spatio-Temporal ConvNets: Minkowski Convolutional Neural Networks, Choy et al. 2019



Sparse Convolution for semantic segmentation

Figure 7: Visualization of Scannet predictions. From the top, a Figure 8: Visualization of Stanford dataset Area 5 test results.
3D input pointcloud, a network prediction, and the ground-truth. From the top, RGB input, prediction, ground truth.

4D Spatio-Temporal ConvNets: Minkowski Convolutional Neural Networks, Choy et al. 2019



Sparse Convolution for semantic segmentation

Table 1: 3D Semantic Label Benchmark on ScanNet' [5]

Method | mIOU

ScanNet [5]
SSC-UNet [10]
PointNet++ [23]
ScanNet-FTSDF
SPLATNet [28]
TangetConv [29]
SurfaceConv [20]
3DMV? [6]
3DMV-FTSDF#
PointNet++SW

30.6
30.8
33.9
383
39.3
43.8
442
48.4
50.1
523

MinkowskiNet42 (5cm)

| 67.9

SparseConvNet [10]F
MinkowskiNet42 (2cm)f

72.5
73.4

Easily scalable to scenes compared to
PointNet/ DGCNN based methods

Although comparable performance for
object-level reasoning

Can be more robust to changes in point
sampling (better for transfer learning).

4D Spatio-Temporal ConvNets: Minkowski Convolutional Neural Networks, Choy et al. 2019

PointContrast: Unsupervised Pre-training for 3D Point Cloud Understanding, Xie et al., 2020



Sparse Convolution for semantic segmentation

Table 1: 3D Semantic Label Benchmark on ScanNet' [5]

Method | mIOU

ScanNet [5]
SSC-UNet [10]
PointNet++ [23]
ScanNet-FTSDF
SPLATNet [28]
TangetConv [29]
SurfaceConv [20]
3DMV? [6]
3DMV-FTSDF#
PointNet++SW

30.6
30.8
33.9
383
39.3
43.8
442
48.4
50.1
523

MinkowskiNet42 (5cm)

| 67.9

SparseConvNet [10]F
MinkowskiNet42 (2cm)f

72.5
73.4

Easily scalable to scenes compared to
PointNet/ DGCNN based methods

Although comparable performance for
object-level reasoning

Can be more robust to changes in point
sampling (better for transfer learning).

4D Spatio-Temporal ConvNets: Minkowski Convolutional Neural Networks, Choy et al. 2019

PointContrast: Unsupervised Pre-training for 3D Point Cloud Understanding, Xie et al., 2020



PointTransformer]|s]

Many transformer
architectures for point clouds.

Natural fit since point couds
are unordered sets anyway.

B4
Point Transformer Often leadS tO more
parameters/data to train on,

but also better results.

“Apparently, the straightforward adoption of Transformers does not achieve satisfactory performance
on point cloud tasks” [1]

[1] Yu, Xumin, et al. "Point-bert: Pre-training 3d point cloud transformers with masked point modeling." CVPR 2022.



PointTransformer]|s]

Many transformer
architectures for point clouds.

Natural fit since point couds
are unordered sets anyway.

B4
Point Transformer Often leadS tO more
parameters/data to train on,

but also better results.

Zhao, et al. "Point transformer." CVPR 2021.
Guo et al. "PCT: Point cloud transformer," CVM, 2021.



PointTransformer|s]

input: (x, p) Basic dot product self-attention:
@, : linear 6: mlp : linear T
| L | Yi = Z P(SO(Xi) ¢(Xj)) a(x;),
%P\/&ﬁ/ x;EX
dnj
| aggregation I 90: Queries
loutput: ¥,p)
Y @ Keys
Q. . Values
p . softmax

Zhao, et al. "Point transformer." CVPR 2021.
Guo et al. "PCT: Point cloud transformer," CVM, 2021.



PointTransformer|s]

input: (x, p)
@, : linear | l 6: mlp l ‘ a: linear |
l aggregation I

l output: (v, p)

Overall very similar aggregation to
DGCNN but “closer” to the Transformer
attention mechanism.

Zhao, et al. "Point transformer." CVPR 2021.
Guo et al. "PCT: Point cloud transformer," CVM, 2021.

Uses a slight variant (vector attention):

vi= Y, p(v(e(x:)—(x;)+6)) © (alx;)+5)

X; €X (1)

® L o & S

. Queries

. Keys

. Values

. Softmax

. Positional encoding

: MLP for aggregation

. Hadamard (pointwise) product



PointTransformer]|s]

(N, 32) (N/4,64)  (N/16,128)  (N/64,256) (N/256,512) (N/256,512)  (N/64,256)  (N/16,128)  (N/4,64) (N,32)  (N,Dow)

Transition Up

Downsampling and Upsampling for local prediction tasks

Zhao, et al. "Point transformer." CVPR 2021.



PointTransformer]|s]

Input Ground Truth Point Transformer

. ceiling . floor . wall beam . column . window . door . table . chair . sofa . bookcase board . clutter

Figure 5. Visualization of semantic segmentation results on the S3DIS dataset.

Zhao, et al. "Point transformer." CVPR 2021.



Many More Point Transformers!

Architectures or Major Training Strategies
1."Point Transformer" - Zhao et al., CVPR, 2021.
2."PCT: Point cloud transformer" - Guo et al.,, CVM, 2021.
3."Point-bert: Pre-training 3D point cloud transformers with masked point modeling" - Yu et al., CVPR, 2022.
4."Masked autoencoders for point cloud self-supervised learning" - Pang et al., ECCV, 2022.
5."Point-m2ae: Multi-scale masked autoencoders for hierarchical point cloud pre-training" - Zhang et al., NeurIPS, 2022.
6."Point Transformer v2: Grouped vector attention and partition-based pooling" - Wu et al., NeurIPS, 2022.
7."Point Transformer V3: Simpler Faster Stronger" - Wu et al., CVPR, 2024.
8."Pointnext: Revisiting PointNet++ with improved training and scaling strategies" - Qian et al., NeurIPS, 2022.

Multi-modal Models (Often Transformer-based)
1."Ulip: Learning a unified representation of language, images, and point clouds for 3D understanding" - Xue et al., CVPR, 2023.
2."Ulip-2: Towards scalable multimodal pre-training for 3D understanding" - Xue et al., CVPR, 2024.
3."3D-LLM: Injecting the 3D world into large language models" - Hong et al., NeurIPS, 2023.
4."Openshape: Scaling up 3D shape representation towards open-world understanding” - Liu et al., NeurIPS, 2024.
5."Learning 3D representations from 2D pre-trained models via image-to-point masked autoencoders" - Zhang et al., CVPR, 2023.
6."Contrast with reconstruct: Contrastive 3D representation learning guided by generative pretraining" - Qi et al., ICML, 2023.
7."Pointllm: Empowering large language models to understand point clouds" - Xu et al., ECCV/, 2024.

Surveys
1."A survey of visual transformers" - Liu et al., [IEEE TNNLS, 2023.
2."Unsupervised point cloud representation learning with deep neural networks: A survey" - Xiao et al., TPAMI, 2023.
3."Mm-llms: Recent advances in multimodal large language models" - Zhang et al., arXiv, 2024.
4."3D vision with transformers: A survey" - Lahoud et al., arXiv, 2022.
5."Transformers in 3D point clouds: A survey" - Lu et al., arXiv, 2022.



Point Cloud 3D Deep Learning

Advantages

« Extreme versatility (everything is a point cloud).
 Efficiency and robustness

Limitations

« Not very adapted to non-rigid shape analysis
* Basic versions are not rotation-invariant
* Not great for generative modeling.

Object Classification

N ) Part Segmentation
\ .
y 3
‘ / PointNet L"/ Semantic Segmentation in
’ scenes

Point Set Point Feature Learning




Point Cloud 3D Deep Learning

Deep Learning on 3D
Point Cloud
-
3D Shape Classification (SD Object Detection and Tracking) 3D Point Cloud Segmentation
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Fig. 1: A taxonomy of deep learning methods for 3D point clouds.

https://github.com/QingyongHu/SoTA-Point-Cloud

Guo, Yulan, et al. "Deep learning for 3d point clouds: A survey." IEEE TPAMI 2020


https://github.com/QingyongHu/SoTA-Point-Cloud

3D Deep Learning — there is much more work to do!

Our group at Ecole Polytechnique
*  We focus on 3D shape analysis tasks & everything related!
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!m&x%“«lmtuﬁji
e — 4|
=T i -«

LLMs for 3D shape
Learning on protein surfaces 3D scene generative modeling understanding

Mallet et al. "AtomSurf; Surface Maillard et al. "DeBaRA: Denoising-Based 3D Abd \ h em t 1. "Zer

-shot 3d sf
epresentation for Learning on Protein Room Arrangerent Gener ration: * NewrlP§, SIGGRAPH Asi zoza
ctures." arXly 2309.16519 (2023).

e

Learnable representations for 3D Architectures learning on graphs Learning for non-rigid 3D data

etal \ "PONG; NQ Neural QEM-based Maruani et al. "PoNQ: a Neural QEM-based Ataiki et al.“Shape non-rigid kinematics
M R Gpresentation. SovPR 2024 Mesh Representation.” CVPR 2024 SKK)* NeurlPs 2023




3D Deep Learning — there is much more work to do!

Our group at Ecole Polytechnique
*  We focus on 3D shape analysis tasks & everything related!

Internships:

 Internships available with PhD funding (priority to M2
students interested in pursuing a PhD)

« Focus on paper publications (great if you already have
experience, not a deal breaker if you don't).

* Reach out to me (or Emery!) if you are interested.
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