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L
Today

* Surface and Shape Analysis
* Surface features
* Discrete representations
¢ Discrete Laplace-Beltrami operator

 Applications in shape comparison and shape analysis



Parametrized Surfaces

A parametrized surface is a map from the plane in to the space.
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Parametrized Surfaces

A parametrized surface is a map from the plane in to the space.

v U C R?

Assumption: discrete surfaces are approximation of smooth surface



Describing a Surface

What makes a surface unique?




Describing a Surface

What makes a surface unique (up to rigid transformation)?
1. Geodesic distances: shortest distance between two points

2. Curvature: change in normal




D
Geodesic Path

* Shortest path on a surface

* Not always a straight line!




Geodesic Path s
* Shortest path on a surface <“: :

* Not always a straight line!
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Describing a Surface

* Curvature = normal variations




Gaussian Curvature

* Geodesic triangles

» Total Gaussian curvature: sum of inner angle minus pi

Spherical Surface Hyperbolic Surface

Planar Surface

K=a+p+y-—1m=0 K=a+p8+7—7>0 K=a+8+7—-71<0



Gaussian Curvature

* Defined from geodesic triangles

» Total Gaussian curvature: sum of inner angle minus pi

* Distance to a “folded” piece of paper

& F

K >0 K <0

folded paper spherical saddle




Gaussian Curvature

* Locally a surface “looks” like:

* A sphere;
* A saddle;

* A piece of folded paper.




Gaussian curvature

* Not the same surface but same Gaussian curvature and

geodesics

* Intrinsic information are not enough to fully describe a surface




Feature Functions

Curvature and geodesic can difficult to compute in practice!
Shape descriptors:
* Easy to compute

» Stable under noise

 Stable under small deformation

Laplacian to the rescue!

Generalized Heat Kernel Signatures, Valentin Zobel, Jan Reininghaus, Ingrid Hotz



Laplacian in Physics
ou

Heat diffusion: — = Au

Unit time: 0
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https://drive.google.com/drive/folders/1RZDPO5qO1Hb_nQFW0B1T7Czf6juSIOd4

Laplacian in Physics
0%u

* Wave equation: w7 = Au

Times of diffusion is a geodesic distance!



Laplacian in Geometry

* Isometry invariance:

« Same geodesic if and only if same Laplacian

* Not the same st




Chladni Plates

Ernst Chladni ['kladni]
(1715-1782)
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Chladni’s experimental setup allowing to visualize acoustic waves



Laplacian in Geometry

https://www.youtube.com/watch?v=wv]JAgrUBF4w



Chladni Plates

Patterns seen by Chladni are solutions to stationary Helmholtz equation

Axf=Af

Solutions of this equation are eigenfunction of Laplace-Beltrami operator



L
“Can one hear the shape of the drum?”

Mark Kac
(1914-1984)

More prosaically: can one reconstruct the shape

(up to an isometry) from its Laplace-Beltrami spectrum?




L
To Hear the Shape

In Chladni’s experiments, the spectrum describes acoustic characteristics

of the plates (“modes” of vibrations)

What can be “heard” from the spectrum:

@ Total Gaussian curvature
“ Euler characteristic

= Area

Can we “hear” the geodesic distances? NO!




Laplacian in Geometry

* Let’s build reliable descriptors on discrete surfaces with:

* Heat diffusion

* Eigen-decompostion

Generalized Heat Kernel Signatures, Valentin Zobel, Jan Reininghaus, Ingrid Hotz
The Heat Method for Distance Computation, Keenan Crane, Clarisse Weischedel, Max Wardetzky



Different Shape Representations

Triangle mesh  Triangle soup Point clouds Noisy clouds

| M‘&
WaVAVaS
A “fj}w

Surface reconstruction 3D scanner



Different Shape Representations

3D printing IRM 3D modeler  Fluid simulation

Voxel Subdivision Implicit



L
Why Different Shape Representations?

 Depends on the acquisition process
 Depends on the applications

- Which representation are we going to use?

- Ideally, we would like a learning pipeline working on all
representations
» In this course
- triangle meshes (today)
- point clouds
- Signed distance functions



D
Point Clouds

* Simplest shape representation

* Only point coordinates (x,y,z) (sometimes with normal)
¢ Typically results of 3D scanning

* Need to be processed before used




Triangle Meshes

* A very special type of graph!

* Two arrays

* Point coordinates (x,y,z)

* Triangle indices (i1,i2,i3)




Graph Definitions

* Graph: G={V/T}
* Vertices: V={A,B,C,...}
* Faces: T = {(BEF), ...}

 Edges: E = {(AB),(CD),...}
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Graph Embedding

Embedding: G is embedded in R if every vertices is assigned a

position in R?

Embedded in R? Embedded in R?3



Triangle Mesh

Triangulation: every face is a triangle

 Connectivity: triangle list

* Embedding: vertex list
AV

Vertex List

Triangle List

X Y z

0.0 0.0 1.0

10 0.0 10

0.0 10 1.0

1.0 1.0 1.0

0.0 0.0 0.0

1.0 0.0 0.0

0.0 1.0 0.0

10 10 0.0
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Data Structure

* Needs a mesh data structure to “walk” on the mesh

¢ For a triangle find incident edges, vertices
v4

* For a vertex visit 1-ring vertex 11 & #o
f8

/ fo
5

.

v7

* Iterates on vertices/faces/edges -

fO

34—\'\

f3




Manifold (aka “Nice”) Meshes

Disk-like neighborhood:

 Edges adjacent to at most two faces

¢ Triangles incident to a vertex can be sorted

Ay =

Non-manifold triangle meshes




Mesh Orientation

* Face orientation is defined by vertex order or normal direction

* A mesh is orientable if all faces can be orientated consistently

Clock-wise orientation:

- T = {(ADC), (CDB), (BDA)}



Non-Orientable Meshes

Moebius strip Klein bottle
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oV,

Divergence  divV =
ox

Input: vector field: V. RQ — |

Output: scalar function: leV : RQ —>

Intuition: source/sinks

Divergence theorem:

/disz/ Von
U ouU




Divergence  divV = No | o,y

ox oy

Input: vector field: V. RQ — RQ

Output: scalar function: leV . RQ —> R
Intuition: source/sinks /V/‘ ;S /7 /7 /7 /7 /7 /
VARV A A A AV A A A 4
VA4 g7 7
: _ VAV [/
divV =0 . Fa,
a4 /A4
VA4 VA4
VAV, | A
VARV AR AR A A A AV A 4



Divergence

Input: vector field:

Intuition: source/sinks

Output: scalar function: leV . RQ —> R
l
l
l

divV <0

ov, IV,
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3
9,
Laplacian Af =divVf = of

5
- 0x;

1=

Input: vector field: f :R" - R
Output: scalar function: Af :R" - R

Intuition: smoothness, deviation from average




Functions on Meshes

* Assignment of a number per vertex: f (i) = fi

* Linearly interpolated inside triangles:

f(x) = fiBi(x) + f;Bj(x) + fxBx(x)

1 B; (x)



Gradient of a Function

Inside a single triangle, use piecewise-linear interpolation:

1
Bi (X) Steepest ascent direction
X perpendicular to opposite edge
. k VBi(x) = VB, — =)
\Nr) = K
(] 1 2AT

Gradient is constant on a triangle.




Gradient of a Function

Inside a single triangle, use piecewise-linear interpolation:

Vfi(z)= fiVBi(x)+ f;VB;(z) + frVBg(x)

fi 1 fj 1 fk:
= Ty — I T;— & + — (T; —
1
Bi (X) Steepest ascent direction
X perpendicular to opposite edge
E k VBi(x) = VB, = = t)
Y

Gradient is constant on a triangle.

X

)J_



Divergence of Vector Field

A vector field is piecewise constant inside a triangle:

Divergence theorem:

/disz/ Von
U ouU

div(V Z Vijk-(xj — 21) "

17k

Vertex area: A E AT

zET




Laplacian on Meshes

Simply compose the divergence and gradient:

(V)i = gy (on =)+ (o =20 + 3@~ m)*
(L)iA@) =Y (VI ijk-(x; — zx) "
ijk
=> %(Cot aij + cot Biz) (fi — 1)
T
()

For a constant function f;

< > Lf=0




Laplacian on Meshes

L is a matrix of size n x n where n is the number of vertices:

Li;A(j) = %COt(a) + %Cot(ﬁ)

In matrix notation: A, = —W

2 [ —1 (cot(a) + cot(B)) 1fz N]:
Wij:< _ZjW’ij le:j
0 otherwise

d > ‘

Az’j_{ A(j) if 1 = 4

0 otherwise
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Laplace-Beltrami — Applications

Define a multiscale signature for every point
Compare points by comparing their signatures
Compute geodesic distances

Many Signatures are derived from the LB operator



Laplacian Eigen-Decomposition

The matrix W is
- symmetric: W;,; = Wj;
- positive: f'Wf>0

There exists positive eigenvalues and eigenfunctions solutions of:

= A\ A¢z ¢2—A¢j = 04j

@ﬂ’ HU

| |




Laplacian Eigen-Decomposition

O HUES
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) square

i > 10 15
component index n



Eigenfunctions as Basis

Signal Processing on a manifold (generalizing Fourier analysis):
Given a function f: M — R.

(0. @)
f(@) =) ¢i(x) (&, f)
i=0
Filter out high frequency “noise”, by truncating the series early:
(@) = X ilo ¢i(x) (i f)

New function will preserve the “global” properties of f.



Frequency Analysis

Multiscale nature of the spectrum:

Intuitively, eigenfunctions corresponding to larger eigenvalues, capture
smaller details (higher frequency) of the geometry.

 n-th eigenfunction has at most n nodal domains.
* Integral of the gradient increases.

A = /M bi Ay = /M IV il ?dp



Heat Equation on a Surface




Heat Equation on a Surface

Given a compact surface without the evolution of heat is

of

iven by: =L — A
g Y =, f
Discretization in time: thit_ I = Afi
Discretization in space: thit_ It _ — AW £

New heat distribution solution of:

(A+ dtW) fryr = Afe



Heat Equation on a Surface

Heat kernel ki(z,y) :RT x M x M = R

F(,t) = /M k(2. 9) f (4, 0)dy

k:(x,y) : amount of heat transferred from x to v in time ¢.

ey

t = 0.001 t =0.02 t=




Heat Kernel

Heat kernel ki(z,y) :RT x M x M = R

Fat) = [ ) f(.0)dy
M
k:(x,y) : amount of heat transferred from x to v in time ¢.

ki(z,y) = ZGXP(—UO@(%)@(?J)

A, @; eigenvalues/eigenfunctions of the LB operator.

Can be computed on a mesh using the eigenfunctions
of the discrete LB operator.



Discrete Heat Kernel

Heat kernel k; is a matrix:

ke =) exp(—tA;)dio;

7
Heat diffusion for time ¢ from an initial heat distribution fo:

fe =" exp(—tXi)¢ip] Afo

(4
A, @; eigenvalues/eigenfunctions of the LB operator.

Remember: fy = Z 0y ((,biTAfo)



Heat Kernel Signature

HKS(z) = ky(z, z) = Zexp(—t)\i)@(m)Q

A, @; eigenvalues/eigenfunctions of the LB operator.

k:(x,x) : amount of heat remaining at x after time ¢

A Concise and Provably Informative Multi-scale Signature Based on Heat Diffusion, Sun et al. 2009



L
Multiscale Matching

Comparing points through their HKS

6_scale;i HKS , |

.,
-----




L
Multiscale Matching

Finding similar points across multiple shapes:

Medium scale Full scale

A Concise and Provably Informative Multi-scale Signature Based on Heat Diffusion, Sun et al. 2009



L
Multiscale Matching

HKS is stable under mild deformations

Generalized Heat Kernel Signatures, Valentin Zobel, Jan Reininghaus, Ingrid Hotz



Heat Kernel Signature

Relation to scalar curvature for small ¢:
] — 1
ki(x,x) = — a;t’ ag=1,a1 = =K(x
t( ) 47Tt ; 7 0 1 6 ( )

. Gaussian Curvature

i1

A Concise and Provably Informative Multi-scale Signature Based on Heat Diffusion, Sun et al. 2009



Heat Kernel Signature

Can be interpreted as multi-scale intrinsic curvature.

t = 0.004 t = 0.008 t = 0.02 t=2

A Concise and Provably Informative Multi-scale Signature Based on Heat Diffusion, Sun et al. 2009



Wave Kernel Signature

N

WKS(x,e) = Z

1=0

HKS

WKS
reference shape new shape zoom on the new shape

Gives more prominence to medium frequencies.
Can result in more accurate predictions.

The wave kernel signature: A quantum mechanical approach to shape analysis, Aubry et al. 2009



Generalization

Learning-based Spectral Descriptors

HKS

Learn the optimal kernel from data

1 I 1 1 1 I . 1 1
0 0.005  0.01 0.015 0.02 0.025 0.03 0035 0.04 0045 0.05

Learning spectral descriptors for deformable shape correspondence, Litman et al. 2014



Conclusion

* Spectral Methods in Shape Analysis
* Discrete (graph) Laplacians
* Laplace-Beltrami operator and its properties

* Some applications

* Key message:
* Laplacian matrices allow to organize shape information in a multi-scale,

easy to manipulate way.



