Geometry Processing and Geometric Deep Learning

MVA Course, Lecture 3, part 1

16/10/2024

Maks Ovsjanikov

My Background

Positions:

2018 – Full Professor, GeomeriX team, Ecole Polytechnique 2024 – Visiting Researcher, Google DeepMind, Paris

Research Profile:

Analysis and Deep Learning on 3D data, *classification*, *segmentation*, *correspondence*, *reconstruction*, *alignment*, etc.

Today: Deep Learning on 3D shapes

- Recap of CNNs and their properties
- Multi-view, extrinsic, projection-based approaches
- Spectral methods, pros and cons
- Intrinsic approaches
- Learning via diffusion

Learning on images

Test images for "Hammer"

Learning on different data

Deep Learning for 3D shapes

Main Challenge

3D shapes (typically) do not have a canonical (grid-like) representation!

3D point cloud: an *unorganized collection of 3D coordinates*

3D mesh: a *collection of points* and *triangles* connecting them.

Main question:

How to design neural networks on *unstructured domains* such as 3D shapes?

Domain vs data on a domain

Images are grids of pixels!

Domain vs data on a domain

In computer vision images are *data* on a fixed domain (grid of pixels). In 3D, h (the shape) is what we're learning on.

Fixed vs different domains

- In graph neural networks, we often deal with problems on a fixed domain (e.g., predicting communities).
- In 3D (and other fields), we typically want the solutions to *generalize to unseen domains/shapes*.

Approaches for 3D Deep-Learning

Multi-view based

Volumetric

Intrinsic (surface-based)

Point-based

3D Shape Analysis and Learning

Main questions:

- How to *represent* the 3D shapes to enable learning?
- How to design *robust* and *principled* data analysis approaches?

Some approaches covered today

Image-based

Voxel-based

Extrinsic

Embedding domain

Spectral domain

Intrinsic (surface-based)

Background

Supervised learning

- Data vectors $\mathbf{f} \in \mathbb{R}^p$ (e.g. for 512×512 images $p \approx 10^6$)
- Unknown classification functional $y: \mathbb{R}^p \to \{1, \dots, L\}$ in L classes
- Training set

$$S = \{ (\mathbf{f}_i \in \mathbb{R}^p, \, y_i = y(\mathbf{f}_i)) \}_{i=1}^T$$

• Parametric model y_{Θ} of y

Supervised learning

- Data vectors f ∈ ℝ^p (e.g. for 512×512 images p ≈ 10⁶)
- Unknown classification functional $y: \mathbb{R}^p \to \{1, \dots, L\} \text{ in } L \text{ classes}$
- Training set

$$S = \{ (\mathbf{f}_i \in \mathbb{R}^p, y_i = y(\mathbf{f}_i)) \}_{i=1}^T$$

• Parametric model y_{Θ} of y

Supervised learning: find optimal model parameters by minimizing the loss ℓ on the training set

$$\Theta^* = \operatorname*{argmin}_{\Theta} \sum_{i=1}^T \ell(y_{\Theta}(\mathbf{f}_i), y_i)$$

Basic Neural Network (NN)

Single linear layer

Linear layer
$$g_l = \xi \left(\sum_{l'=1}^p f_{l'} w_{l,l'} \right)$$
 $\begin{array}{c} l = 1, \dots, q \\ l' = 1, \dots, p \end{array}$

Activation, e.g. $\xi(x) = \max\{x, 0\}$ rectified linear unit (ReLU)

Parameters layer weights W (including bias)

NN = Multi-Layer Perceptron (MLP)

Deep neural network consisting of L layers Multi-Layer Perceptron (**MLP**)

Linear layer $\mathbf{g}^{(k)} = \xi \left(\mathbf{W}^{(k)} \mathbf{g}^{(k-1)} \right)$

Activation, e.g. $\xi(x) = \max\{x, 0\}$ rectified linear unit (ReLU)

Parameters weights of all layers $\mathbf{W}^{(1)}, \ldots, \mathbf{W}^{(L)}$ (including biases)

NN = Multi-Layer Perceptron (MLP)

Deep neural network consisting of L layers

Net output $\mathbf{g}^{\text{out}} = \xi \left(\dots \mathbf{W}^{(2)} \xi \left(\mathbf{W}^{(1)} \mathbf{f}^{\text{in}} \right) \right) = y_{(\mathbf{W}^{(1)}, \dots, \mathbf{W}^{(L)})}(\mathbf{f}^{\text{in}})$

Activation, e.g. $\xi(x) = \max\{x, 0\}$ rectified linear unit (ReLU)

Parameters weights of all layers $\mathbf{W}^{(1)}, \dots, \mathbf{W}^{(L)}$ (including biases)

Neural Network Expressive Power

Universal Approximation Theorem Let ξ be a non-constant, bounded, and monotonically-increasing continuous activation function, $y: [0,1]^p \to \mathbb{R}$ continuous function, and $\epsilon > 0$. Then, $\exists n$ and parameters $\mathbf{a} \in \mathbb{R}^n$, $\mathbf{W} \in \mathbb{R}^{n \times p}$ (including bias) s.t.

$$\left|\sum_{i=1}^{n} a_i \xi(\mathbf{w}_i^{\top} \mathbf{f}) - y(\mathbf{f})\right| < \epsilon \qquad \forall \mathbf{f} \in [0, 1]^p$$

Neural Network Expressive Power

Universal Approximation Theorem Let ξ be a non-constant, bounded, and monotonically-increasing continuous activation function, $y: [0,1]^p \to \mathbb{R}$ continuous function, and $\epsilon > 0$. Then, $\exists n$ and parameters $\mathbf{a} \in \mathbb{R}^n$, $\mathbf{W} \in \mathbb{R}^{n \times p}$ (including bias) s.t.

$$\left|\sum_{i=1}^{n} a_i \xi(\mathbf{w}_i^{\top} \mathbf{f}) - y(\mathbf{f})\right| < \epsilon \qquad \forall \mathbf{f} \in [0, 1]^p$$

- Any continuous function can be approximated arbitrarily well by a neural network with a single hidden layer
- [©] How to find the parameters?
- \bigcirc Does it generalize well / overfit?
- ^(C) Shallow nets work poorly for high-dimensional data s.a. images

Neural Network Expressive Power

- Applying MLPs directly on the input data is usually too inefficient !
 - An RBG image of size 512x512 leads to input size: f_{in} = 512x512x3 ≈ 10⁶ nodes.
 - If f_{out} = f_{in} then a single-layer MLP would have ≈ 10¹² trainable parameters!

• Need to exploit *structure in the data*!

Translation invariance for images

$$y(\mathcal{T}_v f) = y(f) \quad \forall f, v$$

where

- image is modeled as a function $f \in L^2([0,1]^2)$
- $T_v f(x) = f(x v)$ is a translation operator
- $v \in [0,1]^2$ is a translation vector
- $y: L^2([0,1]^2) \to \{1,\ldots,L\}$ is classification functional

Key Properties of Convolution

Given two functions $f,g:[-\pi,\pi]\to\mathbb{R}$ their convolution is a function

$$(f \star g)(x) = \int_{-\pi}^{\pi} f(x')g(x - x')dx'$$

Often we call *f* the signal and *g* a kernel (or filter).

Key properties of convolution:

- Linearity: $(f \star (\alpha_1 g_1 + \alpha_2 g_2)) = \alpha_1 (f \star g_1) + \alpha_2 (f \star g_2)$
- Shift equivariance: $\tau_y(f \star g) = (\tau_y f) \star g = f \star (\tau_y g)$ where $(\tau_y f)(x) = f(x y)$
- **Theoretical result:** any linear shift-invariant operator in Euclidean space can be represented as a convolution¹.

¹L. Hörmander, *Estimates for translation invariant operators in L_p spaces*, Acta Math., 1960.

Convolutional kernel

Replace general MLP weights with convolutional kernels

Key idea: use a *learned* kernel

Convolutional layer

$$(f * g)[m, n] =$$
$$= \sum_{k,l} g[k, l] f[m+k, n+l]$$

Gray: Learned kernel

Blue: Input image (layer)

Green: Output layer

Output: convolve (slide) the kernel over all spatial locations

Convolutional Neural Networks

ConvNet is a sequence of Convolutional Layers with *non-linear activation* functions

ConvNets: Typical Architecture

Pooling Layer

- Makes the representations smaller and more manageable
- Operates over each activation map independently:

Stationarity and Self-similarity

Properties of "natural" signals:

Stationarity: Certain *motifs* repeat throughout a signal.

Locality: Nearby points are more correlated than points far away.

Compositionality: Everything in nature is composed of parts that are composed of sub-parts and so on

Data is self-similar across the domain

CNNs help to exploit these properties!

Hierarchy and Compositionality

Data is compositional: images, video, sound are formed of hierarchical local stationary patterns.

Typical features learned by a CNN becoming increasingly complex at deeper layers

Hierarchy and Compositionality

Data is compositional: images, video, sound are formed of hierarchical local stationary patterns.

Typical features learned by a CNN becoming increasingly complex at deeper layers

Key Properties of CNNs

- © Convolutional filters (Translation invariance)
- Multiple layers (Compositionality)
- © Filters localized in space (Locality)
- © Weight sharing (Self-similarity)
- $\bigcirc \mathcal{O}(1)$ parameters per filter (independent of input image size n)
- \bigcirc $\mathcal{O}(n)$ complexity per layer (filtering done in the spatial domain)
- $\bigcirc \mathcal{O}(\log n)$ layers in classification tasks

CNNs for 3D shapes

Datasets: ShapeNet

SHAPERET	Q Options -	Home About Download Statistics	
chair a seat for one person, with a support for the back; 'he p ImageNet_MetaData	ut his coat over the back of the chair and sat down'		
Choose a taxonomy:	Synset models		>220K 3D models
ShapeNetCore	Displaying 1 to 40 of 7080		
-arplane.aeroplane.plane(12.4501) -aquartum,fish tank.marine museum(0.4) -ashcan traas can garbage can wastebin ash b -bag fursveing bag (raveling bag grip suitcase(1 -basket handbasket(2.140) -basket, handbasket(2.140) -basket, handbasket(2.140) -bend(12.165) -book(12.65) -book(12.65) -book(12.65) -book(12.65) -book(12.64) -cashet(3.1644) -cashet(3.1644) -canet, plotographic camera(4.134) -canet, grip (1.644) -canet, g	Image: Constraint of the sector of the se	Image: state stat	SHAPERET

ShapeNetCore is used in most papers: 51k shapes in 55 object categories. The training set, validation set, and test set are composed of 35,764, 5,133, and 10,265 shapes, respectively.

Chang, Angel X., Thomas Funkhouser, Leonidas Guibas, Pat Hanrahan, Qixing Huang, Zimo Li, Silvio Savarese et al. "Shapenet: An information-rich 3d model repository." arXiv preprint arXiv:1512.03012 (2015).

Datasets

ABC: A Big CAD Model Dataset For Geometric Deep Learning, CVPR 2019

Wu, Zhirong, et al. "3d shapenets: A deep representation for volumetric shapes." CVPR 2015

Deitke, Matt, et al. "Objaverse-xl: A universe of 10M+ 3d objects." arXiv preprint arXiv:2307.05663 (2023).

ScanNet

ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes, CVPR 2017

3D shape analysis tasks

Fundamental tasks: *classification, segmentation, correspondence, reconstruction, alignment,* etc. on 3D data.

View-Based 3D Deep Learning

- Represent 3D object as a collection of range images from different views
- CNN₁: Extract image features (parameters are shared across views)
- Element-wise max pooling across all views
- CNN₂: Produce shape descriptors + final prediction

Hang Su et al., "**Multi-view Convolutional Neural Networks for 3D Shape Recognition**", *ICCV* 2015.

View-Based 3D Deep Learning

Hang Su et al., "**Multi-view Convolutional Neural Networks for 3D Shape Recognition**", *ICCV* 2015.

Shi et al. *DeepPano: Deep Panoramic Representation for 3-D Shape Recognition,* IEEE Signal Processing Letters, 2015

View-Based Deep Learning Methods

Kalogerakis et al. **"3D Shape Segmentation with Projective Convolutional Networks"**, *CVPR2017*.

Many other multi-view approaches!

Qi, Shaohua, et al. "**Review of multi-view 3D object recognition methods based on deep learning**." Displays, 2021

Using powerful 2D models for text-based analysis

CLIP: Radford, Alec et al. "Learning transferable visual models from natural language supervision." In ICML, 2021.

Michel, Oscar, et al. "Text2mesh: Text-driven neural stylization for meshes." CVPR 2022

Using a pre-trained CLIP model to discover semantic regions on a 3D shape

D. Decatur et al. "3d highlighter: Localizing regions on 3d shapes via text descriptions" CVPR 2023.

Improving 2D Feature Representations by 3D-Aware Fine-Tuning

Yuanwen Yue¹, Anurag Das², Francis Engelmann^{1,3}, Siyu Tang¹, Jan Eric Lenssen² ¹ETH Zurich ²Max Planck Institute for Informatics ³Google ECCV 2024

TLDR: We propose 30-wave fine-tuning to improve 30 foundation features. Our method starts with lifting 20 image features (e.g., DINO/20) (b) to a 30 preparation. Then we fine-tune the 20 foundation model using the 30-wave features (1) We demonstrate that incorporating the fine-tuned features (b) results in improved preformance on downstream tests such as semantic segmentation and depth estimation on a variety of datasets with simple linear probing tright). Feature maps are visualized using pringed component avails (PCA).

Back to 3D: Few-Shot 3D Keypoint Detection with Back-Projected 2D Features

Thomas Wimmer^{1,2}, Peter Wonka³, Maks Ovsjanikov¹ ¹École Polytechnique, ²Technical University of Munich, ³KAUST CVPR 2024

Qualitative results of our proposed method B2-3D for few-shot keypoint detection using back-projected features (red) with ground truth keypoint annotations (green).

ConDense: Consistent 2D/3D Pre-training for Dense and Sparse Features from Multi-View Images

Xiaoshuai Zhang^{1,5*}, Zhicheng Wang⁵, Howard Zhou⁵, Soham Ghosh⁵, Danushen Gnanapragasam⁵, Varun Jampani^{3,5*}, Hao Su^{1,4}, Leonidas

 ¹UC San Diego, ²Stanford University, ³Stability AI, ⁴Hilbot, ⁵Google Research • Work conducted while at Google Research.

 2 arXiv (coming)
 Paper

 V delo (coming)
 Code

 Email Contact
 Video (coming)

Diffusion 3D Features (Diff3F)

Decorating Untextured Shapes with Distilled Semantic Features [CVPR 2024]

Niladri Shekhar Dutt ^{1, 2}, Sanjeev Muralikrishnan ¹, Niloy J. Mitra ^{1, 3} ¹ University College London, ² Ready Player Me, ³ Adobe Research

DBTF is a new leader dealler that harmosses the expressive power of n-parting difficult relative and distlin them to ports on 3D autocas. Here, the proposed fautors are employed for pohi-top-point data correspondence belowen assess wright on these, pose, spokes and topology. We schewe the without any line-kuring of the underlying difficult models, and demonstrate relation or unstrated methes, point clouds, non-maintaind methes, or 2-autodiffication relative, and wright and and an employed linguist as point clouds, non-maintaind methes, or 2-autodiffication methes. The list notire meth is the source and all emaining 3D shapes are trapted. Corresponding to the set simplify coded.

View-based Methods.

Advantages

- Efficiency & simplicity
- Can use (pre-trained) CNNs!
- Can be used to *optimize* 3D shapes via *differentiable rendering*.

Limitations

- Are cumbersome for *local* analysis (e.g., segmentation)
- Are not adapted to *deformable* shapes
- Not great for topologically complex shapes

Represent data as a signal on *voxel grid*: $\mathbb{R}^{d \times d \times d}$

Can directly use convolutions (with 3D kernels)!

Credit: E. Kalogerakis

Volumetric and multi-view CNNS for object classification on 3d data

Volumetric Adversarial Generative Networks:

Wu et al. *Learning a Probabilistic Latent Space of Object Shapes via 3D Generative-Adversarial Modeling,* NIPS 2016

Volumetric Adversarial Generative Networks:

Choy et al. **3D-R^2N^2: A unified approach for single and multi-view 3D object reconstruction** *ECCV* 2016

Other Volumetric Methods.

. . .

- 1. Yan et al., Perspective Transformer Nets: Learning Single-View 3D Object Reconstruction without 3D Supervision, NIPS 2016
- 2. Klokov et al., *Escape from cells: Deep kd-networks for the recognition of 3d point cloud models,* ICCV 2017
- 3. Wang et al., *O-cnn: Octree-based convolutional neural networks for 3d shape analysis*, TOG 2017
- 4. Dai et al., *Shape Completion using 3D-Encoder-Predictor CNNs and Shape Synthesis*, CVPR 2017

Will get back to this next (and the following) weeks.

Key idea: map the input surface to some parametric domain (e.g. 2D plane) where operations can be defined more easily.

Key idea: map the input surface to some parametric domain (e.g. 2D plane) where operations can be defined more easily.

(d) Geometry reconstructed entirely from b*

Rigid Shape

The pixels in the geometry image corresponding to points on the original shape are encoded with principal curvatures for rigid

Shape Classification and Retrieval

Non-rigid Shapes

	McGill1		McGill2		SHREC1		SHREC2	
	Classify	Retrieve	Classify	Retrieve	Classify	Retrieve	Classify	Retrieve
ShpGoogle	NA	NA	NA	NA	62.6	0.65	70.8	0.74
Zerkine	63	0.64	57.5	0.69	43.3	0.47	50.8	0.64
LFD	75	0.67	72.5	0.68	56.7	0.5	65.8	0.65
ShapeNets	65	0.29	57.2	0.28	52.7	0.1	48.4	0.13
Conformal	55	0.36	80	0.58	60.6	0.45	85	0.65
SPHARM	62	0.35	82.5	0.58	59	0.45	82.5	0.66
Ours	83	0.75	92.5	0.72	88.6	0.65	96.6	0.72

Rigid Shapes

		VoxNet	DeepPano	LFD	ShpNets	SphHarm	Conf	SPHARM	Ours
Model	Classify	92	85.5	79.8	83.5	79.9	78.2	79.9	88.4
Net10	Retrieve	NA	84.1	49.8	69.2	45.9	67.4	65.2	74.9
Model	Classify	83	77.6	75.4	77.3	68.2	75.6	75.9	83.9
Net40	Retrieve	NA	76.8	40.9	49.9	34.4	46.2	44.8	51.3

shapes and HKS for non-rigid shapes. Then a standard CNN architecture can be modeled to learn the 3D shape.

Gu, Xianfeng, Steven J. Gortler, and Hugues Hoppe. "Geometry images." SIGGRAPH 2002.

Sinha, Ayan et al. "Deep learning 3D shape surfaces using geometry images." ECCV 2016

Key idea: map the input surface to some parametric domain (e.g. 2D plane) where operations can be defined more easily.

- Enables adoption of Euclidean techniques in the embedding space
- Provides invariance to certain operations
- Parametrization may be non-unique
- The map can introduce distortions

Convolution on Surfaces

Is translation-invariant convolution on surfaces possible?

Yes! The torus is the only closed orientable surface admitting a translational group.

CNNs can be well-defined over the flat-torus!

Torus 4-cover

Surface \mathcal{S} with sphere topology

Flat-torus \mathcal{T} with 4 replicas of \mathcal{S}

Standard Euclidean 2D CNN architectures can now be used on \mathcal{T} .

Projection-based methods

Torus 4-cover

For each triplet $\{p_1, p_2, p_3\} \in S$, use orbifold-Tutte to map S^4 to T.

Tha mapping from \mathcal{S}^4 to \mathcal{T} is a conformal homeomorphism.

Projection-based methods

Torus 4-cover

For each triplet $\{p_1, p_2, p_3\} \in S$, use orbifold-Tutte to map S^4 to T.

Tha mapping from \mathcal{S}^4 to \mathcal{T} is a conformal homeomorphism.

Projection-based methods

Predictions on the test set

Projection-based Methods.

Advantages

- Represent the shape as a whole (rather than *partial* views)
- Can reuse shape parametrization methods
- Enable the use of CNNs

Limitations

- Parametrizations are not unique
- Typically induce (often heavy) distortion
- Rarely used in practice anymore

(a) Original mesh with cut 70K faces; genus 0

(b) Geometry image 257×257 (b*) Compr. to 1.5KB (not shown)

Main question (for the rest of the lecture):

How to enable neural networks to operate *directly on deformable 3D surfaces*?