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My Background

Positions:

2018 — Full Professor, GeomeriX team, Ecole Polytechnique
2024 - Visiting Researcher, Google DeepMind, Paris

Research Profile:

Analysis and Deep Learning on 3D data, classification, segmentation,
correspondence, reconstruction, alignment, etc.
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Today: Deep Learning on 3D shapes

- Recap of CNNs and their properties

- Multi-view, extrinsic, projection-based approaches
- Spectral methods, pros and cons

- Intrinsic approaches

- Learning via diffusion



Learning on images

Error %
30

“Deep learning era” in vision

Human accuracy
4.1%

2.9%

2010 2011 2012 2013 2014 2015 2016




Learning on different data

Deubt thou the stars are fire,
Doubt that the sun deth move,
Loubt truth te be a liar,
But never doubt I love...

Text

Audio signals

Images Functional networks 3D shapes



= i HZF-
Deep Learning for 3D shapes

* Main Challenge

3D shapes (typically) do not have a canonical (grid-like) representation!

3D point cloud: an unorganized collection of 3D
coordinates

3D mesh: a collection
of points and triangles
connecting them.




Main question:

How to design neural networks on
unstructured domains such as 3D shapes?



omain vs data on a domain

Images are grids of pixels!




Domain vs data on a domain

In computer vision images are data on a fixed domain (grid of pixels).
In 3D, h (the shape) is what we're learning on.



Fixed vs different domains

Social network 3D shapes
(fixed graph) (different manifolds)

* In graph neural networks, we often deal with problems on a fixed
domain (e.g., predicting communities).

¢ In 3D (and other fields), we typically want the solutions to
generalize to unseen domains/shapes.



Approaches for 3D Deep-Learning
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CNN;: a second ConvNet
producing shape descriptors

Multi-view based

Up

Intrinsic (surface-based)
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3D Shape Analysis and Learning

Main questions:

« How to represent the 3D shapes to enable learning?

* How to design robust and principled data analysis approaches?



Some approaches covered today

30+30+30  64+64+64  128+128+128

oa

Image-based Voxel-based

Extrinsic Embedding domain

& s

Spectral domain Intrinsic (surface-based)




Background



Supervised learning
@ Data vectors f € RP
(e.g. for 512x512 images p ~ 10°)

@ Unknown classification functional
y:RP — {1,...,L} in L classes

@ Training set

S={(f; e R, y; = y(£)} -,

@ Parametric model yg of y



Supervised learning

@ Data vectors f € RP
(e.g. for 512x512 images p ~ 10°)

@ Unknown classification functional
y:RP — {1,...,L} in L classes

@ Training set

S={(f eR?, y; = y(£))},

@ Parametric model yg of y

Supervised learning: find optimal model parameters by minimizing the

loss ¢ on the training set
T

e = argcf)nin Z U(ye (i), y:)

=1



Basic Neural Network (NN)
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Single linear layer

p
| I=1,...,
Linear layer g =£ (Z fl’wl,l’> /'=1,... qp

I'=1

Activation, e.g. {(z) = max{z,0} rectified linear unit (ReLU)

Parameters layer weights W (including bias)



NN = Multi-Layer Perceptron (MLP)

ggl) g§2) 953) ggL—l)

Deep neural network consisting of L layers
Multi-Layer Perceptron (MLP)

Linear layer g = ¢ (Wkglh=1)

Activation, e.g. £(z) = max{xz,0} rectified linear unit (ReLU)

Parameters weights of all layers WD ... W) (including biases)



NN = Multi-Layer Perceptron (MLP)

ggl) g§2) g£3) ggL—l)

Deep neural network consisting of L layers

Net output gt =¢ (.. WEE(WWIE)) = ywa)  way (™)

Activation, e.g.  &(x) = max{x,0} rectified linear unit (ReLU)

Parameters weights of all layers WD ... W) (including biases)



Neural Network Expressive Power

Universal Approximation Theorem Let £ be a non-constant,
bounded, and monotonically-increasing continuous activation function,
y : [0, 1] — R continuous function, and € > 0. Then, 3n and parame-
ters a € R", W € R"*? (including bias) s.t.

En:a,f(w;f) —y(f)| <e vf e [0,1)P
i=1

Cybenko 1989; Hornik 1991



Neural Network Expressive Power

Universal Approximation Theorem Let £ be a non-constant,
bounded, and monotonically-increasing continuous activation function,
y : [0, 1] — R continuous function, and € > 0. Then, 3n and parame-
ters a € R", W € R"*? (including bias) s.t.

En:aif(w;f) —y(f)| <e vf e [0,1)P
i=1

© Any continuous function can be approximated arbitrarily well by a
neural network with a single hidden layer

@ How to find the parameters?
© Does it generalize well / overfit?

© Shallow nets work poorly for high-dimensional data s.a. images

Cybenko 1989; Hornik 1991



Neural Network Expressive Power

* Applying MLPs directly on the input data is usually too inefficient !

* An RBG image of size 512x512
leads to input size:
fin = 512x512x3 = 108 nodes.

» If o« = fi, then a single-layer

MLP would have = 1012
trainable parameters!

* Need to exploit structure in the data!



Translation invariance for images

y(Tof) =y(f) Vv
where

@ image is modeled as a function f € L%([0,1]?)
o T,f(x) = f(x —v) is a translation operator
e v € [0,1])? is a translation vector

e y:L%([0,1)?) = {1,..., L} is classification functional



Key Properties of Convolution

Given two functions f, g : [—m, 7] — R their convolution is a function

™

(fxg)(x)= [ [f(a")g(z —2")da’
—
Often we call f the signal and g a kernel (or filter).
Key properties of convolution:
¢ Linearity: (f x (0191 + @292)) = a1(f * g1) + a2 (f * g2)

- Shift equivariance: 7, (f x g) = (7, f) *g = f * (7,9) where (7,f)(z) = f(z —y)

» Theoretical result: any linear shift-invariant operator in Euclidean space can be
represented as a convolution®.

L. Hormander, Estimates for translation invariant operators in L, spaces, Acta Math., 1960.



Convolutional kernel

Center element of the kernel is placed over the
source pixel. The source pixel is then replaced 0x0
with a weighted sum of itself and nearby pixels. (0 X 0)

Replace general MLP
weights with
convolutional kernels

Source pixel

Key idea: use a learned kernel



Convolutional layer

(f *g)[m,n] -

= glk, 0 fIm+k,n+1]
k,l

Gray: Learned kernel

Blue: Input image (layer)

Green: Output layer

Output: convolve (slide) the
kernel over all spatial locations



Convolutional Neural Networks

ConvNet is a sequence of Convolutional Layers with non-linear activation functions

Input image
32

—_—> —_—> _—>
CONYV, CONYV, CONYV,
ReLU ReLU ReLU
e.g.6 e.g. 10
5x5x3 5x5x6
32 filters filters

@ |

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Typical Architecture

ConvNets

RELU RELU

RELU RELU
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Pooling Layer

- Makes the representations smaller and more manageable

- Operates over each activation map independently:

224x224x64 ' .
112x112x64 Single depth slice
max pool with 2x2 filters
5(6 (|78 and stride 2 6|8
1 T 3 | 2 34
1 | 2 S
224 downsampling e
112
224 v

Slide credit: Fei-Fei & J. Johnson & S. Yeung, 2017
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Stationarity and Self-similarity

Properties of “natural” signals:

Stationarity: Certain motifs repeat
throughout a signal.

Locality: Nearby points are more
correlated than points far away.

Compositionality: Everything in
nature is composed of parts that are
composed of sub-parts and so on

Data is self-similar across the domain
CNNis help to exploit these properties!
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Hierarchy and Compositionality

Data is compositional: images, video, sound are formed of hierarchical
local stationary patterns.

Typical features learned by a CNN becoming increasingly complex
at deeper layers

Zeiler, Fergus 2013



Hierarchy and Compositionality

Data is compositional: images, video, sound are formed of hierarchical
local stationary patterns.

Simple to abstract
structures

Layer 10

Typical features learned by a CNN becoming increasingly complex
at deeper layers

Zeiler, Fergus 2013



Key Properties of CNNss

C3: f. maps 16@10x10
S4: f. maps 16@5x5

C5: layer )
120 Fsa layer ?gTPUT

INPUT

C1: feature maps
32x32 28

S2:f. maps
6@14x14

Full conAection ‘ Gaussian connections
Convolutions Subsampling Convolutions ~ Subsampling Full connection

Convolutional filters (Translation invariance)

Multiple layers (Compositionality)

Filters localized in space (Locality)

Weight sharing (Self-similarity)

O(1) parameters per filter (independent of input image size n)

O(n) complexity per layer (filtering done in the spatial domain)

©0O0 060606060

O(logn) layers in classification tasks

LeCun et al. 1989




CNNs for 3D shapes
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Datasets: ShapeNet

_ — bl o

chair
a seat for one person, with a support for the back; 'he put his coat over the back of the chair and sat down"
ImageNet MetaData

>220k 3D models

Choose a taxonomy: Synset models

ShapeNetCore v
Displaying 1 to 40 of 7080

airplane aeroplane, plane(12,4501) N [2][31[4][s]s][7][e] [s] [10] [11] [12] [13] .- [177][>] s h A P E ﬁ E

aquarium fish tank marine museum(0,4)

ashcan trash can,garbage can wastebin.ash bi i
bagraveling bag,ravelling bag grip suitcase(1] “
basket handbasket(2,140)

til
bathtub,bathing tub,bath,tub(0,932) cubchair ™" armcnair  straight chair straight chair  club chalr  deck chair  rex chair
bed(13,353) chair

bench(5,1953)
-birdhouse(0,79)
boat(12,1635)
bookshelf(0,495)

buttertly
potte(5,550) staightchalr  clubchar  cubchalr  swivelchair el armchair  amchair  club chair
-bowl(1,234)
bus,autobus,coach.charabanc,double-decker | &
cabinet(9,1644) eSS
camera photographic camera(4,134) 7
can,tin,tin can(2,108) recliner m:::‘{'e' Swivel chair  swivel chair  armchair  folding chair rocking chair  club chair
{-cap(4.81)
car,auto,automobile. machine, motorcar( 18,244
celular telephone.cellular phone, cellphone. cell
{—chair(23,7083)
« mimiiii— B a I

ShapeNetCore is used in most papers: 51k shapes in 55 object categories. The
training set, validation set, and test set are composed of 35,764, 5,133, and
10,265 shapes, respectively.

Chang, Angel X., Thomas Funkhouser, Leonidas Guibas, Pat Hanrahan, Qixing Huang, Zimo Li, Silvio Savarese et al.
"Shapenet: An information-rich 3d model repository." arXiv preprint arXiv:1512.03012 (2015).



Datasets
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. . . Wu, Zhirong, et al. "3d shapenets: A dee
ABC: A Big CAD Model D F Learning, CVPR 201 / & P p
A Big odel Dataset For Geometric Deep Learning, o1 representation for volumetric shapes.”" CVPR 2015

Objaverse-XL

A Universe of 10M+ 3D Obijects

I B oo

ScanNet

ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes, CVPR 2017 Deitke, Matt, et al. "Objaverse-xI: A universe of 10M+ 3d objects.” arXiv
preprint arXiv:2307.05663 (2023).
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3D shape analysis tasks

Fundamental tasks: classification, segmentation, correspondence,
reconstruction, alignment, etc. on 3D data.




View-Based 3D Deep Learning
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@ Represent 3D object as a collection of range images from different
views

@ CNNj: Extract image features (parameters are shared across views)
@ Element-wise max pooling across all views

@ CNNsy: Produce shape descriptors + final prediction

Hang Su et al., "Multi-view Convolutional Neural Networks for 3D Shape
Recognition", ICCV 2015.



View-Based 3D Deep Learning

-F®%
-—» %% batrl])teg

chair

TR RN

DDHUD

CNN,

toilet—

_Pe%

CNN,: a second ConvNet
producing shape descriptors

Hang Su et al., "Multi-view Convolutional Neural Networks for 3D Shape
Recognition", ICCV 2015.
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Other View-based Methods.
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Rotation equivariance

Shi et al. DeepPano: Deep Panoramic Representation for 3-D Shape Recognition, IEEE
Signal Processing Letters, 2015
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View-Based Deep Learning Methods

( Surface [oofrrot
? reference [l ulufs
4x rotations 'ImaFed «
(triangle i :mmnn
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Per-label Surface-based Labeled 3D Shape
confidence CRF layer Wfuselage

¢

maps Ewin
< L Image2Surface (on surface) Bvert stabilizer
Input 3D Shape & Shaded Depth Perlabel  Projection Whoriz. stabilizer
Selected Viewpoints images images layer
confidence
maps

forward pass / inference

Y

backpropagation / learning

Kalogerakis et al. “3D Shape Segmentation with Projective Convolutional Networks”,
CVPR2017.
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Other View-based Methods.

Many other multi-view approaches!

l 3D object recognition

Traditional methods Deep learning methods Z
Model-based methods | View-based methods
(a) (b) (c)
Y

1

|

* * Fig. 3. Different view configurations in View-GCN [33].
Viewpoints setting and ___| Backbone and v?:‘:m;?"::s;;::'?:n
input modes feature extraction r'r:echanisms
==}
12
/
L

®
case (i) case (ii) case (iii)
Active views selection

Fig. 4. lllustration of the three viewpoints setups considered in Rota-

tionNet [30].
GoogleNet | ]

Sequential input

Active camera viewpoints
selection

[i

Qi, Shaohua, et al. "Review of multi-view 3D object recognition methods based on deep
learning." Displays, 2021



Other View-based Methods.

Using powerful 2D models for text-based analysis

CLIP:

INTy [ INT2 [ InTs INTN

Text2Mesh:

Iron Man Brick Lamp Colorful Crochet Candle

CLIP: Radford, Alec et al. "Learning transferable visual models from natural language
supervision." In ICML, 2021.

Michel, Oscar, et al. "Text2mesh: Text-driven neural stylization for meshes." CVPR 2022

Astronaut Horse




Other View-based Methods.

Using a pre-trained CLIP model to discover semantic regions on a 3D shape

ﬁf i &

Necklace Headlights Shoes Eyeglasses

|
Belt Belt Hat

"highlighted hat"

Highlighter

Highlighted Mesh

D. Decatur et al. "3d highlighter: Localizing regions on 3d shapes via text descriptions" CVPR 2023.



er View-based Methods.

Improving 2D Feature Representations by
3D-Aware Fine-Tuning

Yuanwen Yue', Anurag Das?, Francis Engelmann'-3,

Siyu Tang, Jan Eric Lenssen?
TETH Zurich 2Max Planck Institute for Informatics 3Google
ECCV 2024

D @ CD D aD

features 10 3D

TLIDR: We propose 3D-aware fine-tuning to improve 20 foundation features. Our method starts with
lifting 2D image features (e.g. DINOV2) (b) to a 3D representation. Then we finetune the 20
foundation model using the that the fine-tuned
features (d) results in improved performance on downstream tasks such as semantic segmentation
and depth estimation on a variety of datasets with simple linear probing (right). Feature maps are
visualized using principal component analysis (PCA)

Back to 3D: Few-Shot 3D Keypoint
Detection with Back-Projected 2D
Features

Thomas Wimmer'-2, Peter Wonka®, Maks Ovsjanikov'
1Ecole Polytechnique, 2Technical University of Munich, 3KAUST
CVPR 2024

ground truth keypoint annotations groen).

ConDense: Consistent 2D/3D Pre-training for Dense and
Sparse Features from Multi-View Images

19 Wang®, Howard ZhouS,

2  Varun Jampani3S", Hao Su'4, Leonidas
Guibas?5,
1UC San Diego, Istabilty Al Hilbot,

* Work conducted whie at Google Research.

20 Fesrs w/ Key i 30 Fesr ik w/ Key ik

3D lepats
=
»
< Faw <
kb
=
&m ot
3D Retievlfrom g, 33D Reriwl, .
Conbense extract co-ambeddd festurs fo 20 or 30 inpu provious 20 or

e e

Diffusion 3D Features (Diff3F)

Decorating Untextured Shapes with Distiled Semantic Features
[CVPR 2024]
Niladri Shekhar Dutt "2, Sanjeev Muralikrishnan, Niloy J. Mitra "3
! University College London, ? Ready Player Me , * Adobe Research

D D G D D
dA,

e

DIff3F is a a novel feature dist of
surfaces. Hore, joyed for pose,
spacies and topology. We achieve this without any fine-tuning of
meshes, point clouds, without smoothing
D shapes

are targets. Corresponding points are similarly colored.
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View-based Methods.

Advantages
« Efficiency & simplicity
 Can use (pre-trained) CNNss!
 Can be used to optimize 3D shapes via differentiable rendering.

Limitations

* Are cumbersome for local analysis (e.g., segmentation)
 Are not adapted to deformable shapes
 Not great for topologically complex shapes

4 -E%

4“ } - ) 3 ﬁ%% o ) Qe "fj
Q 0 <: e ‘_’%% pooling ftmax

CNN,

llllll




Volumetric Representations

. dxdxd
Represent data as a signal on voxel grid: R&* X

Manufacturing
(finite-element analysis)

Voxelized
CAD models

Can directly use convolutions (with 3D kernels)!
Credit: E. Kalogerakis



Volumetric Representations

3DShapeNets from Princeton VoxNet from CMU Robotics
CVPR 2015 IEEE/RSJ 2015

4000
o R —
object label 10
A

Information loss in voxelization

‘

_ Point Cloud

O/ 160 filters o : . ‘ ; 0,
77.3% s ) ] { 83.0% Occupancy Grid
sl , CAD model 30
A ) comtzsa) L x30x30
‘:I:ll;“ . [gc rM!Z.!“)‘PooI(Z) ?
3
0 Ful uuzn)
§ - ,§ Rendering +
— 2D CNN

MVCNN from UMass
ICCV 2015

Credit: E. Kalogerakis

Volumetric and multi-view CNNS for object classification on 3d data



Volumetric Representations

Volumetric Adversarial Generative Networks:

"4\
—
i

Latent vector  Generator Generated shape
or

; ] Discriminator

Real shape

7

=) Real?

a.
#-A

Wau et al. Learning a Probabilistic Latent Space of Object Shapes via 3D Generative-
Adversarial Modeling, NIPS 2016

i
31
e



Volumetric Representations

Volumetric Adversarial Generative Networks:

W3 <
el

single view

T-1 views

A
‘ w g)(@ Decoder
Ir 3D Convolutional LSTM T views

Choy et al. 3D-R"2N”2: A unified approach for single and multi-view 3D
object reconstruction ECCV 2016
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Other Volumetric Methods.

1. Yan et al., Perspective Transformer Nets: Learning Single-
View 3D Object Reconstruction without 3D Superuvision,
NIPS 2016

2. Klokov et al., Escape from cells: Deep kd-networks for the
recognition of 3d point cloud models, ICCV 2017

3. Wang et al., O-cnn: Octree-based convolutional neural
networks for 3d shape analysis, TOG 2017

4. Dai et al., Shape Completion using 3D-Encoder-Predictor CNNs
and Shape Synthesis, CVPR 2017

Will get back to this next (and the following) weeks.



Global parametrization methods

Key idea: map the input surface to some parametric domain (e.g. 2D
plane) where operations can be defined more easily.
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Global parametrization methods

Key idea: map the input surface to some parametric domain (e.g. 2D

plane) where operations can be defined more easily.

B g (b) Geometry image 257x257 (c) Geometry (d) Geometry
(@) Original mesh with cut (b*) Compr. to 1.5KB (not shown) entirely from b entirely from bx
70K faces; genus 0
Rigid Shape Shape Classification and Retrieval
Non-Rigid Shape Non-rigid Shapes
3D shape ——> yImage Neural Net McGill1 McGill2 SHREC1 SHREC2
3D shape ——> GeometryImage ———— Convolutional Neural Net Classify Retrieve Classify Retrieve Classify Retrieve Classify Retrieve
ShpGoogle NA NA NA NA 62.6 0.65 70.8 0.74
Zerkine 63 0.64 57.5 0.69 433 0.47 50.8 0.64
LFD 75 067 725 068 567 05 658 065
ShapeNets 65 029 572 028 527 01 484 013
Conformal 55 036 80 058 606 045 85 065
E> SPHARM 62 0.35 82.5 0.58 59 0.45 825 0.66
Ours 83 075 925 072 886 06 966 072
Rigid Shapes
VoxNet DeepPano LFD ShpNets SphHarm Conf SPHARM Ours
o . o . - G L - Model Classify 92 85 798 85 799 782 799 884
The pixels in the y image corresp g to points on the original shape are encoded with principal curvatures for rigid Netl0 Retrieve NA 841 498 692 459 674 652 749
shapes and HKS for non-rigid shapes. Then a standard CNN architecture can be modeled to learn the 3D shape. Model  Classify 83 776 754 773 682 756 759 839
Netd0 Retrieve NA 76.8 40.9 499 344 46.2 448 51.3
. " .
Gu, Xianfeng, Steven J. Gortler, and Hugues Hoppe. "Geometry images.” SIGGRAPH 2002.

Sinha, Ayan et al. "Deep learning 3D shape surfaces using geometry images." ECCV 2016




Global parametrization methods

Key idea: map the input surface to some parametric domain (e.g. 2D
plane) where operations can be defined more easily.

" e
N

@ Enables adoption of Euclidean techniques in the embedding space

@ Provides invariance to certain operations
@ Parametrization may be non-unique

@ The map can introduce distortions

Sinha et al. 2016; Maron et al. 2017



Convolution on Surfaces

Is translation-invariant convolution on surfaces possible?

Yes! The torus is the only closed orientable surface admitting a
translational group.

CNNs can be well-defined over the flat-torus!



Global parametrization methods

Torus 4-cover

Surface S with sphere topology Flat-torus 7 with 4 replicas of S

Standard Euclidean 2D CNN architectures can now be used on 7.

Maron, Haggai, et al. "Convolutional neural networks on surfaces via seamless toric covers." ACM Trans.
Graph. 36.4, 2017



Projection-based methods

Torus 4-cover

For each triplet {p;,pas,p3} € S, use orbifold-Tutte to map S* to 7. /

CB 'PB 3
Cyelic
Padding Convolution, Pooling Projection

. Layer

Tha mapping from S* to 7 is a conformal homeomorphism.

Maron, Haggai, et al. "Convolutional neural networks on surfaces via seamless toric covers." ACM Trans.
Graph. 36.4, 2017



Projection-based methods

Torus 4-cover

For each triplet {p;,pas,p3} € S, use orbifold-Tutte to map S* to 7.
Conformality introduces scale changes.

o “Magnifying glass" effect

@ Prediction aggregation from different triplets at test time
T—”+”+/ﬁ\ = ?-—\

Maron, Haggai, et al. "Convolutional neural networks on surfaces via seamless toric covers." ACM Trans.
Graph. 36.4, 2017

Tha mapping from S* to T is a conformal homeomorphism.



Projection-based methods

Segmentation results

N

Predictions on the test set

Training data

Maron, Haggai, et al. "Convolutional neural networks on surfaces via seamless toric covers." ACM Trans.
Graph. 36.4, 2017



Projection-based Methods.

Advantages

* Represent the shape as a whole (rather than partial views)

 Can reuse shape parametrization methods
 Enable the use of CNNs

Limitations

 Parametrizations are not unique
* Typically induce (often heavy) distortion
 Rarely used in practice anymore

OO0 OO0
SO0 ©O O]
I@

(b) Geometry image 257x257
(bx) Compr. to 1.5KB (not shown)

(a) Original mesh with cut
70K faces; genus 0



Main question (for the rest of the lecture):

How to enable neural networks to operate
directly on deformable 3D surfaces?



